Refine
Document Type
- Doctoral Thesis (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Institute
Die Entwicklung von neuartigen, funktionellen Materialien ist eine komplexe Aufgabe, da die Gesamteffizienz der zu entwickelnden Materialien von einer Vielzahl von Faktoren abhängt. Während die auf einer molekularen Ebene durchgeführte Funktionalisierung via chemischer Reaktionsführung genauso wichtig ist wie die makromolekulare Anordnung, kann die Frage nach einer geeigneten Verbesserung von gegenwärtigen Materialien nicht nur auf einer dieser beiden Ebenen beantwortet werden. Die in dieser Arbeit präsentierten Ergebnisse basieren auf der mirkoskopischen aber auch markoskopischen Betrachtung von neuartigen, funktionellen Nanomaterialien und den daraus gewonnenen Erkenntnissen. Das übergeordnete Ziel ist dabei das Verständnis und die Charakterisierung von Ladungsseparationsprozessen und die daraus resultierende Erzeugung von elektrischen Strömen in organischen photovoltaischen Materialien.
Die relevanten Ladungsseparationsprozesse werden oft im Kontext der Dissoziation von Exzitonen, gebundenen Elektron-Loch Paaren, beschrieben, welche innerhalb der Donordomäne eines beliebigen Donor-Akzeptor-Materials erzeugt werden. Dabei ist der Prozess der Exzitonengenerierung abhängig von der Nanomorphologie des entsprechenden Materials, typischerweise so genannten Bulk-Heterojunctions. Dahingehend ist es notwendig, die Effekte von intermolekularen Wechselwirkungen sowohl mittels quantenmechanischer als auch dynamischer Methoden zu betrachten. Um alle relevanten Zeitskalen und Prozesse zu betrachten ist es weiterhin notwendig, auf sowohl eine deterministische Darstellung im Rahmen von quantendynamischen Methoden als auch statistischen Methoden zurückzugreifen.
Um die oft ultraschnellen und kohärenten Exzitonendissoziationsprozesse zu untersuchen wurde eine Kombination aus high-level ab initio Methoden und zeitabhängiger Dichtefunktionaltheorie (TDDFT) angewandt, um geeignete Modellhamiltonians zu parametrisieren, welche schließlich mittels der Multi-Configurational Time-Dependent Hartree (MCTDH) und der Multilayer (ML-MCTDH) variante propagiert wurden. Die MCTDH Methode hat sich als geeignete Methode erwiesen um eine voll quantendynamische Beschreibung von bis zu 100 Freiheitsgraden durchzuführen; die ML-MCTDH Methode erlaubt gar bis zu 1000 Freiheitsgrade quantendynamisch zu behandeln. Die Parametrisierung der Modellhamiltonians, auf welchen die quantendynamische Behandlung basiert, wurde dabei für kleine, jedoch repräsentative Fragmente durchgeführt. Die geeignete Wahl dieser Fragmente sollte sicherstellen, dass zum einen alle relevanten intermolekularen als auch intramolekularen Wechselwirkungen enthalten sind, jedoch gleichzeitig eine möglichst akkurate Beschreibung mittels high-level elektronenstrukturtheoretischer Methoden in gegebener Zeit möglich ist.
Mit Hilfe dieser Methodenkombination wurden zwei Arten von funktionellen organischen Materialien untersucht. Das erste untersuchte System ist ein neuartiges Donor-Akzeptor System, bestehend aus selbstorganisierenden Oligothiophen-Perylenediimid Dimeren, welche in der Gruppe von S. Haacke und S. Mery der Universität Straßburg synthetisiert und spektroskopisch untersucht wurden. Die quantendynamischen Simulationen an diesem System sollten die Ergebnisse der experimentellen, zeitaufgelösten pump-probe Spektroskopie validieren und die dürftige Effizienz im Hinblick auf eine effektive Ladungstrennung erklären. Dabei konnte gezeigt werden, dass nach der Exzitonendissoziation Elektron und Loch auf räumlich benachbarten Donor- und Akzeptorfragmenten lokalisiert werden, was schließlich zu einem Rekombinationsprozess führen wird. Das zweite untersuchte System ist eine Kombination von Poly(3-Hexylthiophen-2,5-diyl) (P3HT) als Elektronendonor und [6,6]-Phenyl-C61 Butansäure Methyl-Ester (PCBM) als Elektronenakzeptor, welches schon hinreichend stark in diversen theoretischen und experimentellen Studien untersucht wurde. Aufbauend auf einem Gittermodell, welches in unserer Gruppe entwickelt wurde, wurde das Modellsystem um Charge Transfer Exzitonen in der Donordomäne erweitert. Die Bedeutung von solchen Charge Transfer Exzitonen in regioregulären Oligothiophenaggregaten ist ein aktuelles Thema in der Wissenschaft, sowohl in experimentellen aber auch theoretischen Abhandlungen. Neben der theoretischen Beschreibung zur Entstehung solcher Charge Transfer Exzitonen liegt ein besonderes Augenmerk auf dem Einfluss dieser predissoziierten Elektron-Loch Paaren auf die Ladungsseparationsdynamik zwischen Donor und Akzeptor sowie die Generierung von freinen Ladungsträgern. Dieser Aspekt der Ladungsseparation in einem P3HT-PCBM System wurde in dieser Art und Weise in dieser Arbeit zum ersten mal untersucht.
