Refine
Year of publication
Document Type
- Doctoral Thesis (15)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- Neuroblastom (3)
- Cisplatinresistenz (1)
- Infektiologie (1)
- Infektion (1)
- Neuroblastom, SAMHD1, Chemoresistenz (1)
- Onkomodulation (1)
- Synthetische Letalität (1)
- UKF-NB-2 (1)
- UKF-NB-2rVCR20 (1)
- Vincristin (1)
Institute
- Medizin (10)
- Pharmazie (4)
- Biochemie und Chemie (1)
In dieser Arbeit wurde YM155 anhand eines Neuroblastom-Zellmodells bezüglich seiner antitumoralen Wirkung, sowie möglicher Resistenzmechanismen untersucht. Mit Hilfe eines Viabilitäts-‚Screenings‘ wurde eine Auswahl von 113 chemosensitiven und chemoresistenten Neuroblastomzellen auf mögliche Kreuzresistenzen gegen YM155 untersucht. Hinsichtlich der IC50 Werte gegen YM155, lagen insgesamt 74 % der untersuchten Zelllinien im therapeutisch erreichbaren Bereich von unter 50 nM. Zusätzlich wurden Neuroblastom-, Mammakarzinom- und Prostatakarzinomzellen an eine klinisch relevante YM155 Konzentration adaptiert. Diese zeigten wiederum, dass durch die Adaptierung hervorgerufene Expressionsänderung des ABC-Transporters ABCB1 und des ‚solute carrier‘ Protein SLC35F2 eine bedeutsame Rolle hinsichtlich des Resistenzmechanismus gegen YM155 spielen. Durch den Einsatz von spezifischen ABCB1-Inhibitoren, als auch durch siRNA-vermittelte Reduzierung von ABCB1 konnte eine Abhängigkeit für die Wirksamkeit YM155 von ABCB1 in Neuroblastomzellen bestätigt werden. Des Weiteren wurde in den untersuchten Zelllinien ein Zusammenhang zwischen der Wirkung von YM155 und der Expression des ‚solute carrier‘ Proteins SLC35F2 hergestellt. Dazu wurden Zellen mit verminderter SLC35F2 Expression verwendet, welche durch Transduktion mit einem für eine SLC35F2 spezifische shRNA kodierenden Vektor etabliert wurden. Dabei führte eine verminderte SLC35F2 Expression zu einer starken Minderung der Sensitivität gegen YM155. Das Zusammenspiel dieser beiden Transporter und der damit verbundene Resistenzmechanismus gegen YM155, konnte in fast allen etablierten YM155-resistenten Zelllinien (UKF-NB-3rYM15520, 22RV1rYM155300, PC-3rYM15520, HCC-1806rYM15520 und MDA-MB-231rYM15520) gezeigt werden. Wobei diese Zellen unabhängig von der Tumorentität als Resistenzmechanismus gegen YM155 entweder eine signifikant induzierte ABCB1 Expression (verstärkter YM155 Efflux) und/oder eine verminderte SLC35F2 Expression (verringerter YM155 Influx) entwickelten. Außerdem konnte mit Hilfe der p53-depletierten Zelllinie UKF-NB-3pc-p53 eine Abhängigkeit der YM155 Wirkung vom Tumorsuppressor p53 nachgewiesen werden, wobei es durch die Depletierung von p53 zu einer verminderten Sensitivität der Zellen gegen YM155 kam. Zudem kam es durch die Nutlin-3 hervorgerufene p53 Aktivierung und Akkumulierung zu einer Verstärkung der YM155 Wirkung in den untersuchten Zellen. Diese Ergebnisse deuten darauf hin, dass der p53 Status von Zellen einen Einfluss auf deren YM155 Resistenz haben kann. Da in der Behandlung von Neuroblastomen neben der Chemotherapie auch Bestrahlung eingesetzt wird, wurde zusätzlich untersucht ob eine Adaptierung von Neuroblastomzellen an YM155 zu einer verminderten Sensitivität gegen Bestrahlung führen kann. Da die im Rahmen dieser Arbeit untersuchten UKF-NB-3 Zelllinien (UKF-NB-3 und UKF-NB-3rYM15520) eine ähnliche Sensitivität gegenüber der Bestrahlung aufwiesen, konnte kein Zusammenhang zwischen einer Adaptierung an YM155 und der Ausbildung einer Bestrahlungsresistenz gezeigt werden.
Ein weiterer wichtiger Teil dieser Arbeit war es, den primären Wirkmechanismus von YM155 in Neuroblastomzellen zu untersuchen. In vorangegangenen Studien wurde die vom Hersteller beschriebene Wirkung von YM155 als Survivin-Inhibitor in Frage gestellt. Stattdessen soll der primäre Apoptose-induzierende Effekt in erster Linie durch DNA-Schäden hervorgerufen werden, während die Survivin Inhibierung lediglich darauf folgen soll. In einer zeitlichen und konzentrationsabhängigen Kinetik der YM155 Behandlung konnte in UKF-NB-3 Zellen der genaue Zeitpunkt der Survivin-Inhibierung und der Induktion der DNA-Schadensantwort ermittelt werden. Dabei konnte in der vorliegenden Arbeit gezeigt werden, dass in Neuroblastomzellen als Antwort auf die YM155 Behandlung zuerst eine Survivin-Inhibierung erfolgt, und die DNA-Schadensantwort als Folge dieser induziert wird. Darüber hinaus belegte die siRNA-vermittelte Survivin-Inhibierung in UKF-NB-3 und UKF-NB-6, dass eine fehlende Survivin Expression die DNA-Schadensantwort induziert.
Zusammenfassend konnte in dieser Arbeit erstmals in YM155 adaptierten Neuroblastomzellen der Resistenzmechanismus gegen YM155 näher untersucht werden und darüber hinaus wurde demonstriert, dass die Wirkung von YM155 in Neuroblastomzellen nicht auf die Induktion der DNA-Schadensantwort beruht, sondern primär auf die Survivin-Inhibierung zurückzuführen ist.
HCMV ist ein Pathogen mit einer weltweit sehr hohen Prävalenz und stellt nach wie vor ein großes Problem für Immunsupprimierte (Transplantations- und AIDS-Patienten) und für ungeborene Kinder dar. Seine Pathogenese ist weiterhin nur unzureichend bekannt, eine Impfprophylaxe existiert nicht und es stehen nur wenige, unzureichende Medikamente zur Therapie zur Verfügung. Auch ein verstärkender Einfluss des Virus auf die Tumormalignität ist gezeigt. Aber die der viralen Onkomodulation zugrundeliegenden Mechanismen, insbesondere die Frage, wie und wann Tumorwachstum und -invasion durch HCMV beschleunigt werden, bedürfen weiterer Aufklärung.
