• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Manegold, Thomas (3)
  • Wiechula, Jörg (2)
  • Adonin, Aleksey (1)
  • Alzubaidi, Suha (1)
  • Berezov, Rustam (1)
  • Bohlender, Bernhard (1)
  • Bohlender, Bernhard Friedrich (1)
  • Christ, Philipp (1)
  • Fedjuschenko, Andreas (1)
  • Hock, Christian (1)
+ more

Year of publication

  • 2011 (3)
  • 2015 (3)
  • 2007 (2)
  • 2009 (2)
  • 2013 (2)
  • 2016 (2)
  • 2017 (2)
  • 2019 (2)
  • 2008 (1)
  • 2010 (1)
+ more

Document Type

  • Doctoral Thesis (13)
  • diplomthesis (5)
  • Bachelor Thesis (3)
  • Master's Thesis (2)

Language

  • German (16)
  • English (7)

Has Fulltext

  • yes (23)

Is part of the Bibliography

  • no (23)

Keywords

  • Emittanz (1)
  • FRANZ-Projekt (1)
  • Interferometrie (1)
  • Ionenquelle (1)
  • Pepperpot (1)
  • Schlitz-Gitter (1)
  • Theta-Pinch (1)

Institute

  • Physik (23)

23 search hits

  • 1 to 10
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Erzeugung und Diagnostik eines HF-Plasmas in einem statischen magnetischen Quadrupolfeld (2007)
Teske, Christian
Die vorliegende Arbeit präsentiert die Ergebnisse der Erzeugung und Diagnostik eines HF-Plasmas in einem magnetischen Quadrupolfeld. Einen Schwerpunkt bildete dabei der Einfluss des magnetischen Quadrupolfeldes auf die Plasmaparameter Elektronentemperatur Te und Elektronendichte ne. Die Extraktion eines Ionenstrahls bietet die Möglichkeit, Zusammenhänge zwischen den erreichten Strahlparametern und den physikalischen Eigenschaften des HF-Plasmas herzustellen. Zudem wird eine Korrelation zwischen der Geometrie der Entladung, der erreichbaren Plasmaparameter und der eingespeisten HF-Leistung aufgezeigt werden. Zunächst wurde die Elektronentemperatur in Abhängigkeit vom eingestellten Gasdruck und von der Stromstärke in den Feldspulen des magnetischen Quadrupols vermessen. Die Emissionsspektroskopie bot sich hierbei als nicht invasive Diagnostik an. Eine umfangreiche Messreihe ergab schließlich ein Profil der Elektronentemperatur, als Funktion der variablen Parameter Gasdruck und Erregerstromstärke. Die Elektronentemperatur im Plasma lag dabei im Bereich zwischen 3eV ohne Magnetfeld bis maximal 11eV mit magnetischem Einschluss. Hierbei zeigten sich einige, auf den ersten Blick überraschende Ergebnisse. So ergab sich ein lokales Maximum der Elektronentemperatur von 11eV bei einem Gasdruck von 1Pa und einer Flussdichte von 11mT. Als physikalische Ursache konnte die Kombination aus zwei resonanten Heizmechanismen identifiziert werden. Sowohl die stochastische Heizung als auch die lokale Anwesenheit von Zyklotronresonanzbedingungen führten zu einer starken Erhöhung der Elektronentemperatur. Ferner konnte experimentell nachgewiesen werden, dass die charakteristischen Eigenschaften des Quadrupolfeldes, das Entstehen dieser Heizmechanismen in einem engen Parameterbereich begünstigte. In diesem Zusammenhang ist die Ausprägung einer Gyroresonanzzone im HF-Plasma erwähnenswert, deren Ausdehnung mit dem Erregerstrom in den Feldspulen des Quadrupols skaliert und die einen maßgeblichen Einfluss auf die Ausprägung hochenergetischer Elektronen hat. Neben der Diagnostik stand auch die Extraktion eines Ionenstrahls im Vordergrund. Das Potential des Gesamtsystems, als Ionenquelle zu fungieren wurde dabei experimentell verifiziert. Spezifische Strahlstromdichten von 8mA/cm²kW konnten dabei erreicht werden. Es ergab sich hierdurch auch die Möglichkeit, einen Zusammenhang zwischen der Elektronendichte im Plasma und der eingespeisten HF-Leistung herzustellen. Die Ergebnisse dienten anschließen dazu, den Einschluss des Plasmas im magnetischen Quadrupolfeld zu quantifizieren. Beim Betrieb des Plasmagenerators ohne Magnetfeld wurden Elektronendichten von 3 . 