Neben dem zuvor erwähnten Donor-Akzeptor System erster Generation der Universität Straßburg wurde eine zweite Variante dieses Systems entwickelt, welches sich bei bisherigen experimentellen Untersuchungen als wesentlich effizienter erwies. Der interessante Prozess der Ladungsseparation ist dabei allerdings auf einer Zeitskala von mehreren hundert Pikosekunden angesiedelt, sodass kinetische Monte Carlo Methoden verwendet werden mussten um diese Prozesse zu modellieren. Dazu wurde ein Fortran90 Code entwickelt, welcher den First Reaction Method Algorithmus verwendet und explizite Delokalisationsprozesse behandelt, welche in dieser Form in kommerziellen Programmpaketen nicht enthalten ist. In vorangehenden Arbeiten konnte gezeigt werden, dass die Delokalisation von Exzitonen zu einer effektiven Herabsetzung der energetischen Barriere der Ladungsseparation führt und somit die Effizienz zur Stromumwandlung gesteigert werden konnte. Erste Simulationen mit diesem Code an idealisierten und zufällig generierten Donor-Akzeptor Morphologien lieferten realistische Werte für makroskopische Observablen wie Ladungsträgermobilitäten. Weiterhin wurden Simulationen einer coarse-grained Struktur zur zweiten Generation des Donor-Akzeptor Systems durchgeführt, ebenfalls mit Hinblick zur Untersuchung der Ladungsträgermobilität.
In view of the diverse functionalities of RNA, the search for tools suitable for regulating and understanding RNA grows continuously. Dysfunction of RNA controlled processes can lead to diseases, calling for external regulation mechanisms – a difficult task in view of the complexity of biological systems. One of the recently developed methods that aim to systematically control RNA relates to photoregulation. Here, the RNA functions are triggered by photochromic molecules – for example, azobenzene or spiropyran – which are bound either covalently or non-covalently to the target RNA. This is a flexible approach, which can be improved by using suitably substituted chromophores. However, many issues regarding the details of photocontrol are still open. A detailed understanding of the mechanism of photocontrol is therefore of crucial importance.
The present thesis explores theoretical approaches to the photocontrol of RNA, focussing upon azobenzene chromophores covalently bound to RNA. The aim of the thesis is to characterize, at a molecular level, the effect of trans-to-cis isomerization of the azobenzene chromophore on RNA, and thus understand the mechanism of RNA unfolding triggered by azobenzene isomerization. In particular, we attempt to answer the following questions:
How does azobenzene isomerization happen in an RNA environment, i.e., how is
the isomerization influenced by the local RNA environment?
Conversely, how is RNA dynamics, on a longer time scale, affected by azobenzene attachment and photoisomerization?
Further, can regulation be enhanced by substituted azobenzenes? And, does simulation yield a picture that is consistent with experiment?
Due to the very different times scales of azobenzene isomerization (femtoseconds to picoseconds) and the much slower RNA response (nanoseconds to milliseconds), complementary techniques have been chosen: (i) hybrid quantum-classical approaches, i.e., on-the-fly Quantum Mechanics/Molecular Mechanics (QM/MM), to characterize the isomerization and RNA response on an ultrafast time scale, and (ii) molecular dynamics with enhanced sampling techniques, in particular, Replica Exchange MD (REMD), to explore longer time scales where the effect of RNA unfolding becomes manifest. Furthermore, substituent effects on azobenzene were separately investigated, in collaboration with two experimental groups.
The first part of this thesis is focused on the conformational influence of azobenzene on a small RNA hairpin on longer time scales using REMD simulations. In accordance with experiment, it is found that both the trans and cis form of azobenzene destabilize the RNA system. Trans azobenzene stays stacked in the double strand, whereas the cis form flips out of the RNA. These stacking interactions are the main reason why a trans azobenzene-RNA-complex is more stable than a cis-azobenzene-RNA-complex. Furthermore, the loop region of the RNA hairpin is highly destabilized by the intercalation of azobenzene.
In the second part, on-the-fly QM/MM simulations of the same azobenzene substituted hairpin are undertaken. These simulations use a surface hopping (SH) algorithm in conjunction with hybrid QM/MM electronic structure calculations to give a complete picture of the isomerization process on a picosecond time scale. It is shown that, due to the constraints of the RNA environment, the isomerization time of the azobenzene chromophore is significantly increased (from 300 femtoseconds in the gas phase to around 20 picoseconds in the RNA environment), and the isomerization yield is low. To the best of our knowledge, these are the first QM/MM simulations reported for azobenzene in a nucleic acid environment.
In the third and final part of this thesis, the properties of substituted azobenzenes have been explored, in collaboration with two experimental groups at the department. In particular, para- and meta-hydroxy substituted azobenzenes were suggested as improved photoswitches for the photoregulation of RNA, but spectroscopic investigations showed that isomerization was inefficient in some of the investigated species. Therefore, we investigated the photoisomerisation pathway of the keto/enol-form of para- and meta-hydroxy-azobenzenes by Time-Dependent Density Functional Theory (TDDFT) calculations. These calculations show that the competing keto/enol-tautomerism can result in an unstable cis form, making these substituted chromophores unsuitable as photoswitches.
