Refine
Year of publication
Document Type
- Doctoral Thesis (30)
Has Fulltext
- yes (30)
Is part of the Bibliography
- no (30)
Keywords
- Nanopartikel (8)
- Blut-Hirn-Schranke (4)
- Targeted drug delivery (3)
- Apolipoprotein E (2)
- Doxorubicin (2)
- Humanes Serumalbumin (2)
- Nanoparticle (2)
- Nanoparticles (2)
- blood-brain barrier (2)
- Albumin (1)
Institute
- Pharmazie (26)
- Biochemie und Chemie (3)
- Biochemie, Chemie und Pharmazie (1)
Kollagen des marinen Schwammes Chondrosia reniformis Nardo: Optimierte großtechnische Herstellung, Analytik und neue pharmazeutisch-technologische Anwendungsmöglichkeiten Großtechnische Isolierung und Untersuchung von Chondrosia-Kollagen Schwämme spielen eine wichtige Rolle im Ökosystem des Meeres und ihr Vorkommen ist begrenzt. Zur schonenden und nachhaltigen Nutzung als Rohstoffquelle müssen im Hinblick auf eine industrielle Nutzung alternative Wege zur Gewinnung von marinem Schwammkollagen entwickelt werden. Ein Beispiel hierfür sind die sogenannten „Marikulturen“ direkt im Meer, aus denen die im Rahmen dieser Arbeit verwendeten Schwämme stammten. Im Gegensatz zu den früher eingesetzten Methoden zur Isolierung des Chondrosia-Kollagens, die Laborcharakter trugen, konnte in der vorliegenden Dissertationsarbeit ein stark vereinfachtes, für die großtechnische Produktion geeignetes Verfahren mit einer hohen Ausbeute (ca. 35%) beschrieben werden. Das Schwammausgangsmaterial wurde über ca. 4 Tage mit Hilfe von Natriumsulfit reduktiv behandelt und die Kollagenfasern (nach einem Filtrationsschritt) in saurem Medium gewonnen. Atomkraftmikroskopische Aufnahmen des isolierten Materials zeigten die kollagentypische Fibrillenquerstreifung, die Unlöslichkeit der Faserbündel in saurem Milieu sowie deren Abbau in die einzelnen Fibrillen in neutraler Pufferlösung. Die von tierischen Kollagenen abgeleitete Bestimmung des Proteingehaltes ergab einen im Vergleich zum kalkulierten Kollagenanteil höheren Gesamtproteingehalt. Dies ist ein Hinweis auf mögliche nichtkollagene Proteinanteile, die an Kollagen assoziiert vorliegen können. Untersuchungen zur Aminosäurenzusammensetzung des isolierten Materials ergaben im Vergleich zu den von Swatschek et al. (2002a) publizierten Ergebnissen einen deutlich höheren Glycin- und einen mehr als doppelt so hohen Hydroxyprolingehalt. Dies kann dahingehend gedeutet werden, dass die neue Isolierungsmethode die bekannten Verunreinigungen des Kollagens mit Glykoproteinen reduziert und zu einem deutlich reineren Kollagenmaterial führt. Mit Hilfe einer neu entwickelten Methode konnten erstmalig Partikel aus Chondrosia-Kollagen hergestellt werden, deren Größe im Nanometerbereich lag. Hierbei handelte es sich um eine kontrollierte alkalische Hydrolyse des isolierten, gefriergetrockneten Kollagens in 1,5 M NaOH. Es konnte eine Partikelausbeute in Höhe von ca. 10% erzielt werden. Atomkraftmikroskopische Aufnahmen zeigten gleichförmige, sphärische Partikel. Die Partikelgrößenuntersuchungen mittels Photonenkorrelationsspektroskopie (nach Resuspension der gefriergetrockneten Schwammkollagennanopartikel (SKNP)) ergaben eine Größe von 168 ± 9,1 nm. Somit sind diese Partikel im Gegensatz zu den bisher aus Chondrosia-Kollagen gewonnenen Mikropartikeln auch für intravenöse Anwendungen geeignet und haben eine größere Trägerkapazität. Die hergestellten Nanopartikel wurden adsorptiv mit dem Wirkstoff 17?-Estradiol-Hemihydrat beladen. In Abhängigkeit von der eingesetzten Stoffkonzentration (1,25 bis 5,0 mg/ml) konnten Beladungsraten von bis zu 13,1% erzielt werden. Die Stabilitätsprüfung von wässrigen Partikelsuspensionen ergab nach 180 Tagen Einlagerung eine auf 7 bis 8% reduzierte Beladungsrate. Nach Inkorporation der beladenen Partikel in eine Hydrogelgrundlage wurde die transdermale Bioverfügbarkeit des Arzneistoffs im Rahmen der Hormonersatztherapie bei postmenopausalen Frauen untersucht. SKNP-Gele mit einer Estradiolkonzentration in Höhe von 0,06% wurden mit gleichkonzentrierten partikelfreien Gelen verglichen. In den Speichelproben der Patientinnen konnten nach täglicher einmaliger Applikation des Nanopartikelgels nach 28 Tagen signifikant höhere Estradiolkonzentrationen gemessen werden. Die ermittelten Flächen unter den Konzentrations-Zeit-Kurven (AUC) über 24 h nach der einmaligen topischen Applikation von 0,75 mg Estradiol waren um das 2,3 bis 3,4-fache höher als die entsprechenden AUC-Werte des Vergleichsgels. 24 h nach Auftragen des Gels lagen die Estradiolspiegel des Vergleichsgels in etwa wieder auf Höhe der Basalwerte, wohingegen die Estradiolwerte nach Applikation des SKNP-Gels zum gleichen Messzeitpunkt mindestens doppelt so hoch waren. Somit konnten bei Anwendung der SKNP-Zubereitung eine deutlich erhöhte transdermale Estradiolabsorption und eine verlängerte Arzneistoffwirkung beobachtet werden. Das nanopartikuläre Trägersystem aus Chondrosia-Kollagen stellt damit eine vielversprechende Möglichkeit zur Erhöhung der transdermalen Bioverfügbarkeit von lipophilen, schlecht resorbierbaren Wirkstoffen dar. Im Rahmen der vorliegenden Arbeit wurde eine Formulierung für einen magensaftresistenten Überzug mit Chondrosia-Kollagen als Filmbildner entwickelt. Die Sprühsuspension bestand aus 15% gefriergetrocknetem Kollagen, dem Weichmacher Triethylcitrat (1,5%), dem Trennmittel Talkum (7,5%) und Wasser. Der Coating-Prozess wurde in einem Dragierkessel mit Placebotabletten durchgeführt. In regelmäßigen Abständen wurden Tabletten-Stichproben entnommen, um die erforderliche Kollagenschichtdicke für eine Magensaftresistenz zu bestimmen. Tabletten mit einer Kollagenauftragsmenge von 12,9 mg/cm2 entsprachen der Prüfung auf Magensaftresistenz gemäß Europäischem Arzneibuch. Die Widerstandsdauer in 0,1 M Salzsäure betrug mehr als 2 h und der Zerfall in Phosphatpufferlösung pH 6,8 höchstens 10 min. Rasterelektronenmikrosko-pische Aufnahmen bei unterschiedlichen Vergrößerungen zeigten eine gleichmäßige und glatte beschichtete Oberfläche. Das Auftragsverfahren im Dragierkessel erwies sich als reproduzierbar. Die mechanischen Eigenschaften der überzogenen Tabletten waren zufriedenstellend und die Magensaftresistenz wurde durch eine 6-monatige Lagerung nicht beeinträchtigt. Als Naturprodukt eignet sich Schwammkollagen als Überzugsmaterial für Nichtarzneimittel. Der schnelle Zerfall des Kollagenüberzugs in neutraler Pufferlösung stellt einen Vorteil gegenüber den häufig verwendeten Schellacküberzügen dar, die sich im Darmtrakt zu langsam auflösen und daher nicht selten mit synthetischen Polymeren kombiniert werden.