1016m-3 erzielt. Mit fokussierendem Quadrupolfeld konnte eine lokale Steigerung der Elektronendichte um den Faktor 10 auf 3 . 1017m-3 dokumentiert werden, was die theoretischen Studien von C. Christiansen und J. Jacoby [Chr99], zu den fokussierenden Eigenschaften eines magnetischen Quadrupols, bestätigte. Große Sorgfalt war bei der Konzeption der HF-Einspeisung erforderlich. Da für Entladungsplasmen ein im hohen Maß nichtlinearer Zusammenhang, zwischen den Plasmaparametern und der eingespeisten HF-Leistung besteht, erwies sich die Entwicklung einer HF-Einkopplung als besondere Herausforderung. Hier zeigte sich die Plasmadiagnostik als unverzichtbares Hilfsmittel, um theoretische Vorhersagen und experimentellen Befund in Einklang zu bringen. Als limitierende Rahmenbedingungen erwiesen sich hier die Abmessungen des Quadrupols. In der vorliegenden Arbeit konnte dokumentiert werden, wie die geometrischen Einschränkungen die Auswahl der HF-Einkopplung bestimmten. Das zur Untersuchung des magnetischen Plasmaeinschlusses verwendete Glasrohr, mit einer verhältnismäßig großen Oberfläche und einem vergleichsweise kleinem Volumen, war für eine kapazitive HF-Einkopplung wesentlich besser geeignet als für die ursprünglich antizipierte induktive Plasmaanregung. Die physikalischen Zusammenhänge zwischen den erreichbaren Plasmaparametern, der verwendeten Koppelmethode, der erzielbaren Stromstärke des Ionenstrahls und den Abmessungen des Entladungsgefäßes, konnten durch eine umfassende Analyse aufgeklärt werden. Zudem wurde auch die Problematik des Zerstäubens von Elektrodenmaterial einer qualitativen Untersuchung unterzogen. Hier kristallisierten sich vor allen Dingen die hohen Randschichtpotentiale bei der verwendeten HF-Einkopplung, als physikalische Ursache für die Sputterrate heraus. Basieren auf den gewonnenen Erkenntnissen wurde eine Maßnahme zur Reduzierung der Sputterproblematik vorgenommen. Die Untersuchung des magnetisch eingeschlossenen Entladungsplasmas brachte Einsichten über die Zusammenhänge zwischen gewählter HF-Einkopplung, den Plasmaparametern und den Rahmenbedingungen der Entladungsgeometrie. Es ergeben sich hierdurch wichtige Erkenntnisse, die eine Aufskalierung des vorliegenden Aufbaus hin zu einer Hochstromionenquelle mit spezifischen Strahlstromdichten von 100mA/cm²kW ermöglichen. Ferner ist auch ein Einsatz der Konfiguration als Plasmatarget möglich, um Wechselwirkungen zwischen hochenergetischen Schwerionen und magnetisch fokussierten Entladungsplasmen zu untersuchen.
Heavy ion beam pumped KrF* excimer laser (2007)
Adonin, Aleksey
The high energy loss of heavy ions in matter as well as the small angular scattering makes heavy ion beams an excellent tool to produce almost cylindrical and homogeneously excited volumes in matter. This aspect can be used to pump short wavelength lasers. In an experiment performed at the GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Germany) ion accelerator facility in December 2005 the well-known KrF* excimer laser was pumped with an intense high energy uranium beam. Pulses of an uranium beam with initial particle energy of 250 MeV per nucleon, provided by heavy-ion-synchrotron SIS-18, were delivered to the HHT-target station and then stopped inside a gas laser cell. The maximum beam intensity reached in the experiment was 2,5·109 particles per pulse, which resulted in 34 J/g specific energy deposited in the laser gas. By applying electron cooling and a bunch compression technique at SIS-18, the beam pulses were compressed down to 110 ns (FWHM). A mixture of an excimer laser premix gas (95,5% Kr + 0,5% F2) and a buffer gas (Ar 4.8) was used as the laser gas in proportions of 35/65 and 60/40, respectively. The gas pressure inside the laser cell was varied in the range of 1,2÷2 bar in continues flow