Overall, the present thesis has contributed to obtaining a molecular-level understanding of photocontrol in azobenzene substituted RNAs, showing that theory and simulations can provide useful guidance for new experiments.
Photoinduzierte Energietransferprozesse und -reaktionen spielen in vielen Gebieten von Chemie, Physik und Biologie eine wichtige Rolle. Zu den prominentesten Beispielen zählen der Lichtsammelprozess in der Photosynthese und der Anregungsenergietransfer in funktionellen Materialien. Der Fokus dieser Arbeit liegt auf letzterem Bereich, genauer auf organischer Elektronik und flexiblen Donor-Akzeptor-Bausteinen und Schaltern. Im Besonderen werden hier zwei verschiedene Typen von funktionellen organischen Systemen betrachtet: zum einen oligomere Fragmente organischer halbleitender Polymere wie Oligo-p-Phenylen-Vinylen (OPV) und Oligo-Thiophen (OT), welche als Bausteine für neuartige organische Solarzellen dienen, und zum anderen kleine funktionelle Donor-Akzeptor-Einheiten wie Dithienylethen-Bordipyrromethen (DTE-BODIPY). Letzteres wurde in Kooperation mit den experimentellen Gruppen von K. Rück-Braun (TU Berlin) und J. Wachtveitl (Goethe Universität) untersucht. Um die relevanten Energietransfermechanismen genauer zu verstehen, wurden an diesen Systemen elektronische Strukturrechnungen und quantendynamische Untersuchungen durchgeführt. Hierzu wurden mittels ab initio-Methoden Modell-Hamiltonians parametrisiert und mit hochdimensionalen quantendynamischen oder semiklassischen Methoden kombiniert. Während die Parametrisierung für kleinere Fragmente durchgeführt wurde, lässt sich der so parametrisierte Hamiltonian ohne Weiteres auf größere Systeme erweitern. Die dynamischen Studien der betreffenden Systeme wurden mittels der Multikonfigurationellen Zeitabhängigen Hartree (MCTDH) Methode durchgeführt, welche eine vollständige quantendynamische Beschreibung des Systems zulässt. Für größere Systeme wurde die semiklassische Ehrenfest Methode in Verbindung mit dem Langevin-Ansatz zur Beschreibung von Umgebungseffekten genutzt. Hierzu wurde ein eigens für diese Methode und Systeme geschriebenes Programm eingesetzt. Im Falle der OT- und OPV-Oligomere wurde die Dynamik bei Vorliegen eines strukturellen Defekts untersucht. Ziel war es hierbei, die dynamischen Phänomene, welche durch die Photoanregung induziert werden, zu untersuchen. Des Weiteren wurde untersucht, ob das Konzept von „spektroskopischen Einheiten“, welche die Lokalisierung der Anregung durch strukturelle Defekte beschreibt, in diesen Systemen zutrifft. Hierzu wurden die Systeme in einer Frenkel-Basis definiert, welche ein auf einem Monomer lokalisiertes Elektron-Loch-Paar beschreibt. Delokalisierte elektronische Anregungen können somit als Superposition solcher Frenkel-Zustände beschrieben werden. Neben der Frenkel-Basis wurde aber auch eine verallgemeinerte Elektron-Loch-Basis verwendet, welche über zusätzliche Ladungstransferzustände eine räumliche Separation von Elektronen und Löchern erlaubt.Die Parametrisierung des OPV- und OT-Hamiltonians erfolgte mittels der Algebraischen Diagrammatischen Konstruktions (ADC(2))-Methode, welche in Kombination mit einer Übergangs-Dichte-Matrix-Analyse eine sehr akkurate Beschreibung der Frenkel- und Ladungstransferzustände basierend auf den supermolekularen Zuständen erlaubt. Um vibronische Effekte auf die Dynamik miteinzubeziehen,wurden nieder- und hochfrequente Torsions- und alternierende Bindungslängenmoden des Systems im Hamiltonian berücksichtigt. Hierzu wurden eindimensionale Schnitte der Potentialflächen entlang dieser Koordinaten berechnet und mittels einer Transformation in diabatische Potentialflächen überführt. Mit diesem Setup wurden die quantendynamischen und semiklassischen Simulationen für ein OPV/OT-Hexamer und ein 20-mer durchgeführt. Die Ergebnisse dieser Simulationen zeigen, dass der Energietransfer auf einer Subpikosekunden-Zeitskala stattfindet und eine starke Abhängigkeit vom Vorliegen eines strukturellen Defekts aufweist. Des Weiteren konnte auf einer Zeitskala von 100 Femtosekunden eine Lokalisierung des Exzitons beobachtet werden. Fluktuationseffekte werden zudem über Quantenfluktuationen im Falle von MCTDH bzw. über thermische Fluktuationen im Falle des Ehrenfest-/Langevin-Ansatzes berücksichtigt. Letzterer ist jedoch nicht in der Lage, die kohärente