Die immediate early-Proteine IE1 und IE2 sind wichtige Regulatorproteine einer HCMV-Infektion – insbesondere IE1, welches einen entscheidenden Einfluss auf die Genexpression der Wirtszelle nimmt. Es wurde a-priori die Hypothese erstellt, dass über einen positiven Einfluss von IE1 auf die Enterokinaseexpression die Trypsin-vermittelte Tumorinvasion gefördert wird.
Im ersten Teil dieser Arbeit wurde ein effizientes, zuverlässiges Protokoll zur Herstellung IE1- und IE2-exprimierender Tumorzelllinien mit Hilfe von lentiviralem Gentransfer ausgearbeitet. Damit verbunden konnten zwei persistent-transduzierte humane Tumorzelllinien, U-251 MGIE1 und U-251 MGIE2, mit hohen Expressionsraten etabliert werden. Weiter konnte im zweiten Teil der Arbeit, sowohl im Akutmodell als auch an persistent-transduzierten Zellen, gezeigt werden, dass die Enterokinaseexpression nicht im Zusammenhang mit der IE1-Expression steht.
Durch die Erarbeitung des Transduktions-Protokolls und die Etablierung der persistent-transduzierten humanen Tumorzelllinien ist es nun möglich, die isolierten Auswirkungen von IE1 und IE2 auf humane Tumorzellen zu untersuchen. Die Widerlegung der Hypothese über die Beeinflussung der Enterokinaseexpression durch IE1 liefert eine Erkenntnis, um die Mechanismen der erhöhten Tumorinvasion besser verstehen zu können. Insgesamt konnte durch diese Arbeit ein Beitrag geliefert werden, die durch HCMV verursachten onkomodulatorischen Effekte noch besser nachvollziehen zu können. Dies wiederum kann künftig dazu dienen therapeutische Strategien, welche der Invasion und Metastasierung entgegen wirken, zu verbessern bzw. zu entwickeln.
Die vorliegende Arbeit gliederte sich in 3 Teilbereiche. Der erste Teilbereich beschäftigte sich mit der antiviralen in vitro Wirkung von EDDS (Ethylendiamindinbernsteinsäure), sowie mit der Wirkung von EDDS, DTPA (Diethylentriaminpentaessigsäure) und DFO (Desferrioxamin) im Tiermodell. EDDS zeigte in vitro eine vielversprechende Wirkung gegenüber verschiedenen HCMV Stämmen. Hierunter befanden sich GCV und HPMPCresistente Stämme. Dies ist von großer Bedeutung für die Entwicklung neuer Wirkstoffe, da die Therapie von HCMVbedingten Erkrankungen mit hohen Nebenwirkungen verbunden ist und zudem durch vermehrtes Auftreten von Resistenzen gegenüber den etablierten Therapeutika GCV, HPMPC und Foscarnet erschwert wird. Die invitroDaten legen einen ähnlichen antiviralen Wirkmechanismus des EDDS verglichen mit DTPA nahe. Diese Ähnlichkeit wird durch die enge strukturelle Verwandschaft der Stoffe noch unterstrichen. Im Mausmodell zeigte jedoch keiner der 3 untersuchten Chelatoren eine erfolgversprechende protektive Wirkung gegenüber MCMVInfektionen. Damit wurden vorangegangene Untersuchungen im Rattenmodell bestätigt. Trotz vielversprechender anderslautender Ergebnisse, die auf eine invivoWirkung von DFO gegenüber CMVInfektionen hinwiesen, scheint damit der Einsatz der Chelatoren aufgrund ihrer sehr kurzen Halbwertszeit im Körper stark limitiert. Der zweite Teil der Dissertation befaßt sich mit der Entwicklung und Untersuchung von peptidischen Wirkstoffträgersystemen für DTPA. Hierbei ließen sich reproduzierbar lösliche HSADTPA und GelBDTPAKonjugate, sowie HSADTPA und GelBDTPANP herstellen. Die antivirale und die antitumorale Wirkung dieser Konjugate wurde in vitro untersucht. Da für die antitumorale Wirkung von DTPA bisher keine Daten vorlagen, wurde zunächst die Cytotoxizität in einer NBZellinie und in 3 BrustkrebsZellinien bestimmt. Als Vergleich dienten HFF. Es zeigte sich, daß DTPA in unterschiedlichen Konzentrationen gegenüber den untersuchten Zellinien cytotoxisch war, eine Tumorspezifität konnte jedoch nicht festgestellt werden. Die Cytotoxizität und die antivirale Wirkung des DTPA wurden in vitro durch Bindung an die unterschiedlichen peptidischen Trägersysteme deutlich erhöht. Dies führte jedoch nicht zu einer Erhöhung der therapeutischen Breite, da HFF in gleichem Maße stärker geschädigt wurden. Trotzdem bieten die Trägersystem Zubereitungen im Hinblick auf eine invivoAnwendung einige Vorteile. Es könnten geringere Mengen DTPA eingesetzt werden, was eine verringerte Ausschwemmung von Metallionen zur Folge hätte. Neben einer verlängerten Zirkulationszeit im Organismus könnte die veränderte Körperverteilung zu Verbesserungen führen. Im Falle der antitumoralen Anwendung wäre dies eine Anreicherung im Tumor aufgrund des EPREffektes. Für die antivirale Anwendung wären die Anreicherung in entzündeten Geweben, sowie die Anreicherung in Monozyten und Makrophagen von großem Interesse, da diesen Zellen ein entscheidender Anteil an dem durch CMV verursachten Multiorganbefall zugerechnet wird. Trotzdem bedarf der invivoEinsatz einer eingehenden Evaluierung und erscheint aufgrund der geringen therapeutische Breite insbesondere im Hinblick auf die Therapie von Tumoren stark eingeschränkt. Bezüglich des cytotoxischen Mechanismus weist die Wirkung der DTPAKonjugate darauf hin, daß DTPA den Zellzyklus und die Virusreplikation durch Wechselwirkung mit der Zellmembran und dadurch Veränderung der Signaltransduktion beeinflußt. Da eine geringere DTPAMenge größere Effekte verursacht, erscheint es unwahrscheinlich, daß die Komplexierung von Metallionen für die Wirkungen verantwortlich war. Im dritten Teil dieser Dissertation wurde eine PLANPTrägersystem für das antitumoral wirksame Enzym BSRNase entwickelt. BSRNase zeigte in vitro und bei intratumoraler Applikation sehr vielversprechende, selektive antitumorale Effekte gegenüber proliferierenden und ruhenden Tumorzellen. Die systemische Applikation war jedoch nicht erfolgreich. Dieses Scheitern wurde auf hohe Antigenität, kurze Halbwertszeit der Substanz im Körper und auf eine ungenügende Körperverteilung zurückgeführt. NP sind geeignet die Zirkulation im Körper zu verlängern und reichern sich in Tumoren aufgrund des EPREffektes an. PLANP wurden ausgewählt, da sie BSRNase in ausreichendem Maß binden und da PLA ein bioabbaubares und bioverträgliches Material ist. In vitro unterschied sich die nanopartikuläre Zubereitung bei der Wirkung gegenüber normalen, Lymphom und Leukämiezellen nicht. Beide BSRNaseZubereitungen induzierten Apoptose in parentalen und chemoresistenten Krebszellen. Normale Zellen wurden nicht in ihrer Viabilität beeinträchtigt. Die aspermatogenen und antiembryonalen Wirkungen von BSRNaseZubereitungen weisen auf ihre antitumoralen Eigenschaften hin. In diesen beiden Testsystemen übertraf die nanopartikuläre Zubereitung die Wirkung der BSRNaseLösung. InvivoVersuche müssen nun den tatsächlichen Stellenwert der BSRNasePLANP zeigen.