mode. The experimental setup consisted of a 1 m long stainless steel tube with a number of diagnostic viewports and two mirror adjustment units. The optical cavity was formed by a flat, Alcoated mirror at the beam entrance and a second dielectrically coated, highly reflective mirror with 3 m radius of curvature at a distance of 1,3 m. A beam of heavy ions has been used to pump a short wavelength gas laser for the first time. Laser effect on the KrF* laser transition (λ = 248 nm) has been successfully demonstrated. Laser threshold for this specific setup was reached with a beam intensity of 1,2·109 particles per pulse. Laser action has been clearly proofed by the following methods: appearance of the laser line, spectral narrowing of the laser line, temporal narrowing of the laser signal, non-linear response of the laser output intensity on the pumping power, and cavity disalignment effect. An energy of the laser pulse of about 2 mJ was measured for an ion beam intensity of 2·109 particles per pulse. The time delay of the onset of the laser emission with respect to the pumping pulse was measured as a function of ion beam intensity. The dependence of spontaneous emission spectra on the gas pressure in a range of 1,3÷2 bar was observed and the optimal gas pressure for laser experiments in the sense of laser efficiency was concluded. As a next step in studying short wavelength lasers pumped with heavy ion beams it is planned to reduce the laser wavelength down to the VUV region of the spectrum, and to proceed to the excimer lasers of the pure rare gases: Xe2 * (λ = 172 nm), Kr2 * (λ = 146 nm), Ar2 * (λ = 126 nm), Ne2 * (λ = 83 nm) and He2 * (λ = 80 nm). We believe that the use of heavy ion beams as a pumping source may lead to new pumping schemes on the higher lying level transitions and considerably shorter wavelengths (XUV and X-ray spectral region), which rely on the high cross sections for multiple ionization of the target species.
Investigation to observe spin entanglement from elastic scattering of electrons (2009)
Berezov, Rustam
Quantum entanglement plays a basic role in quantum information science. The creation of entanglement between qubits is of fundamental importance for further computation processing like quantum computation, quantum cryptography, quantum teleportation, quantum computers… We present here a symmetric electron-electron scattering experiment to determine the experimental parameters which are necessary to produce a source of entangled electrons. In this Moeller scattering experiment the electrons differ from each other only by their spin direction. At these conditions a spin entanglement of the scattered electrons is expected. To demonstrate the spin entanglement, a single particle resolved spin measurement of the electrons has to be performed. A high ratio of measured coincidences compare to random could be demonstrated. It is shown, that this ratio is related to an experiment depended nearly constant efficiency for the coincidence detection. In order to proof the spin entanglement, the goal is to measure the final polarization state of the electrons at different scattering directions to observe a spin anti correlation between these spin states of the Moeller electrons. The usual method to determine the electron polarization is based on an asymmetric scattering experiment with a high Z target. This scattering may yield an asymmetry due to a different spin-orbit coupling of the electrons. The main problem of polarized electron studies at keV-particle energy is the low efficiency of usual spin polarimeters. This low efficiency impedes or prevents electron spin resolved coincidence measurements because of necessarily induced random coincidences. To enhance the efficiency of the spin detection, a new compact