Refine
Document Type
- Doctoral Thesis (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
Institute
- Mathematik (4)
In dieser Arbeit werden Darstellungen der Artinschen Zopfgruppen als Gruppen von Automorphismen der Homologie iterativ konstruierter äquivarianter Kettenkomplexe betrachtet. Es werden azyklische Komplexe freier Moduln bzw. freie Auflösungen der ganzen Zahlen für nichtpermutierte Artinsche Zopfgruppen konstruiert, die als iterierte semidirekte Produkte freier Gruppen darstellbar sind. Als Tensorprodukte der freien Auflösungen mit Moduln zu den fraglichen iterierten semidirekten Produkten freier Gruppen erhält man äquivariante Komplexe, deren von Eigenschaften der Koeffizientenmoduln abhängige Homologiegruppen bestimmt werden. Diese Homologiegruppen erlauben Automorphismendarstellungen der (permutierten) Artinschen Zopfgruppe, die gewissermaßen die Artinschen Darstellungen als Automorphismengruppen freier Gruppen iterieren und linearisieren. Insbesondere werden Darstellungen gewonnen, die die bekannten Burau- und Gassner-Darstellungen der Zopfgruppen verallgemeinern und die als Monodromiegruppen verallgemeinerter hypergeometrischer Integrale interpretiert werden können.
In der vorliegenden Arbeit beschäftigen wir uns mit der Verallgemeinerung des Satzes von Belyi [B]. Dieser besagt, dass eine Riemannsche Fläche Y genau dann als algebraische Kurve über einem Zahlkörper definiert ist, wenn es auf Y eine nicht-konstante holomorphe Funktion gibt, die über höchstens drei Punkten verzweigt. Die Arbeit gliedert sich in zwei Teile. Wir untersuchen darin jeweils die Verallgemeinerung einer der beiden Implikationen aus dem Satz von Belyi auf Varietäten der Dimension zwei und höher. Im ersten Teil der Arbeit zeigen wir, dass eine n-dimensionale projektive komplex algebraische Varietät über einem Zahlkörper definiert ist, falls sie den Pn (oder eine beliebige projektive über Q definierte Varietät) endlich und höchstens über einem rationalen Divisor verzweigt überlagert. Dazu beschreiben wir im ersten Kapitel den Zusammenhang zwischen Varietäten und komplex analytischen Räumen. Wir zeigen, dass die Kategorie der endlichen algebraischen Überlagerungen einer projektiven komplexen Varietät äquivalent zur Kategorie der endlichen verzweigten analytischen Überlagerungen des assoziierten komplex analytischen Raumes ist. Außerdem erläutern wir den Zusammenhang zwischen topologisch unverzweigten Überlagerungen und deren Algebraisierung, den étalen Morphismen zwischen Varietäten. Im zweiten Kapitel führen wir Definitionskörper und Modulkörper von Varietäten ein. Anschließend untersuchen wir die Operation von Körperautomorphismen s E Aut (C/Q) auf komplexen Varietäten. Im dritten Kapitel zeigen wir zunächst, dass der Modulkörper einer endlichen Überlagerung eines geeigneten Grundraumes ein Zahlkörper ist. Danach stellen wir das Resultat von Derome [D] vor, nachdem es einen Definitionskörper im algebraischen Abschluss des Modulkörpers gibt. Daraus folgern wir die Verallgemeinerung dieser Richtung des Satzes von Belyi. Im zweiten Teil beschäftigen wir uns mit der Frage, wie der Verzweigungsdivisor D im Pn aussehen sollte, damit jede über Q definierte Varietät ein Modell besitzt, dass Pn endlich und nur über D verzweigt überlagert. Im vierten Kapitel stellen eine Heuristik zur Korrespondenz zwischen topologischen Überlagerungen und Körpererweiterungen von Q vor. Daraus leitet sich folgende Vermutung ab: Zu jeder über einem Zahlkörper definierten n-dimensionalen Varietät Y gibt es eine birational äquivalente normale Varietät Y und einen Morphismus f : Y -> Pn, der nur über dem Komplement von M0,n+3 verzweigt. Die Vermutung steht im Einklang mit dem eindimensionalen Satz von Belyi. Alle Modulräume erfüllen die Voraussetzung für die im dritten Kapitel bewiesene Umkehrung. Im letzten Kapitel beschäftigen wir uns mit komplex algebraischen Flächen. Wir zeigen, dass die Vermutung aus dem vierten Kapitel für abelsche Flächen richtig ist. Dieses Ergebnis haben wir gemeinsam mit Horst Hammer (Karlsruhe) erzielt. Anschließend geben wir einen Überblick über weitere Resultate in dieser Richtung. Schließlich beschreiben wir die topologischen Überlagerungen von M0,5 und stellen eine Verallgemeinerung der Dessins d'Enfants vor.