Die Entwicklung von Wirkstoffträgern für Antisense-Oligdesoxyonukleotide auf der Basis von Protamin-Nanopartikeln stellt einen interessanten Ansatz für antivirale Strategien dar. So konnte gezeigt werden, dass bereits ab einem 1,5-fachen Massenüberschuss an Protamin eine spontane Komplexbildung mit Antisense-Wirkstoffen stattfindet, die einen Größenbereich von etwa 200 nm aufweisen und durch eine Oberflächenladung von ca. + 20 mV charakterisiert sind. Aufgrund dieser physikalischen Eigenschaften besitzen diese Nanopartikel nahezu ideale Eigenschaften, die intrazelluläre Verfügbarkeit von Antisense-Wirkstoffen entscheidend zu verbessern. Eine sehr gute zelluläre Aufnahme von Protamin/Antisense-Nanopartikeln konnte entsprechend in primären humanen Makrophagen als auch in lymphozytären T-Zellen gezeigt werden. Die Anwendung dieser Wirkstoffträger in den beschriebenen Zellen erwies sich dabei als sehr gut verträglich und zeigte keine toxischen Wirkungen in insgesamt drei unterschiedlichen Testverfahren zur Bestimmung der Zelltoxizität. Darüber hinaus konnte gezeigt werden, dass Protamin/Antisense-Nanopartikel mit unmodifizierten Antisense-Oligodesoxynukleotiden ein sehr günstiges intrazelluläres Auflösungsverhalten besitzen, was zu einer kontinuierlichen Freisetzung des inkorporierten Antisense- Wirkstoffs führte. Dabei wurde deutlich, dass nach spätestens 72 Stunden ein vollständiger Zerfall des Nanopartikels stattfand und der Wirkstoff sich gleichmäßig in intrazellulären Kompartimenten verteilte. Im Gegensatz dazu stellen Protamin/Antisense-Nanopartikel mit modifizierten Phosphorothioat-Wirkstoffen ein äußerst stabiles System dar, das zu keiner merklichen intrazellulären Wirkstofffreisetzung selbst nach 72 Stunden führte. Es konnte gezeigt werden, dass Protamin/AS-ODN-Nanopartikel die Expression eines von einem lentiviralen Vektor exprimierten Reportergens konzentrationsabhängig in primären humanen Makrophagen inhibieren konnte. Die antivirale Wirksamkeit dieser Wirkstoffträger konnte auch gegen das HIV-1-spezifische Transaktivatorprotein Tat in transient transfizierten Zielzellen der HIV-1-Infektion spezifisch demonstriert werden. Hier wurde eine selektive Inhibition der Tat-vermittelten Transaktivierung von 35 % bei einer Konzentration von 2 MikroM in Jurkat-Zellen nachgewiesen. Auch in primären Makrophagen, die mit einem HIV-1-Wildtypisolat infiziert wurden, führte die Anwendung von Protamin/AS-ODN-Nanopartikeln mit spezifischen Sequenzen gegen ein HIV-1-Gen zu einer deutliche Reduktion der Virusausbreitung in der Kultur. Bei einer wiederholten Behandlung von HIV-1-infizierten Makrophagen mit Protamin/AS-ODN-Nanopartikel in einer Konzentration von 2 MikroM zeigten nur einige wenige Zellen eine Infektion mit dem Virus, während sich in unbehandelten Zellen eine komplett durchinfizierte Kultur manifestiert hatte. Entsprechend der ungünstigen Bioverfügbarkeit von AS-PTO-Wirkstoffen nach intrazellulärem Transport in Form von Protamin-Nanopartikeln konnte für diese Formulierungen keine biologische Wirkung in Zellkultursystemen nachgewiesen werden. Die Inkorporation von destabilisierenden Zusätzen in die Nanopartikelmatrix bietet hier Möglichkeiten, die intrazelluläre Dekomplexierung dieser Wirkstoffträger günstig zu beeinflussen. Als Neuentwicklung konnte ein kolloidales Trägersystem für siRNA-Wirkstoffe auf der Basis von Protamin-Nanopartikeln entwickelt werden. Es konnte gezeigt werden, dass Protaminbase als auch Protaminsulfat siRNA-Wirkstoffe ab einem 2,5-fachen Massenüberschuss komplexieren. Protamin basierte Nanopartikel für siRNA-Wirkstoffe waren durch ein sehr günstiges Zellaufnahmeverhalten und fehlende zytotoxische Wirkung in primären humanen Makrophagen gekennzeichnet. Trotz dieser idealen Ausgangsbedingungen zeigten biologische Wirksamkeitstestungen sowohl gegen das endogene Protein Lamin A/C als auch virale Hemmversuche in HIV-1- infizierten primären Makrophagen nur marginale Effekte. Eine weitere Optimierung der Nanopartikelzusammensetzung und Untersuchungen zur intrazellulären Stabilität sind nötig, um die biologische Aktivität dieser Formulierungen entscheidend zu verbessern. Oberflächenmodifizierte Nanopartikel auf der Basis von Gelatine erwiesen sich in den durchgeführten Experimente als besonders vielversprechend. Hier konnte gezeigt werden, dass ein spezifisches Targeting von T-Zellen mit CD3-Gelatine-Nanopartikel realisiert werden kann, die auf ihrer Oberfläche kovalent einen anti-CD3-Antikörper tragen, der gegen die T-Zell spezifische Zeta-Kette des T-Zell-Rezeptor-Komplexes gerichtet ist. Untersuchungen mit konfokaler Mikroskopie und Durchflusszytometrie zeigten, dass dabei die Zellaufnahme dieser Wirkstoffträger von der Expression des durch den Antikörper erkannten Zielantigens auf der Oberfläche der Zielzellen ist. In Zellen mit besonders starker Expression des CD3-Epitops wurden Gelatine-Nanopartikel mit oberflächengebundenem anti-CD3-Antikörper zu einem sehr bedeutendem Ausmaß selektiv aufgenommen. In Kompetitionsexperimenten mit freiem anti-CD3-Antikörper konnte diese Aufnahme deutlich reduziert werden, was für die selektive Bindung und Internalisierung der CD3-Gelatine- Nanopartikel über den oberflächengebundenen Antikörper schließen läßt. Durch diese Untersuchungen konnte gezeigt werden, dass CD3-Gelatine-Nanopartikel das Potential besitzen, als selektives Wirkstoffträgersystem für T-Zellen eingesetzt zu werden.