mini-Mott spin analyzer has been developed. Due to a compact small size of this analyzer, a higher efficiency is obtained now, which is a prerequisite to the electron spin resolved coincidence measurements. Till date, the asymmetry measurement have been performed where one Mott analyzer rotated by an angle around the axis. The reducing asymmetry is in agreement with a prediction of quantum mechanic; however, the large systematic errors of the measurement have been estimated. As a next step for investigation of spin entanglement it is planned to increase the overall efficiency of the experiment by having higher initial energy and minimize error of the measurement by applying new kind of detectors.
Charakterisierung einer Dielektrischen Barriere Entladung in Argon anhand des Ladungstransportmodells (2011)
Hock, Christian
Mit der hier vorliegenden Arbeit ist das Entladungsverhalten einer Dielektrischen Barriere Entladung anhand der elektrischen Parameter untersucht worden. Dazu wurde ein planparallele Elektrodenkonfiguration entwickelt und aufgebaut, die mit einer Sinus-Spannungs von maximal 5000 Vss und einer Frequenz von 5 kHz-20 kHz angesteuert wurde. Als Arbeitsgas wurde Argon im Druckbereich von 100 mbar - 1000 mbar verwendet. Auf diese Weise konnte ein Plasma erzeugt werden, in das bei einer maximalen Transfereffiienz von 96%, eine mittlere Leistung von bis zu 845 mW eingekoppelt werden konnte. Da die Dielektrische Barriere Entladung auf Grund der Abschirmung der Elektroden vom Gasraum einige Besonderheiten gegenüber eines klassischen kapazitiv eingekoppelten Plasmas aufweist, können keine Rückschlüsse mittels einer einfachen Strom-Spannungsmessung auf die Vorgänge im Plasma gemacht werden. Um trotzdem Einblick in die Entladung zu erhalten, wurde das von [Tra08] vorgeschlagene Ladungstransportmodel für die Analyse herangezogen und an den hier vorliegenden experimentellen Aufbau angepasst. So konnte unter anderem der Ein uss der auf den Dielektrika befindlichen Restladungsträger auf die Ausbildung der Entladung untersucht werden. Des Weiteren ist aus den gewonnen Größen die Elektronendichte des Plasmas bestimmt worden. Diese liegt bei der hier untersuchten dielektrischen Glimmentladung, je nach Gasdruck und Frequenz, im Bereich zwischen 5 X 10exp9 - 2 X 10exp10 1/cm3 . Auch konnten in diesem Zusammenhang qualitative Aussagen über die Entwicklung der Elektronentemperatur gemacht werden. Zusammen mit Kurzzeitaufnahmen, die den Verlauf der Entladung dokumentieren und den in [Sch11] gemachten Untersuchungen zur Excimerstrahlung konnte so ein umfassendes Bild der Vorgänge im Plasma erstellt und Kriterien erarbeitet werden, die den für eine Dielektrische Barriere Entladung typischen Ubergang zwischen einer Glimmentladung zu einer filamentierten Entladung erklären können.
Entwicklung und Aufbau eines neuen Mott-Polarimeters mit austauschbaren Targets zum Nachweis von Elektronen mit verbesserter Zeitauflösung (2011)
Lieberwirth, Alice
Im Rahmen dieser Diplomarbeit haben Arbeiten am Elektronen-Streuexperiment von Prof. J. Jacoby und Dr. R. Berezov an der Goethe-Universität Frankfurt stattgefunden. Am Experiment wurden durch Møller-Streuung verschränkte Elektronen auf ihre Spin-Abhängigkeit untersucht. Die Untersuchung erfolgte als Koinzidenzmessung, dessen Genauigkeit von der zeitlichen Auflösung der Detektoren abhängt. Als Koinzidenzlogik diente ein von Julian Schunk entwickeltes Datenerfassungsprogramm, das auf einem Oszilloskop installiert wurde...
Optische und elektrische Untersuchungen an einer Lorentz-Drift-Sputterquelle (2011)
Manegold, Thomas