Die 5-Lipoxygenase ist das Schlüsselenzym der Bildung proentzündlicher Leukotriene. Diese Mediatoren sind assoziiert mit Erkrankungen des entzündlichen Formenkreises wie beispielsweise Arteriosklerose [6]. Durch die Veröffentlichungen von Qiu et. al. [248] und Gredmark-Russ et. al. [650] konnte gezeigt werden, dass die Infektion mit humanen Cytomegalovirus in vitro und in vivo zur Induktion der 5-LO in HPASMCs und SMCs (smooth muscle cells) führt. HCMV ist ein ß-Herpesvirus, welches nach einer zumeist asymptomatischen Primärinfektion, dauerhaft im Wirt persisiert und bei Schwächung des Immunsystems oder entzündliche Prozessen reaktiviert werden kann [256]. Geht das Virus in die lytische Replikationsphase über, werden Entzündungsprozesse gefördert, die zur Ausprägung von Krankheitsbildern wie Retinitis, rheumatoider Arthritis oder auch Psoriasis führen. Es besteht demnach ein Zusammenhang zwischen der aktiven HCMV-Infektion und Erkrankungen des entzündlichen Formenkreises, welche unter anderem durch die Induktion der 5-LO vermittelt wurden.
Ziel der Arbeit war es, den molekularen Mechanismus der viral induzierten 5-LO-Promotoraktivierung aufzuklären. Dazu wurde zunächst überprüft, ob die Infektion mit HCMV in HFF, einer Zelllinie die äußerst permissiv für die Infektion ist und daher zumeist als Testsystem für HCMV herangezogen wird, eine verstärkte 5-LO-Expression hervorruft, oder ob es sich um einen zelltypspezifischen Effekt der smooth muscle cells handelt. Es konnte gezeigt werden, dass es nach Infektion zu einer verstärkten Promotoraktivierung, mRNS- sowie Proteinexpression der 5-LO kam (Abb. 19, 23, 24). Weitere Untersuchungen charakterisierten, welches virale Protein die Effektvermittlung bedingte. Aufgrund der sequentiellen Genexpression des Virus unterscheidet man nach Zeitpunkt der Expression in Immediate Early, Early und Late Proteine, wobei letztere erst nach Replikation des viralen Genoms exprimiert werden. Der Zusatz von Foscavir als Replikationsinhibitor verdeutlichte, dass ein Immediate Early oder Early Protein die Induktion hervorruft (Abb. 16). Reportergenassay-Experimente unter Überexpression einzelner viraler Proteine zeigten, dass Immediate Early 1 essentiell an der Erhöhung der 5-LO-Promotoraktivität beteiligt ist (Abb. 18). Weitergehende Versuche unter Verwendung des IE1-Deletionsvirus CR208 bestätigten, dass die Induktion der 5-LO-Promotoraktivität sowie der mRNS-Expression durch dieses virale Protein vermittelt wird (Abb. 18, 20-22). Auf Proteinebene konnte ebenfalls nach IE1-Überexpression beziehungsweise nach Infektion mit HCMV eine erhöhte 5-LO-Expression detektiert werden (Abb. 23 und 24). Aktivitätsuntersuchungen, bei denen die Konzentration der 5-LO-Produkte LTB4 und 5-HETE gemessen wurden, bestätigten, dass das Enzym funktionsfähig ist (Abb. 25). Nach Infektion mit HCMV kommt es demnach zur IE1-vermittelten Induktion der 5-LO auf mRNS- und Proteinebene sowie nachgeordnet zur verstärkten Produktion von inflammatorischen Leukotrienen, die an der Ausbildung der entzündlichen Symptomatik einer lytischen Infektion beteiligt sind.