Transdermale Therapeutische Systeme (TTS) sind Arzneiformen, die über einen längeren Zeitraum eine kontrollierte Arzneistoffabgabe durch die Haut ermöglichen. Um ausreichende Permeationsraten zu erreichen, sind häufig hohe Arzneistoffkonzentrationen im Reservoir notwendig. In TTS, deren Arzneistoffkonzentration über der Sättigungskonzentration der Matrix liegt, neigen die Wirkstoffe dazu auszukristallisieren. Die Kristallisation stellt ein wichtiges Stabilitätsproblem bei der Entwicklung solcher Systeme dar, da die Bioverfügbarkeit negativ beeinflusst werden kann. Diese Studie zeigt, dass Kristallisationsprozesse in TTS mithilfe der isothermen Wärmeleitungsmikrokalorimetrie über eine Messzeit von 7 Tagen mit hoher Empfindlichkeit erfasst werden können, denn die Kristallisation stellt einen exothermen Prozess dar. Die mikrokalorimetrische Messkurve zeigte sowohl bei Placebo- als auch bei wirkstoffhaltigen Zubereitungen einen starken initialen, exothermen Wärmefluss, der über einige Tage langsam abfiel bis ein konstantes Wärmeflussplateau erreicht wurde. Der hohe initiale Wärmefluss entstand durch das Ausstanzen der Laminate und die damit verbundene mechanische Beanspruchung. Die Kristallisation wurde von den Stanzrändern ausgehend initiiert und war damit an den Schnittkanten auch stärker ausgeprägt als im Inneren der Laminate. An den Schnittstellen des TTS waren mikroskopisch wesentlich mehr Kristalle nachweisbar als in den nicht mechanisch beanspruchten Bereichen. Die messbare Arzneistoff-immanente Wärmemenge stieg mit erhöhtem Arzneistoffgehalt an, war aber über 7 Tage bei den E2-haltigen und NEA-haltigen TTS-Laminaten nicht proportional zum Arzneistoffgehalt, da die Kristallisation nach dieser Messzeit nicht beendet war. Dieses Ergebnis konnte durch die mit steigender Übersättigung beschleunigte Kristallisation erklärt werden, die für alle untersuchten Messreihen beobachtet wurde. Je höher die Arzneistoffkonzentration in den Laminaten war, desto stärker war auch die Triebkraft für Kristallisationsvorgänge. Das Kristallisationsende war rascher erreicht. War die Kristallisationsgeschwindigkeit dagegen über einen gewissen Konzentrationsbereich konstant oder war der Kristallisationsprozess während der Messzeit bereits beendet, so stieg die Arzneistoff-immanente Wärmemenge proportional zur erhöhten Arzneistoffkonzentration. Eine konstante Kristallisationsgeschwindigkeit wurde für NEA im Bereich von 4 bis 10 % beobachtet. Bei höherer Übersättigung verlief der Kristallisationsprozess allerdings ebenfalls beschleunigt. Die Kristallisationsgeschwindigkeitskonstante sowie der Avrami-Exponent als Parameter für den Kristallisationsmechanismus konnten anhand der mikrokalorimetrischen Daten berechnet werden, ebenso wie die Kristallisationsenthalpien in Höhe von -23,3 ± 1,2 kJ/mol für E2-hemihydrat, -22,8 ± 2,6 kJ/mol für NEA sowie -7,9 ± 0,95 kJ/mol für die 1:3- Mischung. Alle Kristallisationsvorgänge waren durch die hohe Viskosität der Matrix diffusionskontrolliert und zeigten ein eindimensionales Kristallwachstum. Bei der Mikrokalorimetrie handelt sich um eine unspezifische Methode, bei der der Ursprung der Wärmeeffekte durch zusätzliche Methoden aufgeklärt werden muss. Als weitere Untersuchungsmethoden bei der Kristallisation in transdermalen Systemen boten sich die Polarisationsmikroskopie und die Pulverröntgenbeugung an. Die DSC war ungeeignet. Im Vergleich zur Mikrokalorimetrie war die polarisationsmikroskopische Untersuchung von Kristallisationsprozessen jedoch wesentlich zeitaufwendiger, wobei sich die Empfindlichkeit als höher erwiesen hat. Die Mikrokalorimetrie detektierte im Vergleich zur Mikroskopie erst eine Kristallmenge von ungefähr 0,5 % zuverlässig. Die Pulverröntgenbeugung stellte im Vergleich zu Mikroskopie und Mikrokalorimetrie eine weniger empfindliche analytische Methode für die Erkennung von kristallinem organischen Material in einer polymeren amorphen Matrix dar. Während kleine Kristalle in den Polymerfilmen bereits mit bloßem Auge zu sehen waren, traten zum Teil keine Reflexe im Pulverdiagramm auf. Die Detektionsgrenze lag im Vergleich zur Mikroskopie bei ungefähr 1 bis 1,5 % Kristallen in der polymeren Umgebung. Dagegen ist die Pulverröntgenbeugung für verschiedene Kristalltypen sehr spezifisch. Sie erlaubt die Aufklärung von Strukturen sowie eine quantitative Auswertung der Kristallmengen in Mischungen, sofern die Kristalltypen bekannt sind. Mithilfe der Polarisationsmikroskopie und Pulverröntgenbeugung wurden die Kristallstrukturen der Arzneistoffe in der polymeren Matrix der TTS untersucht. Für Systeme, die nur einen der Arzneistoffe enthielten, wurde eine unveränderte Kristallisation in der Matrix in Form von E2-hemihydrat bzw. NEA beobachtet. Die Kombination von E2-hemihydrat und NEA veränderte die Kristallstruktur der gebildeten Kristalle im Vergleich zu den reinen Arzneistoffen und führte zur Ausbildung einer neuen Kristallstruktur in der Matrix, die sich in den Reflexlagen auch von der aus Ethylacetat kristallisierten unterschied. Sogar geringe E2-Konzentrationen führten zu einer deutlichen Veränderung der Kristallform und des Röntgenbeugungsmusters der NEA-Kristalle. Außerdem wurde der Kristallisationsprozess durch die Kombination der Hormone stark beschleunigt. Bei der neuen Kristallform handelte es sich um eine thermodynamisch weniger stabile Struktur, da die Kristallisationsenthalpie geringer war, allerdings war die Kristallisation kinetisch bevorzugt. Trotz der Unterschiede in der Empfindlichkeit der Methoden, die zur Bestimmung der Sättigungslöslichkeit angewendet wurden, stehen die erhaltenen Ergebnisse entsprechend den Detektionsgrenzen in guter Übereinstimmung, wobei es sich bei den ermittelten Werten von 1,5 % für E2-hemihydrat und 4 % für NEA unter Umgebungsbedingungen um die Sättigungslöslichkeit unter Kristallisationsbedingungen und nicht um die wahre Sättigungslöslichkeit handelt. Hohe Feuchtigkeit in der polymeren Matrix fördert die E2-hemihydrat- sowie NEA-Kristallisation durch die geringe Wasserlöslichkeit der Steroidhormone. Die Trocknungsbedingungen konnten die physikalische Stabilität der Pflaster stark beeinflussen, was eventuell auch durch die Ausbildung einer besser löslichen, wasserfreien Kristallform des Estradiols begründet sein könnte. Die Vorbehandlung der Laminate bei 80°C scheint eine gute Möglichkeit zu sein, die TTS vor Kristallisationsprozessen zu schützen, wobei bei der Lagerdauer ein Kompromiss zwischen der physikalischen Stabilisierung und der chemischen Zersetzung gefunden werden muss. Zusammenfassend wurde festgestellt, dass es sich bei der Mikrokalorimetrie um eine zeitsparende und effektive Methode für die Beurteilung einer Vorbehandlung bei 80°C sowie des Einflusses von verschiedenen Hilfsstoffen auf den Kristallisationsprozess der Arzneistoffe im TTS handelt. Die Mikrokalorimetrie ermöglichte dabei innerhalb von 7 Tagen die Klassifikation verschiedener Zusatzstoffe nach deren Effizienz, die Kristallisation in den Pflastern zu initiieren. Dagegen sind häufig viele Monate nötig, um ähnlich zuverlässige Ergebnisse mit der Polarisationsmikroskopie bzw. der Pulverröntgenbeugung zu erhalten. Die Mikrokalorimetrie stellt demnach eine interessante Methode für ein Hilfsstoffscreening und die Optimierung von Rezepturen dar.
