Refine
Year of publication
Document Type
- Doctoral Thesis (15)
- Diploma Thesis (5)
- Bachelor Thesis (3)
- Master's Thesis (2)
Has Fulltext
- yes (25)
Is part of the Bibliography
- no (25)
Keywords
- Beschleunigung von Elektronen und Protonen (1)
- Betatronstrahlung (1)
- DLA Elektronen (1)
- Emittanz (1)
- FLASH Effekt (1)
- FRANZ-Projekt (1)
- Interferometrie (1)
- Ionenquelle (1)
- Pepperpot (1)
- Schaum (1)
Institute
- Physik (25)
This Dissertation deals with the development of FAIR-relevant X-ray diagnostics based on the interaction of lasers and particle beams with matter. The associated experimental methods are supposed to be employed in the HIHEX-experiments in the HHT-cave of the GSI Helmholtz Center for Heavy-Ion Research GmbH (GSI) in Phase-0 and in the APPA-cave at the Facility for Antiproton and Ion Research in Darmstadt, Germany.
Diagnostic of high aerial density targets that will be used in FAIR experiments demands intense and highly penetrating X-ray sources. Laser generated well-directe relativistic electron beams that interact with high Z materials is an excellent tool for generation of short-pulse high luminous sources of MeV-gammas.
In pilot experiments carried out at the PHELIX laser system, GSI Darmstadt, relativistic electrons were produced in a long scale plasma of near critical electron density (NCD) by the mechanism of the direct laser acceleration (DLA). Low density polymer foam layers preionised by a well-defined nanosecond laser pulse were used as NCD targets. The analysis of the measured electron spectra showed up to 10- fold increase of the electron "temperature" from T_Hot = 1–2 MeV, measured for the case of the interaction of 1–2 ×10^19 Wcm^(−2) ps-laser pulse with a planar foil, up to 14 MeV for the case when the relativistic laser pulse propagates through the by a ns-pulse preionised foam layer. In this case, up to 80–90 MeV electron energy was registered. An increase of the electron energy was accompanied by a strong increase of the number of relativistic electrons and well-defined directionality of the relativistic electron beam measured to be (12 ±1)° (FWHM). This directionality increases the gamma flux on target by far compared to the soft X-ray sources.
Additionally to laser based active diagnostics, passive techniques involving inherent X-ray fluorescence radiation of projectile and target emitted during heavy-ion target interaction can be used to measure the ion beam distribution on shot. This information is of great importance, since the target size is chosen to be smaller than the beam focus in order to ensure homogeneous heating of the HIHEX-target by the ion beam. High amounts of parasitic radiation and activation of experimental equipment is expected for experiments at the APPA-cave. For this reason, all electronic devices must be placed at a safe distance to the target chamber. In order to transport the signal over a large distance, the X-ray image of the target irradiated by heavy-ions has to be converted into an optical one.
For these purposes, the X-ray Conversion to Optical radiation and Transport (XCOT)-system was developed in the frame of a BMBF-project and commissioned in two beamtimes at the UNILAC, GSI during this work.
In experiments, we observed intense radiation of target atoms (K-shell transitions in Cu at 8–8.3 keV and L-shell transition in Ta) ionised in collisions with heavy ions as well as Doppler-shifted L-shell transitions of Au-projectiles passing through targets. This radiation can be used for monochromatic (dispersive elements like bent crystals) or polychromatic (pinhole) 2D X-ray mapping of the ion beam intensity distribution in the interaction region during the beam-target interaction. We measured the efficiency of the X-ray photon production depending on the target thickness and the number of ions passing through the target. The spatial resolution of the XCOT-system based on the multi-pinhole camera was measured to be (91±17) μm for the image magnification factor M = 2. It was considerably improved by application of a toroidally bent quartz crystal and reached 30 μm at M = 6. This resolution is optimal to image the distribution of a 1mm in diameter ion beam. As next step, the XCOT-system will be tested during the SIS18 beam-time at the HHT-experimental area.
In dieser Diplomarbeit wurden zwei vom Funktionsprinzip und Aufbau her vollständig unterschiedliche Plasmabeschleuniger aufgebaut und bezüglich ihrer Eigenschaften untersucht. Der erste Aufbau ist ein Lorentzdriftbeschleuniger (LDB) mit kapazitiv erzeugten Plasmen, bei dem das Funktionsprinzip auf der Wirkung der Lorentzkraft auf bewegte Ladungsträger im Magnetfeld beruht. Der zweite Teil des Experiments stellt einen induktiven Beschleuniger (IB) dar, dessen Erzeugung und Beschleunigung von Plasmen auf Grund von Induktionskräften geschieht.