Immediate Early 1 ist ein potenter Transaktivator, der sowohl virale als auch zelluläre Promotorstrukturen aktivieren kann [387]. Funktionell wird dies reguliert über die Förderung der Transkriptionsfaktor-Expression, aber auch durch Beeinflussung histonmodifizierender Enzyme wie Histondeacetylasen [464]. Für den 5-LO-Promotor ist bekannt, dass dessen Aktivität über Bindung von Sp1, sowie durch HDAC-Inhibition beeinflusst werden kann [9, 171]. Diese beiden Regulationsmechanismen stellen demnach mögliche Verknüpfungspunkte in der viral induzierten Induktion des 5-LO-Promotors dar. Zunächst wurde die Expression von Transkriptionsfaktoren, welche charakterisierte Bindungsstellen im 5-LO-Promotor besitzen, nach IE1-Überexpression untersucht. Es zeigte sich, dass der zelluläre Sp1-mRNS-Spiegel durch IE1 80fach induziert werden kann (Abb. 27). Im Reportergenassay mit 5-LO-Promotordeletionskonstrukten, bei denen gezielt einzelne Sp1-Bindungsstellen, sogenannte GC-Boxen, mutiert wurden, konnte bestätigt werden, dass die IE1-vermittelte Induktion essentiell von Sp1-abhängt, da die Mutation der GC4-Box die Aktivierung nahezu komplett inhibiert (Abb. 30, 31). Auch der Zusatz von Mithramycin, einem DNS-Interkalator, welcher die Bindung von Sp1 an die DNS unterdrückt, ist in der Lage die Induktion abzuschwächen (Abb. 33) [651]. Um die direkte Sp1-Bindung an den 5-LO-Promotor nachzuweisen wurden sowohl EMSA- als auch ChIP-Experimente durchgeführt. Es zeigte sich, dass in vitro und in vivo die Sp1-Bindung an den proximalen 5-LO-Promotor nach IE1-Überexpression beziehungsweise nach Infektion zunimmt (Abb. 49, 50). Interessanterweise wird dieser Effekt nicht durch Immediate Early 2, einer Spleißvariante von IE1, welche eine große strukturelle Ähnlichkeit aufweist, hervorgerufen. Da Veröffentlichungen gezeigt haben, dass beide Immediate Early Proteine in der Lage sind, Sp1 auf mRNS-Level zu induzieren, muss ein weiterer regulatorischer Mechanismus in die Sp1-Promotorbindung involviert sein [410]. In Co-Immunopräzipitations Versuchen zeigten beide IEPs eine Interaktion mit Sp1 (Abb. 38), wonach der Unterschied in der transaktivierenden Fähigkeit des 5-LO-Promotors nicht durch Protein-Protein-Bindung mit Sp1 bedingt wird. Strukturell unterscheiden sich die beiden Proteine in ihrer carboxyterminalen Sequenz. Für IE1 ist hier eine intrinsische Kinaseaktivität beschrieben, die zur Autophosphorylierung, aber auch zur Phosphorylierung von Bindungsproteinen führen kann. Western Blot Analysen auf den zellulären phospho-Sp1-Gehalt nach viraler Überexpression konnten zeigen, dass IE1, nicht aber IE2 die posttranslationale Modifikation des Transkriptionsfaktors fördert (Abb. 39). Auch die Testung viraler Deletionsmutanten, denen einzelne Exons beziehungsweise die ATP-Bindungsstelle der Kinasedomäne fehlen, bestätigten die Schlüsselfunktion dieses Strukturelements (Abb. 37). Ob es sich um eine direkte oder indirekte Phosphorylierung von Sp1 durch IE1 handelt wurde durch in vitro Kinase-Assays und die Testung unterschiedlicher Proteinkinase-Inhibitoren bestimmt (Abb. 40, 42, 45). Obwohl die beiden Proteine miteinander interagieren können, kam es nicht zu einer direkten Phosphorylierung, sondern zelluläre Kinasen wie Tyrosinkinasen und nachgeordnet die Mitglieder des MAPK-Signalweges sind in die Phosphorylierung von Sp1 involviert. Die finale Bestätigung der essentiellen Funktion von Sp1 in der IE1-vermittelten Aktivierung des 5-LO-Promotors lieferte ein Reportergenassay-Experiment mit Sp1-Knock-down Zellen, welche nach viraler Überexpression keine 5-LO-Promotoraktivität und mRNS-Expression mehr zeigten (Abb. 47, 48). Für die Vermittlung der IE1-induzierten 5-LO-Promotoraktivierung sind dessen transaktivatorische Fähigkeiten demnach essentiell, durch Erhöhung der Sp1-mRNS-Expression und nachfolgender Phosphorylierung wird die DNS-Bindung des Transkriptionsfaktors an die GC4-Box des 5-LO-Promotors erhöht und dieser damit transkriptionell aktiviert.
Neben der Regulation über verstärkte phospho-Sp1-Bindung an die GC4-Box Region muss die Induktion von 5-LO durch IE1 noch über weitere Interaktionen vermittelt werden, da die reine Sp1-Überexpression ohne IE1 keine Promotoraktivierung hervorrufen konnte (Abb. 34). Überprüft wurde daher die HDAC-inhibitorische Fähigkeit von IE1, da der 5-LO-Promotor über diese epigenetischen Mechanismen reguliert werden kann. Pull-down-Experimente zeigten zunächst eine Protein-Protein-Interaktion zwischen IE1 und HDAC1/2/3 (Abb. 51). Nachfolgend konnte in einem HDAC-Aktivitätsassay gezeigt werden, dass diese Interaktion die Enzymaktivität der HDACs drastisch reduziert (Abb. 52). Durch HDAC-Inhibition liegen Promotorstrukturen zunehmend acetyliert vor und sind damit transkriptionell aktiv. Für den funktionellen Nachweis auf den 5-LO-Promotor diente ein Reportergenassay-Experiment in dem IE1 und in steigenden Mengen HDAC überexprimiert wurde (Abb. 53). Die Überexpression von HDAC1 und HDAC3 konnten den aktivierenden Einfluss von IE1 auf den 5-LO-Promotor teilweise konzentrationsabhängig revertieren und scheinen damit an der Effektvermittlung beteiligt zu sein. Die Charakterisierung der HDAC-vermittelten 5-LO-Promotorregulation von Pufahl et. al. bestätigte durch Knock-down Experimente, dass HDAC3 entscheidenden Einfluss auf den 5-LO-Promotor hat [172]. HDAC1 dagegen reguliert über die verstärkte Deacetylierung von Sp1 dessen DNS-Bindungsaffinität. Eine Hemmung dieser beiden Histondeacetylasen durch das virale Protein erhöht damit die Aktivität des 5-LO-Promotors.
Zusammenfassend lässt sich sagen, dass das Ziel der Arbeit erreicht wurde und ein detaillierter Mechanismus der 5-LO-Promotoraktivierung durch HCMV aufgeklärt wurde. Immediate Early 1 induziert dabei zunächst die Expression und Phosphorylierung von Sp1. Ebenso interagiert das virale Protein mit HDAC1/2/3 und hemmt deren Aktivität, wodurch es zur Öffnung der 5-LO-Promotorstruktur kommt. Entscheiden ist hierbei vor allem die Hemmung von HDAC3. HDAC1 Inhibition sorgt im getesteten Zellsystem zusätzlich für verstärkte Acetylierung des Transkripti-onsfaktors Sp1, welcher aufgrund der dadurch erhöhten DNS-Bindungsaffinität an die GC4-Box-Region binden und so die Transkription fördern kann. Interessanterweise ist die Bindung an andere beschriebene GC-Boxen des 5-LO-Promotors nicht induktiv, was die Annahme nahelegt, dass nicht Sp1 alleine, sondern ein transaktivatorischer Komplex an diese Region bindet. Die Aktivierung des Promotors führt nachfolgend zur mRNS- und Proteinexpression, welche eine verstärkte Leukotrienbildung zur Folge hat. Diese Mediatoren sind in die Entstehung der entzündlichen Charakteristik einer aktiven HCMV involviert. Das Virus macht sich demnach generelle Prinzipien der Transaktivierung zu Nutze und fördert so zum einen seine Reaktivierung aus der Latenz, zum anderen die produktive Verbreitung der Infektion.