Ziel dieser Arbeit war es, die Zytotoxizität von Treosulfan und Busulfan auf Leukämiezellen von pädiatrischen Patienten mit Akuten Leukämien zu untersuchen. Im Rahmen dieser Arbeit wurden in vitro und erste in vivo Untersuchungen durchgeführt: 1. In vitro Untersuchungen Zuerst wurde eine durchflusszytometrische Methode optimiert zum Nachweis der Zytotoxizität von Treosulfan und Busulfan auf maligne Zellen pädiatrischer Patienten mit Akuten Leukämien. Mit diesem durchflusszytometrischen Assay war es möglich, die Zytotoxizität auf maligne von der auf nicht maligne Zellen zu unterscheiden. Dies war unerlässlich, da in den frisch isolierten Leukämiezellen der Patienten bis zu 55% normale Lymphozyten enthalten waren. Darüber hinaus erlaubte diese Methode die simultane Bestimmung der Zell-Apoptose in jeder Probe. An Leukämie-Zelllinien wurde dieser multiparametrische Assay anschließend mit dem MTT-Assay verglichen. Es konnte gezeigt werden, dass die Bestimmung von Zytotoxizitäten mit beiden Methoden an den Zelllinien Molt 4/8 und H9 gut korrelierte (r≥0,95). Für das Arbeiten mit Patientenmaterial wurde ausschließlich die durchflusszytometrische Methode angewendet, da in den Proben der Patienten die Differenzierung zwischen leukemischen Zellen und normalen Lymphozyten essentiell war. In den Leukämie-Zelllinien Molt4/8, H9 und K562 zeigte sich, dass Treosulfan eine stärkere Zytotoxizität zeigte als Busulfan. In die Untersuchungen frischer Leukämiezellen pädiatrischer Patienten mit Akuten Leukämien konnten 24 Proben unterschiedlicher Leukämien (cALL, reife B-ALL, reife TALL, AML) und unterschiedlicher Erkrankungszeitpunkte (bei Diagnose oder bei Rezidiv) eingeschlossen werden. In diesen Proben zeigte Treosulfan eine deutlich bessere Wirkung als Busulfan. Es wurde trotz des kleinen Patientenkollektivs deutlich, dass die T-ALL gegenüber der cALL sensitiver auf Treosulfan reagiert. Außerdem war die Zytotoxizität von Treosulfan und Busulfan gegenüber der T-ALL signifikant höher als gegenüber c-ALL (Treosulfan: p=0,02, Busulfan: p=0,03). Die IC50-Werte stiegen vom Zeitpunkt der Diagnose (Median: Treosulfan: 11,45 μM, Busulfan: 96,45 μM) über die Progression (Median: Treosulfan: 45,95 μM, Busulfan: 253,75 μM) bis zum Rezidiv (Median: Treosulfan: 153,15 μM, Busulfan: 223,3 μM) hin an, und zwar um das 8-fache bei Treosulfan und das 2,5-fache bei Busulfan. Der Unterschied der Zytotoxizität von Treosulfan auf Leukämieproben zum Zeitpunkt der Diagnose gegenüber dem Rezidiv war statistisch signifikant (p=0,02). Für Busulfan ergab sich für diese Untersuchungszeitpunkte keinen signifikanten Unterschied (p=0,13). Vergleichend zu den Ergebnissen an frisch isolierten Leukämiezellen wurde die Wirkung von Treosulfan und Busulfan auf normale Lymphozytensubpopulationen und Stammzellen untersucht. Auch hier zeigte Treosulfan eine stärkere Zytotoxizität im Vergleich zu Busulfan. Insgesamt reagierten normale Lymphozyten sensitiver auf die Alkylanzien im Vergleich zu den Leukämiezellen (Mediane IC50-Werte für Treosulfan und Busulfan auf Lymphozyten: 12,3 μM und 89,9 μM, auf Leukämieproben: 30,6 μM und 133 μM mit p=0,03 und p=0,02). In einem weiteren Experiment sollte die Interaktion von Treosulfan und Busulfan mit Fludarabin untersucht werden. Fludarabin ist ein Purin-Analogon, das in der Pädiatrie in Kombination mit Alkylanzien zur Chemo-Konditionierung eingesetzt wird. Bei der Inkubation von Fludarabin mit Treosulfan-Konzentration größer 1 μM war ein deutlicher Synergismus zu verzeichnen. Die Kombination von Fludarabin mit Busulfan ergab Antagonismus. 2. In vivo Untersuchungen Es wurde die zelluläre Immunrekonstitution bei pädiatrischen Patienten mit AML (n=9) nach allogener Knochenmarktransplantation überwacht. Ein Patient wurde mit Treosulfan konditioniert (n=1), die anderen Patienten (n=8) erhielten Busulfan zur Konditionierung. Die Rekonstitution der Leukozyten, B-Zellen, NK-Zellen und T-Helferzellen verlief in beiden Gruppen ähnlich. Ein signifikanter Unnterschied konnte für die Rekonstitution der CD3+CD8+ zytotoxischen T-Zellen gezeigt werden, die bei dem Patienten, der mit Treosulfan konditioniert wurde, signifikant niedriger war im Vergleich zur Busulfangruppe. Da bei dem Patienten, der Treosulfan erhielt, die CRP-Werte über einen längeren Zeitraum erhöht waren und Infektionen die Rekonstitution von zytotoxischen T-Zellen maßgeblich beeinflussen, bietet dies eine mögliche Erklärung für diesen Unterschied. Aussagen können jedoch nur mit einem größeren Patientenkollektiv getroffen werden.
Many highly active antitumour agents are currently not employable for the systemic chemotherapy of brain tumours since their entrance into the brain is blocked by the BBB. Obviously, the development of a strategy allowing effective delivery of these agents across the BBB would enormously extend the potential of the systemic chemotherapy. Chemotherapy of rat glioblastoma using nanoparticle-bound doxorubicin Doxorubicin bound to polysorbate-coated nanoparticles had been previously shown to significantly enhance survival in the orthotopic rat 101/8 glioblastoma model. The objective of this study was to investigate the therapeutic effects of this formulation by morphometric, histological and immunohistological methods. The 101/8 glioblastoma was implanted intracranially into the male Wistar rats. The animals were randomly divided into 3 groups; one group served as untreated control (n = 20). The second group received doxorubicin in solution (Dox-sol, n = 18), and the third group received doxorubicin bound to PBCA nanoparticles coated with PS 80 (Dox-NP + PS 80, n = 18). The treatment regimen was 3 × 1.5 mg/kg on days 2, 5, and 8 after tumor implantation. The formulations were injected into the tail vein. The untreated control animals were sacrificed on days 6, 8, 10, 12, and 14 after the implantation. The animals that had received chemotherapy were sacrificed on day 10, 14 and 18 after the implantation. The brains were investigated by morphometrical, histochemical, and immunohistochemical methods such as the measurement of the tumor size, proliferation of tumor cells, vessel density, expression of glial fibrillary acidic protein (GFAP), expression of vascular endothelial growth factor (VEGF), incidence and dimension of necrosis, and microvascular proliferation. Tumours showed signs of malignancy including invasion to brain tissue and brisk mitotic activity. The tumor proliferation remained stable at high levels throughout the host survival time. Overall, the tumor showed a reproducible growth pattern and temporal development that is comparable to human glioblastoma. Furthermore, the 101/8 glioblastoma had infiltrated diffusely the surrounding host brain at the edge of the solid tumor mass showed no signs of encapsulation. Thus the 101/8 glioblastoma fulfills the most criteria for an adequate glioma model and can be qualified as a reliable model. ...