Die optischen und elektrischen Messungen von beiden Beschleunigern wurden in einem speziell konstruierten Experimentieraufbau durchgeführt. Beim Lorentzdriftbeschleuniger wurde der Einfluss der Elektrodenlänge auf den Bewegungsablauf der Plasmaentladung untersucht. Später, bei der Durchführung der Messungen mit dem induktiven Beschleuniger wurde der LDB als Schalter eingesetzt. Dabei stellte sich heraus, dass die Erosion der Elektroden aus Messing, die die Lebensdauer des Lorentzdriftbeschleunigers begrenzt, von der Stromstärke abhängt.
Als Ergebnis stellte sich heraus, dass der LDB einen einfacheren Aufbau als der IB hatte, die Ausstoßgeschwindigkeit des Plasmas war im Vergleich zum IB höher und betrug im Durchschnitt etwa 50-60 [km/s] gegenüber ≈ 21,5±6,5 [km/s] beim IB. Dagegen wurde beim IB eine größere Plasmamasse von 27 [μg] erzeugt gegenüber 2,8 [μg] beim LDB. Somit erreichte der IB eine höhere Schubkraft von ≈ 66 [N] bei einem Impuls von 0,58±0,17 [mNs] pro Puls mit Pulslängen um 0,88 ×10 -5 [s] . Im Gegensatz dazu lag die Schubkraft des LDB`s bei etwa 27-32 [N] mit einem Impuls von 0,135-0,162 [mNs] pro Puls mit Pulslängen von 5-5,75 ×10 -6 [s].
Die vorliegende Arbeit beschäftigt sich mit optischen und elektrischen Untersuchungen an einer koaxial aufgebauten Lorentz-Drift-Geometrie. So wurden Messungen an der Lorentz-Drift-Sputterquelle bezüglich der Durchbruchspannung durchgeführt. Es hat sich gezeigt, dass das Verhalten der Durchbruchspannung in Abhängigkeit vom Druck trotz der koaxialen Elektrodengeometrie vergleichbar mit der Paschenkurve fur eine planparallele Anordnung ist.
Zur Untersuchung des Sputterverhaltens wurden zunächst einige Kurzzeitaufnahmen mit einer Belichtungszeit im Mikrosekundenbereich durchgefuhrt, um so die Ausbreitung der Plasmawolke zu betrachten. Bei einem Durchbruch führt der Stromfluss zu einem Magnetfeld, sodass ein Lorentz-Drift entsteht. Durch die resultierende Kraft wird das Plasma beschleunigt.
Es zeigt sich, dass sich die Plasmawolke mit zunehmender Zeit bzw. zunehmendem Abstand von den Elektroden homogener im Rezipient verteilt. Da durch die Ausbreitung der Plasmafront auch ausgelöstes Elektrodenmaterial zu einem entsprechend platzierten Substrat beschleunigt wird, lagert sich dort eine dünne Schicht an.
Die Ablagerungen am Substrat wurden bei verschiedenen Drucken und verschiedenen Abständen zu den Elektroden betrachtet. Erste Messungen zeigen, dass die Schichten mit größerem Abstand homogener werden und besser am Substrat haften bleiben, jedoch die Schichtdicke geringer wird. Bei geringem Abstand lagern sich vergleichsweise dicke Schichten an, die jedoch sehr inhomogen und instabil sind. Durch Optimierung sollte es aber möglich sein, einen gewünschten Kompromiss aus Schichtdicke, Stabilität und Homogenität zu finden.
Bei niedrigeren Drucken und somit hohen Durchbruchspannungen kommt es aufgrund der höheren Stromdichte zu stärkeren Lorentz-Drifts, sodass die Teilchenenergien im Plasma steigen und es zu dickeren Ablagerungen kommt.
Die Schlussfolgerung dieser Arbeit ist, dass die Beschichtung durch eine Lorentz-Drift-Geometrie prinzipiell möglich ist. Es konnten bisher qualitative Messungen durchgeführt werden, die jedoch noch quantitativ verifiziert werden sollten.