Natural killer (NK) cells are white blood lymphocytes of the innate immune system that have diverse biological functions, including recognition and destruction of certain microbial infections and neoplasms [1]. NK cells comprise ~ 10% of all circulating lymphocytes and are also found in peripheral tissues including the liver, peritoneal cavity and placenta. Resting NK cells circulate in the blood, but, following activation by cytokines, they are capable of extravasation and infiltration into most tissues that contain pathogen-infected or malignant cells [2-5]. NK cells discriminate between normal and abnormal cells (infected or transformed) through engagement and dynamic integration of multiple signaling pathways, which are initiated by germline-encoded receptors [6-8]. Healthy cells are protected from NK cell-mediated lysis by expression of major histocompatibility complex (MHC) class I ligands for NK cell inhibitory receptors [6, 9]. The MHC is a group of highly polymorphic glycoproteins that are expressed by every nucleated cell of vertebrates, and that are encoded by the MHC gene cluster. The human MHC molecules are termed human leucocyte antigen (HLA)-A, B and C molecules. Every NK cell expresses at least one inhibitory receptor that recognizes a self-MHC class I molecule. So, normal cells that express MHC class I molecules are protected from self-NK cells, but transformed or infected cells that have down-regulated MHC class I expression are attacked by NK cells [10]. There are 2 distinct subsets of human NK cells identified mainly by cell surface density of CD56. The majority (approximately 90%) of human NK cells are CD56dimCD16bright and express high levels of FcγRIII (CD16), whereas a minority (approximately 10%) are CD56brightCD16dim/- [11]. Resting CD56dim NK cells are more cytotoxic against NK-sensitive targets than CD56bright NK cells [12]. However, after activation with interleukin (IL)-2 or IL-12, CD56bright cells exhibit similar or enhanced cytotoxicity against NK targets compared to CD56dim cells [12-14]. The functions of NK cells are regulated by a balance of signals (Fig. 1.1). These are transmitted by inhibitory receptors, which bind MHC class I molecules, and activating receptors, which bind ligands on tumors and virus-infected cells [15]. These receptors are completely encoded in the genome, rather than being generated by somatic recombinations, like T- and B-cell receptors.
Das Neuroblastom ist der häufigste extrakranielle solide Tumor des Kindesalters. Bei Diagnosestellung befinden sich die meisten Patienten bereits in fortgeschrittenen Tumorstadien; trotz intensiver multimodaler Therapie überleben nur 30-40% der Hochrisikopatienten die Erkrankung. Zum Therapieversagen führt in den meisten Fällen eine Resistenzentwicklung des Tumors gegenüber den Chemotherapeutika. Die Entdeckung neuer effektiver Therapieansätze und Überwindung der Chemoresistenz durch Resensibilisierung der Tumorzellen ist daher ein dringendes Forschungsanliegen.
Zur Charakterisierung der Zelllinien im ersten Teil dieser Arbeit wurde die Zellmorphologie, die Gen- und Proteinexpression verschiedener Differenzierungs- bzw. Krebsstammzell-Marker und das Anoikis-Verhalten der Neuroblastomzellen UKF-NB-2, UKF-NB-3 und UKF-NB-6 sowie ihrer Cisplatin- und Carboplatin-resistenten Sublinien untersucht. Der zytomorphologischen Phänotyp der untersuchten Zellen ließ keine eindeutigen Schlüsse auf eine neuronale, indifferente oder nicht-neuronale Differenzierung der Zellen zu. Gemessen an der Expression der neuronalen Marker NCAM, TH und der Neurofilamente L, M und H zeigte jedoch die Mehrzahl der untersuchten Cisplatin- und Carboplatin-resistenten Sublinien einen signifikanten Verlust der neuronalen Differenzierung im Vergleich zu ihren parentalen Zellen. Dieser Effekt war auch durch eine temporäre Platinkarenz nicht vollständig reversibel.
Der EGF-Rezeptor, dessen Überexpression als negativer prognostischer Marker für den Therapieerfolg gilt, wurde von allen untersuchten Zelllinien exprimiert, es ließ sich jedoch keine signifikant verstärkte Expression in den resistenten Sublinien nachweisen.
Eine Krebsstammzelle ließ sich in den untersuchten Zelllinien bei schwacher bis fehlender Stammzellmarkerexpression von CD133 und c-Kit nicht eindeutig identifizieren.
Die Resistenz gegenüber Anoikis ist eine Grundvoraussetzung für die Metastasierung von Tumorzellen. Bei den in dieser Arbeit untersuchten Neuroblastomzelllinien zeigten 3 von 8 Zelllinien, UKF-NB-2, UKF-NB-2rCDDP500 und UKF-NB-6, eine Anoikis-Resistenz. UKF-NB-3 sowie ihre beiden Sublinien waren Anoikis-sensibel, sie zeigten alle einen signifikanten Viabilitätsverlust durch Kultivierung auf Poly-HEMA-Beschichtung und daraus resultierendem Adhärenzverlust. Bei UKF-NB-6 nahm durch den Erwerb der Platinresistenz die Toleranz gegenüber Anoikis ab, wie man an dem signifikanten Viabilitätsverlust der Sublinien UKF-NB-6rCDDP1000 und UKF-NB6rCarbo1000 unter nicht-adhärenten Bedingungen sieht. Die Ausbildung der Cisplatin- und insbesondere der Carboplatinresistenz geht hier mit einer signifikant verstärkten Sensitivität der Zellen gegenüber Anoikis einher. Ein synergistischer Effekt auf die Zellviabilität durch Anoikis-induzierende PolyHEMA-Beschichtung und simultane Cisplatin- oder Carboplatin-Exposition ließ sich jedoch nicht beobachten.
Im zweiten Teil dieser Arbeit wurden die durch die Connectivity Map ermittelten potentiellen Resensitizer für Cisplatin (Pararosanilin, Tolbutamid, Fludrocortison, 12,13-EODE und Topiramat) und deren Wirkung auf die Viabilität der Neuroblastomzelllinien (IMR-5, NGP, SK-N-AS, UKF-NB-2, UKF-NB-3 und UKF-NB-6) sowie ihrer Cisplatin-resistenten Sublinien untersucht.