Einen vielversprechenden Ansatz auf dem Gebiet der Entwicklung kolloidaler Arzneiträgersysteme stellen die proteinbasierten Nanopartikel dar, da sie biodegradierbar und nicht toxisch sind und eine Reihe möglicher Angriffspunkte zur kovalenten Bindung von Arzneistoffen und zur Oberflächenmodifikation aufweisen. Im Rahmen dieser Arbeit wurde der Herstellungsprozeß von HSANanopartikeln und sein Einfluß auf die physikochemischen Eigenschaften des resultierenden Partikelsystems evaluiert. Durch Oberflächenmodifikation wurde eine Kopplung von Proteinen mittels bifunktionaler Crosslinker ermöglicht und die zelladhäsiven Eigenschaften des Trägersystems vermindert. Durch Kopplung funktioneller Proteine wurden die ersten Schritte in Richtung eines ligandenvermittelten DrugTargetings unternommen. Evaluierung des Herstellungsprozesses und Charakterisierung des resultierenden partikulären Systems Die Evaluierung des Desolvatationsprozesses von HSANanopartikeln ergab eine Abhängigkeit der Partikelgröße und der Partikelanzahl vom zugesetzten Desolvatationsmittel Ethanol. Die Quervernetzung des resultierenden Systems beeinflußte die Anzahl der freien Aminogruppen an der Partikeloberfläche: Je mehr Glutaraldehyd zugesetzt wurde, desto weniger Aminogruppen waren nachweisbar. Die Härtung der Partikel durch Einwirkung hoher Temperaturen führte ebenfalls zu stabilen Partikeln. Die Anzahl der verfügbaren Aminogruppen lag im Vergleich zu den Glutaraldeydquervernetzten höher. Die Art und das Ausmaß der Quervernetzung hatten keinerlei Einfluß auf die mittlere Partikelgröße. Das Zetapotential dagegen zeigte eine Tendenz, mit steigender Quervernetzung negativer zu werden. Ein Vergleich dieser Ergebnisse mit den Aminogruppen an der Oberfläche von GelatineA und BNanopartikeln verdeutlichte, daß HSANanopartikel signifikant mehr freie Aminogruppen an der Partikeloberfläche, und damit mehr Angriffspunkte zur kovalenten Kopplung und Oberflächenmodifikation aufweisen, als GelatineNanopartikel, wobei Gelatine ANanopartikel mehr als doppelt so viele Aminogruppen an der Oberfläche besitzen als Gelatine BPartikel. Die höchsten Aminogruppenzahlen zeigten die hitzedenaturierten HSANanopartikel. Einführung von Sulfhydrylgruppen an die Partikeloberfläche Im Rahmen dieser Arbeit wurden sechs Methoden zur Einführung von Thiolgruppen auf die Oberfläche von HSANanopartikeln evaluiert. Die effektivste Methode ergab sich aus der Kopplung von Cystamin mit dem Kopplungsreagenz EDC, gefolgt von einer reduktiven Spaltung der Cystamindisulfidbindungen und der Disulfidbrücken der HSAPartikelmatrix mit DTT. Bedauerlicherweise zeigte diese Partikelpräparation die höchste Toxizität der untersuchten Zubereitungen in der Zellkultur. Die Kopplung von LCystein mit EDC war aufgrund unerwünschter Nebenreaktionen wesentlich weniger effektiv. Die einfachste Art, Thiolgruppen einzuführen, war die reduktive Spaltung der Disulfidbrücken der HSAPartikelmatrix mit DTT. Doch Bindungsexperimente zeigten, daß diese Thiolgruppen zwar mit Ellmans Reagenz nachweisbar waren, aber zu Bindungszwecken wahrscheinlich aus sterischen Gründen nur in untergeordnetem Maße zur Verfügung standen. Die Verwendung von 2Iminothiolan (Trauts Reagenz) war eine im Vergleich zur Cystamin/EDCMethode einfache und leicht zu handhabende Methode zur Einführung von SHGruppen, allerdings mit relativ geringer Effizienz. Das Quenchen freier Glutaraldehydreste an der Partikeloberfläche mit Cystamin führte zu einem sehr niedrigen SHGruppengehalt, mit LCystein waren so gut wie keine Thiolgruppen nach der Umsetzung nachweisbar. Die SHGruppen wurden bei einer Lagerung bei 4°C mit einer Halbwertszeit von 28,2 Tagen abgebaut, unabhängig von der Art der SHGruppeneinführung. Die Reaktivität der SHGruppen dagegen nahm wesentlich schneller ab als ihre Nachweisbarkeit: Bereits am dritten Tag nach der SHGruppeneinführung lag die Bindungsrate von mit SHreaktiven Crosslinkern aktivierten Proteinen um 2030 % niedriger, verglichen mit dem ersten Tag. Durch Veränderung der Reaktionsparameter konnte bei allen Methoden die Anzahl der eingeführten Thiolgruppen kontrolliert werden. Durch die Einführung der SHGruppen zeigten die Nanopartikel eine deutlich höhere Mukoadhäsion. Oberflächenmodifikationen Das Ziel der Oberflächenmodifikation der HSANanopartikel war zum einen eine Positivierung des Zetapotentials, um die Bindung negativ geladener Arzneistoffe wie DNA über elektrostatische Wechselwirkungen zu ermöglichen. Die Umsetzung der Partikel mit EDC allein oder mit EDC und Cystamin bzw. Cholamin führte zu einer deutlichen Verschiebung des Zetapotentials in den positiven Bereich. Durch Veränderung der Cholamin bzw. Cystaminkonzentration war die Verschiebung des Zetapotentials steuerbar. Gleiches galt für die Umsetzung der Gelatine APartikel, allerdings waren hier deutlich geringere Konzentrationen zur Erlangung der gleichen positiven Zetapotentiale notwendig. Zum anderen sollte durch die Modifikation der Partikeloberfläche ein verändertes Verhalten hinsichtlich der Zelladhäsion der Partikel erzielt werden. Es zeigte sich eine verstärkte Zelladhäsion nach der Einführung weiterer Aminogruppen und nach der Einführung lipophiler Gruppen. Eine verminderte Zelladhäsion wurde durch eine Maskierung der Aminogruppen erreicht. Die besten Ergebnisse erbrachte hierbei die Umsetzung der HSANanopartikel mit Jodessigsäure. Bindung funktioneller Proteine Um zu überprüfen, ob funktionelle Proteine an das evaluierte Trägersystem unter Erhalt der Funktionalität gebunden werden können, wurden zunächst Enzyme über den bifunktionalen Crosslinker SulfoMBS kovalent gekoppelt. Analysen der Bindungsrate und der tatsächlichen enzymatischen Aktivität differierten zwar, doch ist dies wohl auf eine noch nicht hinreichend optimierte Analytik zurückzuführen. Eine enzymatische Aktivität der alkalischen Phosphatase und der bGalaktosidase war nach der Bindung an das Trägersystem eindeutig nachweisbar. Als weiteres funktionelles Protein wurde das Avidinderivat NeutrAvidin(TM) gewählt und mit SulfoMBS an Gelatine ANanopartikel gekoppelt. Durch die Bindung biotinylierter Antikörper konnte der Erhalt der Funktionalität des gebunden NeutrAvidins(TM) gezeigt werden. Die Konjugation eines biotinylierten, humanen CD3 Antikörpers an das NeutrAvidin(TM)konjugierte Partikelsystem führte zu einer selektiven Bindung des Trägersystems an primäre humane Lymphozyten. Auch eine Aufnahme des Trägersystems in die Zellen konnte gezeigt werden. Die Experimente zum Antikörpervermittelten Targeting konnten mit HSANanopartikeln nicht reproduziert werden, da HSAPartikel eine so starke Zelladhäsion zeigten, daß ein Targeting aufgrund des Antikörpers nicht mehr ersichtlich war. Erste Versuche mit oberflächenmodifizierten HSAPräparationen, wie beispielsweise einer Jodessigsäure Umsetzung, führten zu einer deutlich verminderten Zelladhäsion. Weitergehende Experimente zur Evaluierung dieses Effektes sind für die Weiterentwicklung dieses Trägersystems entscheidend.