Charakteristik der mit den Schwingungsmoden gekoppelten Exziton- und Lokalisierungsdynamik wiederzugeben. Dagegen kann dieser Ansatz erfolgreich genutzt werden, um eine fluktuationsgetriebene „Hopping“-Dynamik des quasi- stationären Zustandes auf einer längeren Zeitskala in Abhängigkeit von der Temperatur zu beschreiben. Die Beschreibung der Photodynamik der DTE-BODIPY-Dyade zielt darauf ab, experimentell beobachtete vibrationelle Schwingungen des BODIPY-Fragments zu erklären, die ohne eine direkte Anregung dieses Fragments zustande kommen. Diese wurden nach einer selektiven Anregung des DTE-Fragments in zeitaufgelösten UV/Vis Anreg-Abtast-Experimenten beobachtet. Der Fokus der Untersuchung liegt daher auf der Beschreibung der photoinduzierten intramolekulare Energieumverteilung (IVR) auf einer Subpikosekunden-Zeitskala. Die DTE-BODIPY Dyade wurde mittels eines Hamiltonians, welcher durch TDDFT Rechnungen parametrisiert wurde, dargestellt. Basierend auf den Normalmoden des Systems, wurden lokale DTE- und BODIPY-Moden konstruiert, wobei einige dieser Moden miteinander gekoppelt sind und die Photoanregung des DTE auf das BODIPY-Fragment übertragen. Hierbei zeigte sich, dass die Zeitskala und die charakteristischen Frequenzen des Experiments mittels der hochdimensionalen MCTDH-Methode gut reproduziert wurden. Aus den Simulationen ergab sich zudem, dass der beobachtete Energietransfer stark von einem Reservoir von vibrationell angeregten lokalen DTE-Moden beeinflusst wird. Der untersuchte IVR- Prozess zeigt zudem eine ausgeprägte Abhängigkeit von lokalen Kopplungen und der Kopplung an eine Umgebung.
Das Ziel meiner Arbeit ist die zuverlässige quantenchemische Beschreibung der Absorptionsspektren von mittelgroßen Molekülen und das Studium von photoaktiven Pigmenten. Nach einer kurzen Einführung in das Thema "elektronisch angeregte Zustände und Photoreaktionen" beschreibe ich die Formalismen, die den verwendeten Rechenmethoden zu Grunde liegen und diskutiere die Anwendbarkeit auf größere Moleküle. Hierbei liegt ein Hauptaugenmerk auf den dichtefunktionaltheoriebasierten Methoden (DFT-Methoden), vor allem auf den Eigenschaften der zeitabhängigen Dichtefunktionaltheorie (engl.: time dependent density functional theory, TDDFT). Anschließend erfolgt eine Zusammenfassung der im Laufe dieser Arbeit erhaltenen Ergebnisse.
Die moderne Quantenchemie befasst sich mit der Anwendung der in den 20er und 30er Jahren des 20. Jahrhunderts entwickelten Quantenmechanik auf chemische Probleme. Zum theoretischen Studium von Molekülen gibt es verschiedene Ansätze. Zum einen gibt es die hochgenauen ab initio Methoden, die Näherungsverfahren zur elektronischen Schrödingergleichung sind. Sie haben den Vorteil systematisch verbesserbar und auf einem sehr soliden theoretischen Gerüst aufgebaut zu sein. Die Genauigkeit der Rechnungen kann die von experimentellen Ergebnissen erreichen, allerdings beschränkt der hohe Rechenaufwand die Anwendung solcher ab initio Methoden auf kleine Moleküle wie Wasser, Methan oder Benzol.
Am anderen Ende des Spektrums der quantenchemischen Methoden sind die "semiempirischen Methoden" angesiedelt. Sie erfordern nur einen sehr geringen Rechenaufwand, wodurch es möglich ist, sehr große Systeme mit mehr als 1000 Atomen zu beschreiben. Allerdings führt der Ansatz, verschiedene Terme der Schrödingergleichung durch an experimentelle Daten gefittete Parameter zu ersetzen, zu einer geringen Genauigkeit und unvorhersehbaren Fehlern. Dies schränkt die standardmäßige Anwendung dieser Methoden stark ein, und eine Verifizierung durch genauere Methoden ist oftmals erforderlich.
Zwischen diesen beiden Polen (hoch genau aber sehr hoher Rechenaufwand und geringer Rechenaufwand, dafür aber ungenau) stehen die auf der Dichtefunktionaltheorie (DFT) basierenden Methoden. Sie zeichnen sich durch eine gute Genauigkeit bei vergleichsweise geringem Rechenaufwand aus. Dadurch hat sich die DFT in den letzten Jahren zur beliebtesten Methode für das Studium mittelgroßer Moleküle mit bis zu 400 Atomen entwickelt. DFT ist eine formal exakte Methode, bei der die berechneten Größen aus der Elektronendichte des Systems abgeleitet werden. Elektronenaustausch- und Korrelationseffekte werden durch Funktionale, den sogenannten Austauschkorrelationsfunktionalen (engl.: exchange correlation functionals, xc-functionals) beschrieben.