Quantum entanglement plays a basic role in quantum information science. The creation of entanglement between qubits is of fundamental importance for further computation processing like quantum computation, quantum cryptography, quantum teleportation, quantum computers… We present here a symmetric electron-electron scattering experiment to determine the experimental parameters which are necessary to produce a source of entangled electrons. In this Moeller scattering experiment the electrons differ from each other only by their spin direction. At these conditions a spin entanglement of the scattered electrons is expected. To demonstrate the spin entanglement, a single particle resolved spin measurement of the electrons has to be performed. A high ratio of measured coincidences compare to random could be demonstrated. It is shown, that this ratio is related to an experiment depended nearly constant efficiency for the coincidence detection. In order to proof the spin entanglement, the goal is to measure the final polarization state of the electrons at different scattering directions to observe a spin anti correlation between these spin states of the Moeller electrons. The usual method to determine the electron polarization is based on an asymmetric scattering experiment with a high Z target. This scattering may yield an asymmetry due to a different spin-orbit coupling of the electrons. The main problem of polarized electron studies at keV-particle energy is the low efficiency of usual spin polarimeters. This low efficiency impedes or prevents electron spin resolved coincidence measurements because of necessarily induced random coincidences. To enhance the efficiency of the spin detection, a new compact mini-Mott spin analyzer has been developed. Due to a compact small size of this analyzer, a higher efficiency is obtained now, which is a prerequisite to the electron spin resolved coincidence measurements. Till date, the asymmetry measurement have been performed where one Mott analyzer rotated by an angle around the axis. The reducing asymmetry is in agreement with a prediction of quantum mechanic; however, the large systematic errors of the measurement have been estimated. As a next step for investigation of spin entanglement it is planned to increase the overall efficiency of the experiment by having higher initial energy and minimize error of the measurement by applying new kind of detectors.
Am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, wird für die Erweiterung der Forschungsmöglichkeiten am Bau des FAIR Projektes gearbeitet. Hierfür wird unter anderem ein Ringbeschleuniger gebaut (SIS100), der mit 100Tm den bestehenden Ring (SIS18) in magnetischer Steifigkeit ergänzen wird. Um SIS100 an SIS18 anzubinden, wird eine Transferstrecke benötigt, welche den Transfer von Ionen zwischen den Ringen übernimmt. In solchen Transferstrecken werden Quadrupollinsen mit hohen Gradienten benötigt. Ebenso werden für die finale Fokussierung von hochintensiven Strahlpulsen aus Synchrotronen auf Targets Linsen mit hohen Feldgradienten benötigt. Allerdings sind die Pulse nur sehr kurz und das Tastverhältnis bei Synchrotronen sehr klein. Daher sollte ein gepulster Fokussiermagnet entwickelt werden, der den hohen Gradientenanforderungen gerecht wird und sowohl platz- als auch energiesparend ist. Die vorliegende Arbeit befasst sich mit der Auslegung des elektrischen Schaltkreises, der Simulation des Magnetfeldes und der konstruktiven Umsetzung eines solchen gepulsten Quadrupols. Der elektrische Schaltkreis ist so ausgelegt, dass eine hohe Repetitionsrate zur Fokussierung für Teilchenpakete möglich ist. Die Linse wurde aus einer Luftspule ohne Eisenjoch aufgebaut. Die cos(2θ)-Verteilung des Stroms durch die Leiter wurde durch ein Design gesichert, welches den Skin-Effekt berücksichtigt und entsprechend ausgelegte Litzenkabel verwendet. Um die Magnetfeldverteilung des Fokussiermagneten zu untersuchen, wurden statische und transiente Simulationen mit dem Programm CST Mircowave Studio Suite vorgenommen. Zentraler Punkt bei der Neuentwicklung waren die Luftspulen. Um einen linearen Magnetfeldanstieg von der Strahlachse zum Aperturrand zu gewährleisten, muss die Stromverteilung in der Leiterspule so homogen wie möglich sein. Um bei Pulslängen von 170 µsec den Skineffekt zu berücksichtigen, wurde die Leiterspule aus HF-Litzen von je mehreren hundert Einzelleitern zusammengestellt, die jeweils gegeneinander isoliert und in Bündeln miteinander verdrillt sind. Außerdem wurde die Linse mit einer lamellierten Schirmung versehen, um das Magnetfeld effektiv nutzen zu können. Ziel der Auslegung war es, zusammen mit einem zweiten Quadrupol im Duplett einen Strahl mit einer magnetischen Steifigkeit von 11 Tm und einer Bunchlänge von 2µsec auf einen Punkt von 0,5 mm Radius zu fokussieren. Bei dem hierfür angestrebten Gradienten von 76 T/m wird eine maximale Stromamplitude von 400 kA benötigt. Im Rahmen dieser Arbeit wurde die Linse ausgelegt, konstruiert und gebaut. Die Funktionalität wurde untersucht und die Feldqualität wurde vermessen und zeigten die erwarteten Parameter. Bei 26 kA Messstrom wurden im Zentrum des Magneten ein maximaler Gradient von 4,5 T/m und Feldwerte von 0,11 T ermittelt. Somit liegt die Abweichung des gemessenen Gradienten bei ca. 5 %. Die durchgängige Umsetzung der homogenen Verteilung der Leiterbündel in der Luftspule und eine vollständige Kompensation des Skineffekts konnten nicht nachgewiesen werden. Jedoch konnte der Einfluss der Kabelzuleitung des Quadrupols auf den Magnetfeldverlauf in den Simulationen und Messungen nachgewiesen werden. Weiterhin wurde für den energieeffizienten Einsatz im Transferkanal zwischen SIS18 und SIS100 ein Energierückgewinnungsschaltkreis entwickelt, der eine Ersparnis von 84 % der Betriebsleistung ermöglicht.