Nanopartikuläre Arzneistoffsysteme sind ein viel versprechender Ansatz die speziellen Anforderungen, die an eine Arzneiform gestellt werden, zu erfüllen. Mit ihnen scheint das lang verfolgte Ziel der Pharmaforschung, das gezielte Transportieren ("Drug-Targeting") und das kontrollierte Freisetzen des Arzneistoffs am Wirkort ("Controlled Release") und damit das Minimieren unerwünschter Nebenwirkungen, in greifbare Nähe zu rücken. In der vorliegenden Arbeit konnte durch verschiedene Versuchsansätze in der präklinischen Testung der gezielte Wirkstofftransport zielgerichtet-modifizierter Nanopartikel (NP) auf humanem Serumalbumin (HSA)-Basis sowohl für das spezifische Tumor-Targeting als auch für die Überwindung der Blut-Hirn-Schranke (BHS) gezeigt werden. Die NP für das spezifische Tumor-Targeting waren mit dem Zytostatikum Doxorubicin beladen und mit dem tumorspezifischen Liganden Trastuzumab für ein Mammakarzinom-Zellen-Targeting oder DI17E6 für ein Melanom-Zellen-Targeting modifiziert. Ihre zielgerichtete Funktionalität konnte an verschiedenen Target-exprimierenden-Zelllinien gezeigt werden. Dabei konnte ihre spezifische zelluläre Bindung, Aufnahme und subzellulären Verteilung verifiziert werden. Die Ligand-modifizierten NP wurden bei diesen Untersuchungen spezifisch in die Zielzellen aufgenommen, während die unmodifizierten Kontroll-Partikel unspezifisch an der Zellmembran klebten. Die Freisetzung des Doxorubicins in einer biologisch aktiven Form konnte anhand entsprechender Zellviabilitäts-Assays gezeigt werden. Des Weiteren konnte gezeigt werden, dass der nanopartikulär transportierte Wirkstoff über den Rezeptor-internalisierenden Aufnahmeweg nicht in den Endosomen oder Lysosomen akkumulierte und damit inaktiv war, sondern dass er in wirksamer Form freigesetzt wurde. Als Besonderheit wurde mit DI17E6 für das spezifische Melanom-Zellen-Targeting ein Antikörper als ziel-orientierter Ligand eingesetzt, der zusätzliche anti-tumorale Eigenschaften hat, die bei der Ankopplung an die NP-Oberfläche erhalten werden sollten. Durch speziell entwickelte in vitro Assays, die auf diese Eigenschaften abzielten, konnte der Erhalt der biologischen Wirksamkeit des Antikörpers bestätigt werden. Mit derartigen nanopartikulären Formulierungen, basierend auf biologisch abbau¬barem HSA, modifiziert mit entsprechenden zielgerichteten Liganden und anti-tumoralen Wirkstoffen, sollte aufgrund der hier gezeigten präklinischen Daten eine spezifische Tumortherapie möglich sein. Zum Überwinden der BHS wurden NP getestet, die mit Apolipoprotein E (ApoE) modifiziert waren. Dabei handelte es sich zum einen um leere NP für Aufnahmemechanismus-Studien und zum anderen um Obidoxim-beladene NP für Transportstudien. Bei Obidoxim handelt es sich um einen Vertreter der Stoffklasse der Oxime. Diese werden als Antidote bei Organophosphat (OP)-Vergiftungen eingesetzt. Oxime können die nach einer OP-Vergiftung inhibierte lebensnotwendige Acetylcholinesterase (AChE) reaktivieren. Da Oxime die BHS aber kaum überwinden können, wird die in den zentralnervösen Kompartimenten inhibierte AChE nicht in therapeutisch ausreichendem Maß erreicht. Daher sollte beispielhaft Obidoxim nanopartikulär-vermittelt über die BHS transportiert werden. Für beide Formulierungen konnte die spezifische zelluläre Bindung, Aufnahme und die subzelluläre Verteilung sowie ihre für ein BHS-Targeting kompatiblen, untoxischen Eigenschaften gezeigt werden. Mit den ApoE-modifizierten unbeladenen NP konnte durch verschiedene Koinkubations- und Hemmexperimente eindeutig die Beteiligung der "Low Density Lipoprotein" (LDL)-Rezeptor-Familie, und besonders des "Low Density Lipoprotein Receptor Related Protein" (LRP), bei der spezifischen ApoE-vermittelten NP-Aufnahme gezeigt werden. Dabei ließ sich die NP-Aufnahme auf zwei Wegen hemmen. Zum einen konnte von der zellulären Seite aus der beteiligte Aufnahme-Rezeptors mit dem "Receptor Associated Protein" gehemmt werden, wodurch eine spezifische ApoE-vermittelte NP-Aufnahme über eine Rezeptor-Bindung verhindert wurde. Zum anderen konnte aber auch, durch Blockade des ApoE auf der Partikeloberfläche mittels löslicher Fragmente des LRP, die ApoE-vermittelte NP-Aufnahme von nanopartikulärer Seite gehemmt werden. Durch die Kenntnis des Aufnahmemechanismus der nanopartikulären Formulierungen sollte es für zukünftige Entwicklungen im breiten Feld der BHS-Forschung möglich sein, sehr spezifische und effektivere Carrier maßzuschneidern. Zu Untersuchungen des Wirkstofftransports wurden frisch isolierte porcine Gehirnkapillarendothel-Zellen im Transwell-System als adäquates in vitro BHS-Modell etabliert und eingesetzt. Für den Nachweis des tatsächlichen Obidoxim-Transports wurde ein biologischer Assay entwickelt, der gemäß der therapeutischen Funktion von Oximen nach OP-Vergiftungen auf die Reaktivierung OP-vergifteter AChE abzielte. Es konnte gezeigt werden, dass nanopartikuläre Formulierungen tatsächlich einen verbesserten Transport von Obidoximen gegenüber freiem Obidoxim in einem in vitro BHS-Modell vermitteln. Diese nanopartikulären Transportsysteme stellen daher ein bisher einzigartiges, viel versprechendes Hilfsmittel zum Transport von Oximen über die BHS dar. Durch die in dieser Arbeit dargestellten Untersuchungen konnte insgesamt gezeigt werden, dass NP auf HSA-Basis für einen zielgerichteten Wirkstofftransport geeignet sind und aufgrund ihrer biokompatiblen, bioabbaubaren Eigenschaften einen viel versprechenden Ansatz für die zukünftige Pharmaforschung darstellen.