Die zeitabhängige Dichtefunktionaltheorie (time dependent DFT, TDDFT) ermöglicht die Beschreibung elektronisch angeregter Zustände mit einer guten Genauigkeit, aber zu einem Bruchteil des Rechenaufwands von ab initio Methoden, was TDDFT zur Methode der Wahl für das Studium der Photochemie mittelgroßer Moleküle macht. Die Fehler in den Anregungsenergien sind in der Regel systematischer Natur und den verwendeten xc-funktionalen geschuldet. Dennoch kann TDDFT nicht als "black box" Methode verwendet werden, da nicht alle elektronischen Zustände gleich gut beschrieben werden. Während energetisch niedrig liegende, lokale π -> π* und n -> π* Zustände oftmals in sehr guter Übereinstimmung mit dem Experiment sind, können Rydberg und Ladungstransferzustände (engl.: charge transfer states, ct-states) Fehler von mehreren Elektronenvolt in der Anregungsenergie haben. Doppelt oder höher angeregte Zustände können mit standard TDDFT Methoden nicht beschrieben werden. Dies kann zu Problemen bei ausgedehnten π-Systemen führen, da z.B. die angeregten Zustände von Polyenen einen hohen Doppelanregungscharakter besitzen. Trotz alledem ist TDDFT eine sinnvolle Methode zum Studium elektronisch angeregter Zustände, da ihre Probleme bekannt sind und vor allem ihr Ursprung in der Theorie gut verstanden ist. Die meisten Probleme können durch die intelligente Wahl der verwendeten xc-Funktionale vermieden werden. Kombiniert man TDDFT mit der Konfigurationswechselwirkungsmethode mit Einfachanregungen (engl.: configuration ineraction singles, CIS) erhält man sehr zuverlässig und mit vergleichbar geringem Rechenaufwand die richtige Energiereihenfolge der angeregten Zustände. Mit dieser Methode war es in dieser Arbeit möglich, die komplexe Photochemie von Bisazomethinpigmenten zu untersuchen und die experimentellen statischen und zeitaufgelösten Spektren auf molekularer Ebene zu interpretieren. Es konnte sowohl der Mechanismus aufgeklärt werden, der für die Fluoreszenzlöschung in den nicht-fluoreszierenden Derivaten verantwortlich ist, als auch die unerwartet komplizierte Photochemie der fluoreszierenden Moleküle schlüssig erklärt werden. Auch die Photoisomerisierung von Z-Hemithioindigo-Hemistilbene (HTI) zu seine E-Form wurde mit dieser Methode untersucht.
Es wurde die Photodynamik freier kolloidaler CdSe Quantenpunkte sowie die Elektronentransfer(ET)-Dynamik im System bestehend aus CdSe Quantenpunkten und adsorbiertem Methylviologen mit Hilfe der Femtosekunden-Laserspektroskopie im sichtbaren Spektralbereich untersucht. Die freien CdSe Quantenpunkte wiesen eine multiphasische Rekombinationsdynamik der photoinduzierten Exzitonen auf, was durch das Vorhandensein von Quantenpunkten mit unterschiedlichem Passivierungsgrad innerhalb einer Quantenpunktprobe erklärt wurde. Sowohl die Rekombinationsdynamik des Exzitons als auch die Intraband-Relaxation von Elektron und Loch besaßen eine Abhängigkeit von der Partikelgröße. Die 1P-1S-Relaxationzeit des Elektrons betrug in Partikeln mit Durchmessern von 3 nm und 6,3 nm 0,12 ps bzw. 0,24 ps, woraus sich Energieverlustraten von 1,0 eV/ps und 3,8 eV/ps berechnen ließen. Die sehr schnelle Natur der 1P-1S-Relaxation und die gefundene Größenabhängigkeit stehen im Einklang mit dem vermuteten Auger-artigen Energietransfer vom hochangeregten Elektron auf das Loch. Durch diesen Prozess kann das theoretisch vorhergesagte „phonon bottleneck“ effizient umgangen werden. Zudem konnte eine größenabhängige Biexziton-Bindungsenergie zwischen 40 meV und 28 meV ermittelt werden. Die Untersuchung von Multiexzitonen in CdSe Quantenpunkten zeigte einen schnellen Zerfallskanal. Es handelt es sich um die Auger-Rekombination. Die Rekombination nach 1P-Anregung wurde in Form von sequenziellen Schritten N, N-1, N-2,..., 1 interpretiert. Für das System bestehend aus CdSe Quantenpunkten und adsorbiertem Methylviologen wurde war eine Zunahme der ET-Rate bei steigender Akzeptorkonzentration zu beobachten, die mit der Zunahme von Akzeptorzuständen erklärt werden kann. Ferner wurde eine maximale ET-Rate erreicht, die bei einer weiteren Erhöhung der Akzeptorkonzentration nicht überschritten wird. In weiteren Versuchsreihen konnte gezeigt werden, dass die Größe der Partikel einen Einfluss auf den ET-Prozess zwischen Quantenpunkt und Methylviologen hat. Eine kombinierte Studie, in der sowohl das Quantenpunkt/Methylviologen-Verhältnis als auch die Quantenpunktgröße variiert wurde, verdeutlichte, dass eine Verkleinerung der Partikel zu einem Anstieg der ET-Rate führt. Die Variation der Partikelgröße geht mit einer Veränderung der Triebkraft der ET-Reaktion im gekoppelten System einher. Der gefundene Zusammenhang zwischen der Triebkraft der Reaktion und der ET-Rate ist gut mit der Marcus-Theorie vereinbar. In einer Serie von Experimenten am Quantenpunkt/Methylviologen ET-System wurde die Anregpulsenergie variiert, um den Einfluss von Multiexzitonen auf den Elektronentransfer zu untersuchen. Es zeigte sich, dass nach Mehrfachanregung der Quantenpunkte die Separation von bis zu vier Elektron-Loch-Paaren möglich ist. Für den Elektronentransfer im untersuchten ET-System wurde eine ET-Zeit von ca. 200 fs ermittelt. Diese ist deutlich kürzer als die gefundenen Auger-Rekombinationszeiten, die sich zwischen 1,5 ps und 5 ps bewegen. In einer Studie an CdSe/CdS Kern/Schale Partikeln wurde der Einfluss einer passivierenden anorganischen Schale auf den ET-Prozess untersucht. Bei der gewählten Heterostruktur handelte es sich