Hierbei zeigte die Kombinationstherapie von Cisplatin mit 12,13-EODE, Topiramat oder Fludrocortison keine signifikante Reduktion der Zellviabilität im Vergleich zur Therapie mit Cisplatin alleine. Ein z. T. signifikanter Anstieg des IC50-Werts von Cisplatin in den getesteten parentalen Zellen und resistenten Sublinien ließ eher einen desensibilisierenden Effekt dieser Stoffe gegenüber Cisplatin vermuten.
Die Kombination von Cisplatin mit Pararosanilin oder Tolbutamid hingegen hatte einen deutlich wachstumshemmenden Effekt auf alle untersuchten resistenten Sublinien. Die IC50-Werte von Cisplatin wurden hier in fast allen Zelllinien signifikant reduziert, z. T. bis um den Faktor 2,45, was einer Halbierung der Cisplatindosis entspricht. Pararosanilin und Tolbutamid erwiesen sich somit als mögliche Resensitizer für Cisplatin in Cisplatin-resistenten Neuroblastomzellen.
Diese Daten lassen erkennen, dass die Connectivity Map ein vielversprechendes Werkzeug in der gezielten Therapie von chemoresistenten Neuroblastomen sein kann. In Kombination mit bisher gängigen Therapieschemata könnten Resensitizer den Erfolg der Behandlung möglicherweise deutlich verbessern. Die mögliche Toxizität der identifizierten Resensitizer, insbesondere Pararosanilin, und damit den tatsächlichen Stellenwert dieses Therapieansatzes wird man jedoch zunächst in vivo noch weiter untersuchen müssen.
Das humane Immundefizienz-Virus (HIV) benötigt für die Virus-Zellbindung spezifische Oberflächenrezeptoren auf den Wirtszellen (z. B. CD4, CXCR4, CCR5). Zurzeit basiert die Behandlung der chronisch persistierenden HIV-Erkrankung auf einer lebenslangen Chemotherapie (Highly Active Antiretroviral Therapy, ART) bestehend beispielsweise aus einer Kombination von 2 Nukleosidanaloga und einem Protease-Inhibitor, die das Virus nicht eradiziert, sondern nur in seiner Vermehrung hemmt. Dies birgt jedoch die Gefahr der Entwicklung von Resistenzen gegenüber der medikamentösen Therapie. Zusätzlich wird eine Veränderung der HIV-Rezeptorspezifität unter der Behandlung mit Antagonisten des HIV-Rezeptors CCR5 befürchtet. Cytarabin (Ara-C) ist ein Zytostatikum, das in der Therapie von Leukämien eingesetzt wird. Als Nukleosidanalogon gehört es strukturell zur selben Wirkstoffklasse wie die in der HIV-Therapie eingesetzten Nukleosidanaloga, jedoch sind bisher keine antiretroviralen Eigenschaften für Ara-C beschrieben worden. Die T-lymphoide Zelllinie C8166 ist permissiv für HIV. Die Adaptation von C8166-Zellen an das Wachstum in Gegenwart von Ara-C (Zellinie C8166rAra-C5μM) resultierte in einer signifikanten Verringerung der Oberflächenexpression der HIV-Rezeptoren CD4 und CXCR4 und zu einer verringerten Permissivität gegenüber HIV. In der vorliegenden Arbeit sollte untersucht werden, ob die Adaptation an Ara-C bei anderen T-lymphoiden Zelllinien ebenfalls zur Verringerung der Expression von CD4, und CXCR4 führt. Zusätzlich sollte untersucht werden, wie sich die Expression von CCR5 verhält. Es wurden die folgenden parentalen und an Ara-C adaptieten T-lymphoiden Zelllinien verwendet: H9, H9rAra-C600μM, MOLT4/8, MOLT4/8rAra-C100μM und MOLT4/8rAra-C200μM. Bei allen Ara-C resistenten Zelllinien kam es zu einer signifikant verringerten Expression von CD4 und CXCR4 auf mRNA und Proteinebene sowie zu einer signifikanten Erhöhung der CCR5-Expression. Im Gegensatz hierzu zeigten an AZT adaptierte H9-Zellen (H9rAZT3000μM) keine signifikante Veränderung in der Expression von CD4, CXCR4 oder CCR5 im Vergleich zu parentalen H9-Zellen. Die akute Behandlung der parentalen H9-Zellen mit niedrigen, untoxischen Ara-C Konzentrationen führte ebenfalls zu einem Anstieg der CCR5-Expression und zu einer Verminderung der CD4- und CXCR4-Expression. Zellzyklusmessungen ergaben, dass der Zellzyklus in mit untoxischen Ara-C-Konzentrationen behandelten H9-Zellen (Anstieg der Zellteilungsrate auf das 2-fache) und in allen an Ara-C adaptierten Zelllinien im Vergleich zu den unbehandelten bzw. parentalen Zellen stärker stimuliert war. Epigenetische Einflüsse könnten bei der veränderten Expression von CD4, CXCR4 und/oder CCR5 in Ara-C resistenten Zellen eine Rolle spielen. Dies erscheint jedoch unwahrscheinlich, da weder der DNA-Methylierungsinhibitor Aza-C noch der Histondeacetylase-Inhibitor SAHA die Expression von CD4, CXCR4 oder CCR5 beeinflussten. Weitere Untersuchungen müssen zeigen, ob eine Kombination von Ara-C, das zu einer Verringerung der CXCR4- und CD4-Expression und zu einer Erhöhung der CCR5-Expression führt, mit CCR5-Inhibitoren eine therapeutische Option darstellt. Möglicherweise wirkt die Verwendung von Ara-C auch einem CCR5/CXCR4-Shift entgegen.