Optimierung Apolipoprotein-modifizierter Albumin-Nanopartikel zur Überwindung der Blut-Hirn-Schranke
(2007)
Das Gehirn höherer Säugetiere ist durch die Blut-Hirn-Schranke vor dem Eindringen toxischer und schädlicher Substanzen geschützt. Allerdings bildet diese Barriere auch ein Hindernis für die gezielte medikamentöse Therapie von Erkrankungen des zentralen Nervensystems wie zum Beispiel Alzheimer, Gehirntumore oder Parkinson. Leider sind nur wenige potentielle Arzneistoffe für die Therapie dieser Krankheiten in der Lage die Blut-Hirn-Schranke zu überwinden. Somit stellt die Blut-Hirn-Schranke einen limitierenden Faktor für die Arzneimitteltherapie dar. Diese Doktorarbeit beschäftigt sich mit der Herstellung, Charakterisierung, in vitro und in vivo Testung Liganden-modifizierter Nanopartikel auf Proteinbasis zur Überwindung der Blut-Hirn-Schranke. Als Ligand wurde das Apolipoprotein E, ein Bestandteil von physiologisch vorkommenden HDL, VLDL und LDL-Partikel, verwendet, welches sich in vorangegangenen Untersuchungen als potentieller Ligand zum Transport von Nanopartikeln ins Gehirn erwiesen hat. Diese so mit Apolipoprotein modifizierten Nanopartikel wurden mit dem Modellarzneistoff Loperamid, einem nicht gehirngängigen Opioid, beladen. Diese Zubereitung wurde Mäusen injiziert und der analgetische Effekt mittels des Tail-Flick-Tests bestimmt. Um auch eine therapeutische Anwendung zu erzielen, wurden Apolipoprotein modifizierte Partikel beladen mit dem Zytostatikum Doxorubicin entwickelt und die chemotherapeutische Effizienz an Gehirntumor tragenden Ratten getestet.
Die Eigenschaften, die im Rahmen dieser Arbeit untersuchten Co-Polymeren auf Basis von a-Hydroxycarbonsäuren und Polyolen, unterscheiden sich deutlich von denn entsprechenden reinen Polymeren ohne Polyolkomponente. Die Polymere dieser Klasse, die sich durch Variation der Parameter Alkoholkomponente, Alkohol/Lactid-Verhältnis, Lactid/Glycolid-Verhätnis, L/DL-Verhältnis ergibt sind äußerst vielfältig. Schwerpunktmäßig wurden Polymere untersucht, die als Carbonsäurekomponente Milch- und/oder Glycolsäure enthalten und bei denen Glycerin oder Ethylenglycol als Polyol verwendet wurde. Diese Arbeit verfolgte zum einen das Ziel, grundlegende Erkenntnisse über die neuartige Polymerklasse zu gewinnen und zum anderen die Eignung dieser Polymere als implantierbares Arzneistoffdepot zu untersuchen. Dabei konnte – wie im ersten Teil dieser Arbeit beschrieben – nur ein Ausschnitt aus dem großen Spektrum der Polymere beispielhaft synthetisiert und untersucht werden. Von vornherein ausgeschlossen waren bei diesen Untersuchungen Polymere, deren Glasübergangstemperatur unter Raum- und über Körpertemperatur lagen. Es sollten so lagerstabile, aber nach Applikation ins Gewebe anpassungsfähige Formkörper erhalten werden. Die Untersuchungen mit den entwickelten Polymerstäbchen haben gezeigt, dass sich die Klasse der Polyol-oligolactide/co-glycoliden von herkömmlichen, reinen Polylactiden bzw. Polylactiden/co-glycoliden in einigen Punkten unterscheidet. So wurde bei keinem der Versuche ein inhomogenes Abbauverhalten festgestellt, wie dies in der Literatur bei reinen Polylactiden/co-glycoliden beschrieben ist. Es kam also nicht zu einem beschleunigten Polymerabbau im Inneren der Stäbchen durch Autokatalyse der sich dort akkumulierenden Milchsäure. Die Glycerol-Polymere scheinen eine ausreichende Diffusion der Degradationsprodukte nach außen zu gewährleisten. Dies ist eine wichtige Voraussetzung für die gleichmäßige Freisetzung von Wirkstoffen. Die Eigenschaften der Polymerstäbchen ließen sich auf unterschiedliche Weise beeinflussen. So konnte ihre Wasseraufnahmefähigkeit durch das Verhältnis der Mischung von L-Polymeren zu DL-Polymeren sehr weit variiert werden. Das amorphe DL-Polymer ermöglicht eine erleichterte Wasseraufnahme gegenüber der reinen teilkristallinen L-Variante. Die Co-Polymerisation mit Glycolid bot eine weitere Möglichkeit, die Eigenschaften der Polymere zu beeinflussen. So stieg bei den Polymeren mit gleichem Glycerin/Monomer-Verhältnis die Hydrophilie in der Reihe GOL-DL-1:18 < GOL-DL-1:13,5:4,5 < GOL-DL-1:9:9 < GOL-L-1:4,5:13,5 an. Die Versuche, die im zweiten Teil der Arbeit beschrieben werden, wurden im Rahmen der Entwicklung eines Applikationssystems für niedermolekulare Cyclooligo-peptide durchgeführt, die in der Krebstherapie eingesetzt werden sollten. Es wurde deutlich, dass die bisher verwendeten Polymerstäbchen für eine solche Anwendung nicht geeignet waren. Sie boten der zur Applikation notwendigen Menge an Peptid eine zu geringe Menge an Polymermatrix, was zu einer hohen Beladungsrate führte. Die Folge war ein mechanisch instabiles System, das nach Implantation zerbrechen könnte und so den Wirkstoff unkontrolliert freisetzen würde. Aus diesem Grund wurde ein Verpressungsverfahren gewählt, um Tabletten beziehungsweise stäbchenförmige Presslinge als Applikationssystem zu erhalten. Für beide Varianten wurde das Polymer gemahlen, die zu untersuchenden Hilfs- oder Wirkstoffe eingemischt und dann verpresst. Bei den Untersuchungen zeigte es sich, dass eine gleichmäßige Freisetzung über mehrere Tage mit diesen resorbierbaren Trägersystemen nicht möglich war. Der Grund hierfür war ein zweiphasiger Verlauf der Freisetzung. Im ersten Teil des zweiphasigen Verlaufs wurde eine große Menge des Wirkstoffes zusammen mit der niedermolekularen Komponente ausgespült. In der zweiten Phase wurde der Wirkstoff im Zuge der Degradation der höhermolekularen Komponente langsam freigesetzt. Der Einfluss des Pressdruckes bei Erstellen der Prüfkörper war für die Freisetzung eher von untergeordneter Bedeutung, während eine vermehrte Zumischung von leicht wasserlöslichen Substanzen oder die Verwendung von hydrophileren Polymeren (DL-Lactide anstelle von reinen L-Lactiden) die Freisetzung des Peptides deutlich erhöhte. Im dritten Teil der Arbeit wurde beispielhaft an den Substanzen