um Typ I Kern/Schale Partikel, in denen sowohl Elektron und Loch hauptsächlich im Kern eingeschlossen sind. Es wurde ein exponentieller Abfall der ET-Rate mit wachsender Schalendicke beobachtet, weshalb davon auszugehen ist, dass die CdS-Schale als elektronische Barriere wirkt, durch die das photoangeregte Elektron tunneln muss, um mit dem Akzeptor reagieren zu können. Schließlich wurde der Einfluss des Elektronentransfers im ET-System auf die Entstehung von Phononen untersucht. Sowohl in freien Quantenpunkten als auch im gekoppelten System konnte das LO sowie das LA Phonon beobachtet werden, wobei das LA Phonon im gekoppelten System stark unterdrückt ist. Im Falle der freien Quantenpunkte sind die beobachteten Oszillationen eine Folge der Frequenzmodulation der Absorption des angeregten Zustandes. Mit Hilfe des Huang-Rhys-Parameters ließ sich ermitteln, wie stark in freien Quantenpunkten das LO Phonon an das Exziton gekoppelt ist. Der berechnete Huang-Rhys-Parameter betrug 0,012. Im Falle des gekoppelten Systems weist die spektrale Signatur der kohärenten Oszillationen darauf hin, dass diese durch die Frequenzmodulation der linearen QP-Absorption verursacht werden. Im Falle des gekoppelten Systems sind die beobachteten Phononen nicht an das Exziton sondern an die ET-Reaktion gekoppelt, d. h. der ET selbst induziert Gitterschwingungen im Reaktionsprodukt. Der berechnete Huang-Rhys-Parameter, der die ET-Phonon-Kopplung beschreibt, berechnete sich ebenfalls zu 0,012, was verdeutlicht, dass die ET-Phonon-Kopplung ähnlich stark wie die Exziton-Phonon-Kopplung ist. Mit Hilfe der spektralen Abhängigkeit der Oszillationen in freien Quantenpunkten und im gekoppelten System ließ sich eine Biexziton-Bindungsenergie von 35 meV berechnen.
This thesis is concerned with quantum dynamical propagation methods suitable for high-dimensional systems, and their application to excitation energy transfer (EET), electron transfer (ET), and intra-molecular vibrational redistribution (IVR) in molecular aggregates. The theoretical description of these processes, which are often ultrafast – with time scales in the range of femtoseconds to picoseconds – is challenging, both with regard to quantum dynamical simulations and electronic structure calculations.
The present thesis comprises two parts. The first part concerns the implementation of a novel quantum dynamical method based on Gaussian Wavepackets (GWPs): the 2-Layer Gaussian-MCTDH (2L-GMCTDH) method. This method, which has recently been proposed in [S. Römer, M. Ruckenbauer, I. Burghardt, The Journal of Chemical Physics, 2013, 138, 064106] was implemented in a Fortran90 code and applied to various high-dimensional test systems. The second part of the thesis addresses the combined electronic structure and dynamical study of a novel type of donor-acceptor systems that have been investigated in a joint project with experimental collaboration partners at Strasbourg University. In both parts, numerical applications focus on high-dimensional model Hamiltonians for EET and ET processes.
Regarding the first part, the interest of using GWP-based methods is two-fold: First, GWPs represent spatially localized basis sets that are useful for on-the-fly dynamics in conjunction with electronic structure calculations. Second, they are naturally suited for the explicit representation of quantum mechanical system-bath type problems where a large number of vibrational bath modes are weakly perturbed from equilibrium. In this context, various methods exist that are based upon classically evolving GWP bases. A major improvement results from variational methods which involve optimized, non-classical GWP trajectories. In particular, the variational Gaussian-based Multi-Configuration Time-Dependent Hartree (GMCTDH) and its variational Multi-Configurational Gaussians (vMCG) variant were originally derived as semiclassical variants of the Multi-Configuration Time-Dependent Hartree (MCTDH) method. However, the G-MCTDH and vMCG methods mostly use Frozen Gaussian (FG) basis sets that are far less flexible than the single-particle (SPF) representation of standard MCTDH. As a consequence, a significantly larger number of GWPs are generally required to reach convergence. To remedy the lack of flexibility of the FG basis sets, the abovementioned two-layer (2L-G-MCTDH) approach has been introduced: Here, the first layer is composed of flexible SPFs, while the second layer is composed of low-dimensional FGs. The numerical scaling properties are significantly improved as compared with the conventional G-MCTDH and vMCG schemes. The first implementation of the method in an in-house Fortran90 code is presented, along with applications to (i) a model of site-to-site vibrational energy flow in the presence of intra-site vibrational energy redistribution (IVR) and (ii) a multidimensional donor-acceptor electron transfer system described within a linear vibronic coupling model. The second system relates to a model for ET at an oligothiophene-fullerene interface relevant to organic photovoltaics. Besides the description of the implementation, a detailed assessment of the convergence properties and comparison with multi-layer MCTDH (ML-MCTDH) benchmark calculations is presented. Finally, a perspective is given on the future combination with the existing ML-MCTDH scheme; indeed, such a combination is straightforward since the first layer of the 2L-G-MCTDH approach can be chosen to be orthogonal.