Im ersten Teil dieser Arbeit wurde der Einfluss des HIV-Protease-Inhibitors Saquinavir und seines Derivates Saquinavir-NO auf die ABC-Transporter vermittelte Chemoresistenz in Tumorzellen untersucht. Saquinavir-NO zeigte in drei verschiedenen Tumorentitäten stärkere zytotoxische Wirkung als Saquinavir. Weder die Expression der ABC-Transporter MDR1 oder BCRP1 noch der zelluläre p53-Status hatten einen Einfluss auf die Zellsensitivität. MDR1-exprimierende chemoresistente Tumorzellen wurden durch Saquinavir-NO stärker gegen ausgewählte Zytostatika resensitiviert als durch Saquinavir. An chemosensitiven MDR1-negativen Zellen wurden keine Effekte beobachtet. Des Weiteren wurde die Neuroblastomzelllinie UKF-NB-3 mit Hilfe lentiviraler Vektoren mit cDNA für MDR1 transduziert. In diesem MDR1-transduzierten Zellmodell wurde die Sensiti-vität gegen das MDR1-Substrat Vincristin durch Saquinavir-NO stärker erhöht als durch Saquinavir. Am Durchflusszytometer wurde der Einfluss von Saquinavir und Saquinavir-NO auf die intrazelluläre Akkumulation des fluoreszierenden MDR1-Substrates Rhodamin 123 untersucht. In MDR1-exprimierenden Zelllinien führte Saquinavir-NO zu einer deutlich stärkeren Akkumulation von Rhodamin 123 als Saquinavir. In MDR1-negativen Zellen wurden keine Effekte beobachtet. Mit Hilfe des MDR1-ATPase-Assays und Wash-Out-Kinetiken am Durchflusszytometer wurde die Frage geklärt, ob Saquinavir und Saquinavir-NO als Substrate oder als allosterische Inhibitoren für MDR1 fungieren. Die Ergebnisse beider Assays lassen den Schluss zu, dass sowohl Saquinavir als auch Saquinavir-NO jeweils ein Substrat für MDR1 darstellen. Um den Einfluss von Saquinavir und Saquinavir-NO auf den ABC-Transporter BCRP1 zu untersuchen, wurde die Neuroblastomzelllinie UKF-NB-3 mit Hilfe lentiviraler Vektoren mit cDNA für BCRP1 transduziert. Die BCRP1-transduzierten Zellen wurden durch Saquinavir und Saquinavir-NO in vergleichbarem Ausmaß zu dem BCRP1-Substrat Mitoxantron sensibilisiert. Saquinavir-NO ist somit im Vergleich zu Saquinavir der deutlich potentere MDR1-Inhibitor, während beide Substanzen gleichermaßen BCRP1 beeinflussten. Im zweiten Teil dieser Arbeit wurde der Einfluss des MDM2-Inhibitors Nutlin-3 auf die ABC-Transporter-vermittelte Chemoresistenz in Tumorzellen untersucht. Nutlin-3 zeigte aufgrund seiner Funktion als MDM2-Inhibitor an Zellen mit Wildtyp-p53 stark zytotoxische Effekte. An Zellen mit einer p53-Mutation oder an Zellen, die p53-negativ sind, waren diese Effekte nicht zu beobachten. Die Behandlung mit Nutlin-3 führte in p53-Wildtypzellen zur Induktion diverser p53-Zielgene (p21, MDM2, GADD). In Zellen mit mutiertem p53 blieb diese Induktion nach Nutlin-3-Behandlung aus. Chemoresistente MDR1-exprimierende Tumorzellen wurden durch Nutlin-3 stark gegen ausgesuchte Zytostatika resensitiviert. Des Weiteren wurde die chemosensitive, p53-mutierte (Nutlin-3-insensitive) und MDR1-negative Rhabdomyosarkomzelllinie RH30 mit Hilfe lentiviraler Vektoren mit cDNA für MDR1 transduziert. In diesem MDR1-transduzierten Zellmodell wurde die Sensitivität gegen das MDR1-Substrat Vincristin durch Nutlin-3 stark erhöht. Am Durchflusszytomter zeigte sich in MDR1-exprimierenden Zellen durch Behandlung mit Nutlin-3 eine signifikant erhöhte intrazelluläre Akkumulation des fluoreszierenden MDR1-Substrates Rhodamin 123. In MDR1-negativen Zellen wurde dieser Effekt nicht beobachtet. Mit Hilfe des ATPase-Assays und Wash-Out-Kinetiken am Durchflusszytometer wurde die Frage geklärt, ob Nutlin-3 als Substrat oder als allosterischer Inhibitor für MDR1 fungiert. Die Ergebnisse beider Assays lassen den Schluss zu, dass Nutlin-3 ein Substrat für MDR1 darstellt. Nutlin-3 ist ein Racemat und wurde in allen Versuchen als solches verwendet. Das Enantiomer Nutlin-3a hemmt die MDM2-p53-Interaktion als aktives Enantiomer ca. 150-fach stärker als Nutlin-3b. Im letzten Schritt der vorliegenden Arbeit wurde Nutlin-3 in seine Enantiomere Nutlin-3a und Nutlin-3b aufgetrennt und beide Enantiomere wurden im Hinblick auf ihre Wirkung auf MDR1 untersucht. Dabei wurden keine Unterschiede zwischen den beiden Enantiomeren festgestellt. Nutlin-3a und Nutlin-3b interferieren demnach zu gleichen Teilen mit MDR1. Um den Einfluss von Nutlin-3 auf den ABC-Transporter MRP1 zu untersuchen, wurde mit zwei verschiedenen Zellmodellen gearbeitet. In beiden Zellmodellen zeigte sich, dass Nutlin-3 auch den MRP1-vermittelten Efflux der fluoreszierenden Substrate Rhodamin 123 und Calcein-AM inhibiert. Der Befund, dass Nutlin-3 mit der MDR1- und MRP1 vermittelten Chemoresistenz interferiert, ist neu und eine wichtige Information für die Bewertung der beginnenden klinischen Studien zur Untersuchung von Nutlin-3 als antitumorale Substanz.