Gentamicinsulfat, Methotrexat und einem Cyclo-Oligo-Peptid die Freisetzung aus 13 verschiedenen halbfesten Polymersystemen untersucht. Diese Systeme wurden durch Mischung von nieder- mit höhermolekularen Polymeren hergestellt. Die Menge an freigesetztem Arzneistoff korrelierte erwartungsgemäß mit der Oberfläche der Probenkörper. Die Freisetzung des gut wasserlöslichen Gentamicinsulfats erfolgte aus den Systemen mit einem hohen Anteil an niedermolekularem Polymer sehr schnell und vollständig. Systeme mit überwiegend höhermolekularem Polymer gaben den Wirkstoff weniger schnell frei und es konnte gezeigt werden, dass der Wirkstoff sich in beiden Polymeren der Mischung verteilt. Das Freisetzungsverhalten bei dem in Wasser schwerlöslichen Methotrexat war nicht grundsätzlich anders. Die Verteilung zwischen der höher- und niedermolekularen Phase ähnelt der des Gentamicinsulfates. Eine relativ hohe Beladungsrate mit einem hydrophilen Wirkstoff (EMD 121974) führte zu einer deutlich höheren Freisetzung aus dem höhermolekularen Teil des Polymergemisches, so dass insgesamt eine beinahe vollständige Freisetzung erreicht wurde. Das im vierten Teil der Arbeit untersuchte Beschichten von Hydroxylapatit- Zylindern aus einer Kombination von bFGF mit einem Glycerin-L-1:13 Lactid Polymer führte zu einer gleichmäßigeren Freisetzung als bei Zylindern, die ohne Einsatz von Polymer beschichtet wurden. Außerdem war auch noch nach dem 5. Tag eine Freisetzung von bFGF zu beobachten. Eine signifikante Verzögerung des Einwachsens von Knochen in das Implantat nach 42 und 84 Tagen konnte bei der Gruppe mit bFGF/Polymer-Beschichtung histomorphologisch gezeigt werden. Die Poren des Implantates waren mit dem Polymer gefüllt, was das Einwachsen in den ersten Wochen deutlich erschwerte. Erst nach Beginn der Degradation des Polymers war das Eindringen des umgebenden Knochen möglich. Das Polymer GOL-L-1:12 war also aufgrund seiner langsamen Degradation für eine solche Anwendung ungeeignet. Für eine Verwendung als Beschichtungsmaterial sollte ein Polymer deutlich schneller degradieren und die Beschichtungsdicke müsste optimiert werden. Die Charakterisierung der Polyol-oligolactide/co-glycoliden in dieser Arbeit hat gezeigt, dass es sich bei dieser Polymerklasse um eine sehr interessante Variante der resorbierbaren Polymere handelt. Die einfache Synthese, die gute Bioverträglichkeit und die in sehr weiten Bereichen variierbaren Eigenschaften machen diese Polymere zu vielversprechenden Kandidaten bei der Entwicklung von Arzneimittelträgern oder Medizinprodukten.
Einleitung: Um die empfindlichen Nervenzellen des Gehirns vor den Einflüssen schädigender Substanzen im systemisch zirkulierenden Blut zu schützen, besitzen höhere Lebewesen einen Barrieremechanismus, der das zentrale Nervensystem (ZNS) nach außen hin abriegelt. Diese Blut-Hirn-Schranke (BHS) wird durch die Gefäßendothelzellen im Gehirn gebildet, die über eine Kombination mehrerer Mechanismen Substanzen vom Eindringen in das Gehirngewebe abhalten. Zum einen stellt die Existenz dieser Barriere einen lebensnotwendigen Schutz dar, zum anderen jedoch bedeutet sie eine große Hürde in der Pharmakotherapie von Erkrankungen des zentralen Nervensystems, da nur wenige Arzneimittel in der Lage sind sie zu überwinden. Eine gute Gehirngängigkeit besitzen in der Regel kleine Moleküle mit einer hohen Lipophilie oder solche, die aktiv über Transporter oder Rezeptoren in das ZNS aufgenommen werden. Alle anderen Substanzen, wie effektiv sie auch im restlichen Körper sein mögen, stehen für die Therapie zerebraler Krankheiten wie z.B. Epilepsie, Alzheimer, Gehirntumore oder ZNS-HIV unter normalen Umständen nicht zur Verfügung. Das Gebiet der kolloidalen Trägersysteme bietet eine Lösung für dieses Problem. Durch den Einsatz von Liposomen oder Nanopartikeln als „Carrier“ können verschiedene Arzneistoffe aktiv in das Gehirn transportiert warden, um dort ihre Wirkung zu entfalten. Des Weiteren führt ein solches „Drug targeting“ nicht nur zu einer Überwindung der BHS sondern gleichzeitig zu einer vermehrten Anreicherung des Arzneistoffs im ZNS und dadurch zu geringeren Nebenwirkungen im restlichen Organismus. Durch die erhöhte Selektivität für das ZNS können kleinere und somit für den Körper verträglichere Dosen des Arzneistoffs eingesetzt werden. In der Vergangenheit konnte gezeigt werden, dass unter anderem Nanopartikel aus humanem Serumalbumin, welche mit Polysorbat 80 überzogen waren oder deren Oberfläche mit Apolipoproteinen modifiziert wurde, Arzneistoffe, die üblicherweise nicht in der Lage sind die Blut-Hirn-Schranke zu überwinden, zentral zur Wirkung brachten. Der genaue Mechanismus, durch den diese Arzneistoffe mithilfe der Trägersysteme ins Gehirn gelangen,war bisher weitgehend ungeklärt. Ein Eindringen des arzneistoffbeladenen Nanopartikels als Ganzes in das Gehirn sowie die Einleitung 2 Vermittlung des Arzneistoff-Transportes durch das Partikel am Endothel oder gar eine unselektive Zerstörung der Barrierefunktion wurden diskutiert. Im Rahmen dieser Arbeit wurden mit Apolipoproteinen modifizierte Partikel aus humanem Serumalbumin hergestellt und hinsichtlich ihrer Größe, der Größenverteilung, des Partikelgehaltes, der Oberflächenladung und ihres morphologischen Erscheinungsbildes charakterisiert. Anschließend wurde die Interaktion dieser kolloidalen Trägersysteme mit isolierten Endothelzellen des Nagergehirns mittels verschiedener Analytiken untersucht. Gleichzeitig wurden in umfangreichen Untersuchungen an Mäusen und Ratten die Geschehnisse in vivo beleuchtet und mit Hilfe eines bildgebenden Verfahrens, der Elektronenmikroskopie, dargestellt. Des Weiteren wurde der Effekt einer nanopartikulären Applikation auf die Integrität der Barrierefunktion der BHS untersucht, wodurch eine schädliche Wirkung der Partikel ausgeschlossen und die der Aufnahme in das ZNS zugrunde liegenden Transportmechanismen aufgeklärt werden konnten.