Regarding the second part of the thesis, two generations of a novel donor-acceptor (DA) system for organic photovoltaics applications, involving self-assembled block co-oligomers DA dyads and triads with perylene-diimide (PDI) accepter units, are addressed within a collaborative project with S. Haacke and S. Mery (University of Strasbourg). Based upon detailed excited-state electronic structure investigations along with quantum dynamical and kinetic studies, the relevant ET formation and recombination steps are characterized quantitatively, in view of optimizing the chemical design and reducing recombination losses.
In a first-generation variant of the abovementioned DA systems, which involves liquid-crystalline triads, we were able to show that a highly efficient inter-chain ET process prevails over intra-molecular ET, leading to fast recombination. Due to the latter, this system turns out to be inefficient for photovoltaic applications. To fully understand the elementary steps, high-dimensional quantum dynamics simulations were carried out using the ML-MCTDH method, in collaboration with Matthias Polkehn from our group. In the second-generation variant, which is in the focus of the present thesis, both the nanomorphology and the chemical design were modified. The present work, focuses upon the aspect of chemical design, by characterizing a series of modified DA’s, with donor units of varying length while the PDI accepter units remain unchanged. The intra-molecular ET is observed in these systems, but the processes are comparatively slow, of the order of tens to hundreds of picoseconds. Hence, a kinetic analysis using the Marcus-Levich-Jortner rate theory is employed. Among the main results of the study is that addition of an electron donating amine unit strongly increases the lifetime of the charge-separated state, and therefore reduced recombination losses.
Overall, the present thesis shows how a combination of high-dimensional quantum dynamics, electronic structure calculations, and vibronic coupling model Hamiltonians can be employed to obtain an accurate picture of EET, ET, and IVR in high-dimensional molecular assemblies. Furthermore, the 2L-GMCTDH method paves the way for accurate and efficient on-the-fly calculations; a suitable set-up for such calculations is currently in progress.
Die Modulation molekularer Systeme mit Licht ist ein in den letzten Jahren immer stärker untersuchtes Forschungsgebiet. Es existiert bereits eine große Anzahl an Publikationen, die mittels statischer Spektroskopie und anderer statischer Methoden Einblicke in die ablaufenden Prozesse gewähren konnten. Untersuchungen im Ultrakurzzeitbereich sind jedoch eher selten, liefern aber detaillierte Informationen zu den ablaufenden Prozessen. Den Wissensstand diesbezüglich zu erweitern, war Ziel dieser Dissertation.
Untersucht wurden neun photoschaltbare, molekulare Dyaden hinsichtlich ihrer Dynamik nach Photoanregung. Die Dyaden setzten sich aus einem Fluorophor (Bordipyrromethen, BODIPY), einem Photoschalter (Dithienylethen, DTE; offen oder geschlossen) und gegebenenfalls einer COOH-Ankergruppe zusammen.
Die Unterschiede in den Molekülstrukturen bestanden in der Verknüpfung der einzelnen Bauteile (kurze oder lange, beziehungsweise gerade oder gewinkelte Brücke) und der Art des Fluorophors und des Photoschalters (jeweils zwei verschiedene Strukturen).
Durch Belichtung mit UV- oder sichtbarem Licht konnten photostationäre Zustände generiert werden, die 40 – 98 % geschlossenes Isomer (je nach Molekül) beziehungsweise 100 % offenes Isomer enthielten.
Unter Verwendung von Licht verschiedener Wellenlängen konnten beide Teile der Dyade (BODIPY beziehungsweise DTE) separat angeregt und hinsichtlich der ablaufenden Photodynamik untersucht werden, wobei der Fokus der Arbeit auf transienten Absorptionsmessungen mit Anregung des BODIPY lag. Bei einem Großteil der untersuchten Moleküle kam es in diesem Fall, je nach Zustand des Photoschalters, zu einem intramolekularen Energietransfer nach der Theorie von Theodor Förster. Durch diese Energietransferprozesse kommt es zu einer drastischen Verkürzung der Lebenszeit des angeregten Zustands des BODIPY. Ausgehend von Lebenszeiten im Bereich von Nanosekunden im Falle der offenen Dyaden (entspricht der Fluoreszenzlebensdauer) reduziert sich die Lebenszeit auf wenige Pikosekunden, beziehungsweise je nach Aufbau des Moleküls sogar noch weiter. Die unterschiedlich schnellen Transferprozesse sind im Sinne der Förster-Theorie durch die unterschiedlichen Entfernungen und relativen Orientierungen der beiden beteiligten Übergangsdipolmomente (von DTE und BODIPY) erklärbar.