Die vorliegende Arbeit präsentiert den Aufbau und die Diagnostik eines Niederdruck-HF-Plasmas. Durchgeführt wurden die Messungen in einem Gasgemisch aus Ar/He (50%=50%). Sie dienten dazu, nähere Einblicke in die Plasmaparameter eines HF-Plasmas zu erhalten. Einen Schwerpunkt der vorliegenden Arbeit bildete dabei die Auswirkung unterschiedlicher Antennengeometrien auf die Entladungseigenschaften. Hierfür wurden die Plasmaparameter Elektronentemperatur Te, Elektronendichte ne und HF-Leistung in Abhängigkeit des Gasdruckes bei einer Vorwärtsleistung des HF-Generators von 1kW untersucht. Um eine sinnvolle Diagnostik zu gewährleisten, war es zunächst erforderlich eine induktive HF-Einspeisung zu konzipieren und eine Impedanzanpassung an dem vorhandenen 13,56MHz Generator vorzunehmen. Die Einspeisung der HF-Leistung geschieht über eine Spule, nach dem Transformatorprinzip. Der Aufbau bietet die Möglichkeit einer modularen Gestaltung der verwendeten Antennengeometrie. Hierdurch ist es möglich, sowohl die Länge, die Windungsbreite als auch die Windungsanzahl schnell zu ändern, um experimentell ein Optimum der Plasmaparameter bezüglich der Plasmaanregung zu erreichen.
Für die Bestimmung der Plasmaparameter wurde vorwiegend eine nicht invasive Diagnostiktechnik, die Emissionsspektroskopie, eingesetzt. Sie bietet den Vorteil, ein Plasma unberührt zu lassen und dessen Eigenschaften nicht zu verfälschen. Zusätzlich wurde mit einer Langmuirsonde die Elektronendichte gemessen. Die eingespeiste HF-Leistung wurde mit einem im HF-Generator befindlichen Reflektometer überwacht und dokumentiert. Durch systematisch durchgeführte Messungen konnte die Elektronentemperatur in Abhängigkeit des Gasdruckes für unterschiedliche Spulengeometrien mit Hilfe der Spektroskopie bestimmt werden. Es ergaben sich typische Elektronentemperaturen einer induktiven Entladung zwischen 1 eV und 5 eV. Die Ursache einer höheren Elektronentemperatur bei niedrigen Gasdrücken, unterhalb von 1 Pa, kann durch die stochastische Heizung sowie resonante Heizmechanismen erklärt werden.
Die mit der Langmuirsonde bestimmte Elektronendichte belief sich auf 4 x 10 exp 15 m exp -3 bei niedrigen Gasdrücken und einem Maximum von 4 x 10 exp 17 m exp -3 bei einem Gasdruck von 3 Pa. Elektronendichten dieser Größenordnung sind typisch für induktive Entladungsplasmen, die ein Maximum von 1019 m exp -3 [Lie05] erreichen können.
Die eingespeiste HF-Leistung zeigte dabei eine starke Abhängigkeit von der Antennengeometrie. Durch die Optimierung der Spulenkonfiguration ergab sich eine maximale eingespeisten HF-Leistung von 0,8kW.