Dessins d'enfants (children's drawings) may be defined as hypermaps, i.e. as bipartite graphs embedded in compact Riemann surfaces. They are very important objects in order to describe the surface of the embedding as an algebraic curve. Knowing the combinatorial properties of the dessin may, in fact, help us determining defining equations or the field of definition of the surface. This task is easier if the automorphism group of the dessin is "large". In this thesis we consider a special type of dessins, so-called Wada dessins, for which the underlying graph illustrates the incidence structure of points and of hyperplanes of projective spaces. We determine under which conditions they have a large orientation-preserving automorphism group. We show that applying algebraic operations called "mock" Wilson operations to the underlying graph we may obtain new dessins. We study the automorphism group of the new dessins and we show that the dessins we started with are coverings of the new ones.
Gegenstand dieser Arbeit sind Galoisoperationen auf quasiplatonischen Riemannschen Flächen mit einer Automorphismengruppe isomorph zu PSL(2,F(q)). Quasiplatonische Riemannsche Flächen werden durch torsionsfreie Normalteiler N in einer Dreiecksgruppe D uniformisiert, d.h. N ist die universelle Überlagerungsgruppe und die Flächen, die man auch als algebraische Kurven beschreiben kann, sind isomorph zu N\U, wenn U die obere Halbebene bezeichnet. Bzgl. der Größe der Automorphismengruppen bilden die quasiplatonischen Kurven die lokalen Maxima im Modulraum. Die absoluten Maxima liegen bei den Hurwitz-Kurven; hier hat die Automorphismengruppe die maximale Größe von 84(g-1), wenn g>1 das Geschlecht der Kurve ist. Der Normalisator in PSL(2,R) der Überlagerungsgruppe N ist dann die Dreiecksgruppe mit Signatur (2,3,7). Macbeath hat die Bedingungen dafür gefunden, wann PSL(2,F(q)) eine Hurwitz-Gruppe ist. Von besonderem Interesse ist dabei der Fall, dass q=p eine Primzahl kongruent +-1 mod 7 ist. Hier hat man drei nicht-isomorphe Kurven, die jedoch alle galoiskonjugiert zueinander sind. In der Arbeit werden Bedingungen angegeben, unter denen sich dieses Resultat auf Dreiecksgruppen D mit einer Signatur der Form (2,m_1,m_2) verallgemeinern lässt. Dabei gehen einerseits Ergebnisse von Frye ein, der die Anzahl der verschiedenen torsionsfreien Normalteiler N<D mit Quotienten PSL(2,F(q)) über die Spurtupel der Erzeugenden von D bestimmt hat. Andererseits wird eine Methode von Streit verwendet, mit der man die Galoisoperation auf den Kurven anhand des Verhaltens der Multiplikatoren der Erzeugenden in der Automorphismengruppe nachvollziehen kann. Es zeigt sich, dass sich Spur- und Multiplikatortupel entsprechen, woraus man die Anzahl und Länge der Galois-Orbits erhält. Außerdem lässt sich der Definitionskörper der Kurven bestimmen. Offen bleibt das genaue Verhalten bei Signaturen (m_0,m_1,m_2) mit m_i ungleich 2 für alle i. Hier gibt es zu jedem Multiplikatortupel zwei verschiedene Spurtupel. Kann man die Kurven durch die Multiplikatoren beschreiben, dann erhält man Projektionen D->>PSL(2,F(q)) auch über die Quaternionenalgebra, die die Dreiecksgruppe über ihrem Spurkörper erzeugt. Die Normalteiler erweisen sich dann als Schnitt der Dreiecksgruppe mit einer Hauptkongruenzuntergruppe nach einem Primideal P|char(F(q)) in der Norm-1-Gruppe einer Ordnung der Quaternionenalgebra. Dabei ist das Spurtripel in PSL(2,F(q)) gerade das Spurtripel aus D modulo P. Ändert man P, so erhält man ein anderes Spurtripel in PSL(2,F(q)), also auch einen anderen Normalteiler. Bilden die zugehörigen Kurven eine Bahn unter der Galoisoperation, dann ergeben sich alle Normalteiler auf diese Weise. Die Galoisoperation auf den Tripeln der Multiplikatoren, also die Galoisoperation auf den Kurven, ist verträglich mit der Operation, die die Primideale P|char(F(q)) permutiert. Wir erhalten also eine natürliche Korrespondenz zwischen der Galoisoperation auf den Kurven einerseits und der Operation auf den Primidealen andererseits.