Das Neuroblastom ist der häufigste extrakranielle solide Tumor des Kindesalters. Bei der Diagnosestellung befinden sich die meisten Patienten bereits in fortgeschrittenen Tumorstadien mit Langzeitüberlebensraten unter 40%, trotz intensiver multimodaler Therapie. Darüber hinaus ist die erforderliche aggressive Therapie mit gravierenden akuten Nebenwirkungen und Spätschäden verbunden. Die Entwicklung effektiverer und weniger toxischer Therapieansätze ist daher dringend notwendig. Der epidermal growth factor receptor ist ein möglicher Angriffspunkt selektiver Tumortherapie. Bei einer Vielzahl von Tumoren wurde eine verstärkte EGF-Rezeptorexpression beobachtet, die mit schlechtem Therapieansprechen, Resistenz gegen zytotoxische Substanzen, rascher Krankheitsprogression und verkürztem Gesamtüberleben korreliert. Auch bei mehreren Neuroblastomzelllinien ist die Expression von EGF-Rezeptoren beschrieben. In der vorliegenden Arbeit wurde die Expression und Funktionalität von EGF-Rezeptoren in den parentalen chemosensiblen Neuroblastomzelllinien IMR 32, NLF, SH-SY5Y und UKF-NB-3, sowie einigen chemoresistenten Sublinien untersucht. Dabei zeigte sich in allen Zellinien eine deutliche EGF-Rezeptorexpression. Die EGF-Rezeptorexpression der cisplatinresistenten Neuroblastomzelllinien IMR 32r CDDP1000, NLFr CDDP1000, SH-SY5Yr CDDP500 und UKF-NB-3r CDDP1000 war signifikant höher als die der parentalen Zelllinien. Durch Inkubation der chemosensiblen Zelllinien mit geringen Konzentrationen Cisplatin ließ sich eine reversible Erhöhung der EGF-Rezeptorexpression induzieren, während die cisplatinresistenten Zellen unabhängig von der weiteren Zugabe des Zytostatikums eine erhöhte EGF-Rezeptorexpression zeigten. Die Adaptation an Cisplatin führt also zu stabilen Veränderungen in der Zelle, die eine verstärkte Expression von EGF-Rezeptoren zur Folge haben. Darüber hinaus wurde die Wirkung verschiedener, am EGF-Rezeptor angreifender Substanzen auf die Zellviabilität untersucht. Hierbei zeigten der EGF-Rezeptor-spezifische monoklonale Antikörper Cetuximab und die Tyrosinkinaseinhibitoren AG99 (Tyrphostin A46) und AG555 (Tyrphostin B46) in den meisten Zelllinien keine signifikante Reduktion des Zellwachstums. Das EGF-Rezeptor-spezifische Immuntoxin ScFv-14E1-ETA und das Wachstumsfaktortoxin TGF-α-ETA hingegen hatten deutlich wachstumshemmende Effekte auf alle untersuchten Neuroblastomzellen, unahbängig von der Funktionalität der Rezeptoren. Die Kombinationsbehandlung mit Cisplatin und jeweils einem der beiden rekombinanten Toxine erwies sich dabei sowohl bei den parentalen, als auch bei den cisplatinresistenten Neuroblastomzelllinien als deutlich überlegen gegenüber der Monotherapie. Diese Daten machen deutlichen, dass der EGF-Rezeptor einen vielversprechenden Angriffspunkt in der gezielten Therapie von Neuroblastompatienten darstellt. Insbesondere in Kombination mit bisher gängigen Therapieschemata ließen sich der Erfolg und die Verträglichkeit der Behandlung möglicherweise deutlich verbessern. Die Toxizität der unterschiedlichen EGF-Rezeptor-spezifischen Substanzen und damit den tatsächlichen Stellenwert dieses Therapieansatzes wird man jedoch zunächst in in vivo Versuchen noch weiter untersuchen müssen.
Grundlagen: Das Neuroblastom ist der häufigste extrakranielle solide Tumor im Kindesalter. Die Patienten in der Hochrisikogruppe haben trotz der Weiterentwicklung der Therapie immer noch eine sehr schlechte Prognose. Die Entwicklung von Resistenzen und die darauffolgende Progression der Erkrankung sind kennzeichnende Phänomene innerhalb dieser Patientengruppe.
Die hier vorgestellte Charakterisierung von MYCN amplifizierten, Cisplatin adaptierten chemoresistenten Neuroblastomsublinien UKF-NB-3rCDDP1000 I bis XII ist eine grundlegende Aufgabe, um den Phänotyp des multiresistenten/ Hochrisiko Neuroblastoms besser zu verstehen. Des Weiteren könnte diese Charakterisierung zu einem besseren Verständnis der Rolle von Krebsstammzellen beim Neuroblastom führen.
Methoden: Die Empfindlichkeit zu verschiedenen Zytostatika wurde im Viabilitätsassay untersucht. Die Expression mehrerer Stammzellmarker wurde durch Durchflusszytometrie überprüft. Im Western Blot wurde die Expression der Proteine p53, p21, XIAP und Survivin untersucht. Die Proliferation der verschiedenen Sublinien wurde durch den Kolonienbildungstest untersucht.
Ergebnise: In dieser Arbeit wurde nachgewiesen, dass die Cisplatin adaptierten Sublinien zusätzliche Resistenzen gegenüber weiteren klassischen Zytostatika zeigen. Abgesehen von der erworbenen Cisplatin-Resistenz zeigen die
Cisplatinsublinien erhöhte IC50-Werte für die Wirkstoffe YM-155, Doxorubicin, Melphalan, Vincristin, Docetaxel, Etoposid, Carboplatin und Vinblastin (jeweils im Vergleich zu UKF-NB-3). Von den getesteten klassischen Zytostatika hat nur Gemcitabin bei den Cisplatin adaptierten Sublinien eine gute Wirksamkeit. In dieser Arbeit konnte die Expression von mehreren Stammzellmarkern, sowohl bei den Cisplatin resistenten Sublinien als auch bei der parentalen Zelle UKFNB-3, nachgewiesen werden. Durch die Cisplatinadaptierung ergaben sich Unterschiede in der Expression von CD-133, Nanog, Nestin, Sox-2 und GD2. Im Kolonienbildungstest konnten keine großen Unterschiede festgestellt werden, die
Cisplatin-adaptierten Sublinien zeigen tendenziell eine geringere Kolonienbildung als UKF-NB-3.
Konklusion: Der Nachweis von unterschiedlichen Stammzellmarkern bei den Neuroblastomsublinien UKF-NB-3rCDDP1000 I bis XII ist ein wichtiger Hinweis für die Existenz von Zellen mit Stammzellfähigkeiten innerhalb der Sublinien.
Durch ein besseres Verständnis der biologischen Merkmale in resistenten Neuroblastomzellen könnten neuartige gezielte Therapiestrategien entdeckt werden. Viele der bei dieser Arbeit untersuchten Moleküle vermögen einen Effekt bei der Entstehung von Resistenzen und bei Aufrechterhaltung der Proliferation und Überleben von Neuroblastomzellen sowie Neuroblastomkrebsstammzellen zu haben. Folglich könnten diese Zielmoleküle (CD-133, Nanog, Nestin, Sox-2 und GD2) in der Zukunft benutzt werden, um neue therapeutische Strategien zu entwickeln, die sowohl die multiresistenten Neuroblastomzellen als auch die Neuroblastom-krebsstammzellen besser abtöten können. Zusätzlich ist Gemcitabin als Medikament nach Cisplatintherapie klinisch interessant.