Ein Vergleich von HF-Leistung und Elektronendichte bestätigte die theoretische Modellvorstellung, die einen linearen Zusammenhang zwischen diesen beiden Größen postuliert. Somit konnten wichtige Eigenschaften bezüglich einer HF-Entladung sowie Einflüsse der Antennengeometrie auf die Entladungseigenschaften untersucht und umfangreich diskutiert werden.
In der vorliegenden Arbeit wurden Messungen zur Plasmadynamik eines Lorentz-Drift- Beschleunigers (LDB) durchgeführt. Dieser basiert auf einer koaxialen Elektrodengeometrie. Bei einem Überschlag führt der entstehende Stromfluss zu einemMagnetfeld, sodass die gebildeten Ladungsträger durch die resultierende Lorentzkraft beschleunigt werden. Es hat sich gezeigt, dass die Abhängigkeit von Durchbruchspannung und Druck dem charakteristischen Verlauf einer Paschenkurve folgt.
Die Strom-Spannungs-Charakteristik des Versuchsaufbaus wurde in Konfigurationen mit und ohne Funkenstrecke untersucht. Mit Hilfe von diesem als Schalter fungierenden Spark-Gaps konnte bei Durchbruchspannungen gemessen werden, die oberhalb des Selbstdurchbruchs liegen.
Es zeigte sich, dass die im Versuchaufbau verwendete Funkenstrecke keinen wesentlichen Einfluss auf die Entladung hat. Es kommt an der Funkenstrecke lediglich zu einem Spannungsabfall im Bereich einiger hundert Volt, der den Verlauf derEntladung im LDB allerdings nicht beeinflusst.
Der Lorentz-Drift-Beschleuniger könnte in Zukunft zur Erzeugung eines Druckgradienten verwendet werden, indem Teilchen von einem Rezipienten in einen Zweiten beschleunigt werden. Als Voruntersuchung zur Eingnung dieses als Lorentz-Drift-Ventil bezeichneten Konzeptes wurden Messungen durchgeführt, die den Einfluss der Durchbruchspannung auf die Teilchenbeschleunigung mit Hilfe eines piezokeramischen Elementes untersuchen. So wurde der magnetische Druck bzw. die entsprechende Kraft einer Entladungswolke in Abhängigkeit von Durchbruchspannungen bis etwa 9,5 kV untersucht. Es hat sich gezeigt, dass der Einsatz von hohen Spannungen sinnvoll ist, da sich die auf das Piezoelement einwirkende Kraft quadratisch zur Durchbruchspannung verhält. So wurde die maximale Kraft von 0,44N bei einer Zündspannung von 9,52 kV gemessen.
Zudem wurde untersucht, in welchem Druckbereich der Einfluss der Druckwelle zu messen und wie sich die Geschwindigkeit der Ausbreitung der Druckwelle bei verschiedenen Durchbruchspannungen verhält. Bei einer Entfernung von 231mm zwischen Elektrodengeometrie und Piezoelement hat sich gezeigt, dass im Druckbereich unterhalb von etwa 0,2mbar kein wesentlicher Einfluss des Gasdruckes auf die Piezospannung erkennbar ist. Dies lässt sich durch die geringe Teilchenanzahl im Arbeitsgas begründen, sodass Teilchenstöße vernachlässigt werden können. Die maximale gemessene Geschwindigkeit der durch die Entladung verursachten Druckwelle liegt bei 55 km s ± 10%.
Die gemessene Plasmadynamik lässt darauf schließen, dass das Konzept eines gepulsten Lorentz-Drift-Ventils insbesondere mit hohen Durchbruchspannungen realisierbar ist. Zur Erzeugung eines dauerhaften Druckgradienten müsste die Repetitionsrate allerdings ausreichend hoch sein, sodass der rückfließende Gasdurchsatz geringer ist als die durch den LDB erzeugte Drift. Geht man von der Schallgeschwindigkeit als Rückflussgeschwindigkeit der Teilchen aus, so sind mindestens Repetitionszeiten im Bereich einer Millisekunde erforderlich.
Ergänzend zu den durchgeführten Untersuchungen ist es sinnvoll, die bisherigen Messungen durch Einbau eines Triggers zu verifizieren. Ein Trigger erzeugt eine Vorentladung mit deren Hilfe die eigentliche Entladung auch im Bereich unterhalb des Selbstdurchbruchs gezündet werden kann.