Neben Experimenten mit Anregung des BODIPY-Teils der Dyaden wurden weitere Experimente durchgeführt, in denen der geschlossene Photoschalter direkt angeregt wurde. Aus diesen Messungen konnten Erkenntnisse über die Relaxation des DTE erlangt werden. Auf diese Weise war es möglich, bei einigen der Moleküle die Ringöffnungsreaktion zu beobachten und zu charakterisieren. Im Fall von Dyade 4 konnten zusätzlich kohärente Schwingungen des Moleküls nach Photoanregung detektiert werden, die sich anhand einer Frequenzmodulation der Absorptionsbande des BODIPY-Teils über einen Zeitbereich von 2 ps beobachten ließen.
This work deals with the theoretical investigation of the vibrationally promoted electronic resonance (VIPER) experiment, the intramolecular energy transfer within a rhodamine-BODIPY antenna system initiated by two-photon excitation and a computational study of the photochemical mechanism of the uncaging of the [7-(dimethylamino)coumarin-4-yl]methyl (DEACM) class of photocages . In continuation to Jan von Cosel’s work, the setup for the theoretical investigation of the VIPER experiment has been extended to two-photon absorption (TPA) also including the first-order Herzberg-Teller (HT) effects which are dependent on changes with respect to nuclear coordinates.
The VIPER experiment constitutes an extended form of two-dimensional infrared (2DIR) spectroscopy with a sequence of infrared (IR) and ultraviolet (UV) or visible (vis) pulses. The molecular system under probe is excited initially by a narrow-band IR pump pulse and then electronically excited by an off-resonant UV/vis pulse. An IR probe pulse is applied afterwards to probe the system and record a 2DIR spectrum in combination with the first pulse. Since the lifetime of the vibrational excitation is very short, the electronic excitation by the UV/vis pulse is used to enlarge the lifetime of the excitation in the molecule and thus enable measurements on a longer timescale. Therefore, it becomes easier to study dynamical photochemical processes on long timescales. In the VIPER experiment with TPA, the UV/vis pulse is replaced by a near-infrared (NIR) pulse which offers an intrinsic 3D resolution, minimzed photodamage, a lower noise level and an increased penetration depth. This makes TPA highly attractive for biological systems among a wide range of other possible applications.
The computation of the vibrationally resolved electronic absorption spectra accounts for the Franck-Condon (FC) contributions which are independent of the nuclear framework as well as the HT effects which are dependent on the nuclear coordinates. The FC contributions are dominant for electronically-allowed transitions whereas HT contributions could be important for weakly-allowed or forbidden transitions. Laying emphasis on TPA, the test systems used belong to the category of two-photon active compounds. The initial candidate is dimethylaminonitrodibenzofuran (DMA-NDBF) which has been reported to be a two-photon only caging compound. The other system is a well-known laser dye, a rhodamine derivative of the commercially available rhodamine 101 (Rh101). Rhodamines are also recognized for their excellent TPA characteristics.
The findings for both the test systems show interesting contrasts. The one-photon absorption (OPA) and TPA spectrum together with vibronic couplings present the same lineshape in case of DMA- NDBF and also the HT effects have very weak contributions to the vibronic spectrum. Insignificant HT effects are quite typical for electronically allowed transitions. Overall, the NO2 bending mode exhibits the strongest change in the absorption spectrum upon vibrational pre-excitation, even stronger than in the case of different ring distortion modes that usually show a high VIPER activity. In the case of rhodamine, the vibronic OPA spectrum is pre-dominantly the FC spectrum and the HT couplings have a very weak contribution. The vibronic TPA spectrum is entirely dominated by the HT contributions and hence, the vibrationally resolved TPA spectrum of the rhodamine is a HT-only spectrum. Explanations towards this behaviour have been reported by Milojevich et al. which are holding the change in symmetry of the molecular orbital transitions from the ground to the excited state accountable. No significantly VIPER-active normal modes could be determined owing to the low magnitudes of their dimensionless displacements that are connected to the Huang-Rhys factors. Two ring distortion modes however have been probed but the intensity of their vibrational pre-excitation is observed to be very low.
The other part of this work is concerned with the estimation of the rate of the intramolecular energy transfer within rhodamine-BODIPY dyads. After the investigations on the prospective rhodamine derivatives, the Rho101 derivative shows the highest TPA activity. This linked together with the BODIPY derivative with styryl substituents through an acetylene bond has been probed theoretically as well as experimentally for the excitation energy transfer (EET).
Time-resolved spectroscopic measurements reveal an ultrafast energy transfer process on femtosecond timescales. The theoretical estimation of the EET rates through the Förster theory and the determination of the coupling between the donor and acceptor groups by the transition density cube (TDC) method falls short of the experimental results. Because of this disagreement, quantum dynamics simulations with the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method have been performed on an adapted rhodamine-BODIPY molecular dyad which reveal that the energy transfer occurs through transient coherence whose mechanism cannot be described by Förster theory ...