Die vorliegende Arbeit beschäftigt sich mit optischen und elektrischen Untersuchungen an einer koaxial aufgebauten Lorentz-Drift-Geometrie. So wurden Messungen an der Lorentz-Drift-Sputterquelle bezüglich der Durchbruchspannung durchgeführt. Es hat sich gezeigt, dass das Verhalten der Durchbruchspannung in Abhängigkeit vom Druck trotz der koaxialen Elektrodengeometrie vergleichbar mit der Paschenkurve fur eine planparallele Anordnung ist. Zur Untersuchung des Sputterverhaltens wurden zunächst einige Kurzzeitaufnahmen mit einer Belichtungszeit im Mikrosekundenbereich durchgefuhrt, um so die Ausbreitung der Plasmawolke zu betrachten. Bei einem Durchbruch führt der Stromfluss zu einem Magnetfeld, sodass ein Lorentz-Drift entsteht. Durch die resultierende Kraft wird das Plasma beschleunigt. Es zeigt sich, dass sich die Plasmawolke mit zunehmender Zeit bzw. zunehmendem Abstand von den Elektroden homogener im Rezipient verteilt. Da durch die Ausbreitung der Plasmafront auch ausgelöstes Elektrodenmaterial zu einem entsprechend platzierten Substrat beschleunigt wird, lagert sich dort eine dünne Schicht an. Die Ablagerungen am Substrat wurden bei verschiedenen Drucken und verschiedenen Abständen zu den Elektroden betrachtet. Erste Messungen zeigen, dass die Schichten mit größerem Abstand homogener werden und besser am Substrat haften bleiben, jedoch die Schichtdicke geringer wird. Bei geringem Abstand lagern sich vergleichsweise dicke Schichten an, die jedoch sehr inhomogen und instabil sind. Durch Optimierung sollte es aber möglich sein, einen gewünschten Kompromiss aus Schichtdicke, Stabilität und Homogenität zu finden. Bei niedrigeren Drucken und somit hohen Durchbruchspannungen kommt es aufgrund der höheren Stromdichte zu stärkeren Lorentz-Drifts, sodass die Teilchenenergien im Plasma steigen und es zu dickeren Ablagerungen kommt. Die Schlussfolgerung dieser Arbeit ist, dass die Beschichtung durch eine Lorentz-Drift-Geometrie prinzipiell möglich ist. Es konnten bisher qualitative Messungen durchgeführt werden, die jedoch noch quantitativ verifiziert werden sollten.
Aufbau von koaxialen Plasmabeschleunigern zur Untersuchung von kollidierenden Plasmen (2015)
Wiechula, Jörg
Ziel der vorliegenden Arbeit ist der Aufbau von koaxialen Plasmabeschleunigern und deren Verwendung für die Untersuchung der Eigenschaften von kollidierenden Plasmen. Zukünftig sollen diese kollidierenden Plasmen als intensive Strahlungsquelle im Bereich der ultravioletten (UV-) und vakuumultravioletten (VUV-)Strahlung sowie in der Grundlagenforschung als Target zur Ionenstrahl-Plasma-Wechselwirkung Verwendung finden. Für diese Anwendungen steht dabei eine Betrachtung der physikalischen Grundlagen im Vordergrund. So sind neben der Kenntnis der Plasmadynamik auch Aussagen bezüglich der Elektronendichte, der Elektronentemperatur und der Strahlungsintensität von Bedeutung. Im Einzelnen konnte gezeigt werden, dass es möglich ist, durch eine Plasmakollision die Elektronendichte des Plasmas im Vergleich zu der eines einzelnen Plasmas deutlich zu erhöhen - im Maximalfall um den Faktor vier. Gleichzeitig stieg durch die Plasmakollision die Lichtintensität im Wellenlängenbereich der UV- und VUV-Strahlung um den Faktor drei an...
Experimentelle Untersuchungen an kapazitiven und induktiven Plasmabeschleunigern (2009)
Fedjuschenko, Andreas
In dieser Diplomarbeit wurden zwei vom Funktionsprinzip und Aufbau her vollständig unterschiedliche Plasmabeschleuniger aufgebaut und bezüglich ihrer Eigenschaften untersucht. Der erste Aufbau ist ein Lorentzdriftbeschleuniger (LDB) mit kapazitiv erzeugten Plasmen, bei dem das Funktionsprinzip auf der Wirkung der Lorentzkraft auf bewegte Ladungsträger im Magnetfeld beruht. Der zweite Teil des Experiments stellt einen induktiven Beschleuniger (IB) dar, dessen Erzeugung und Beschleunigung von Plasmen auf Grund von Induktionskräften geschieht. Die optischen und elektrischen Messungen von beiden Beschleunigern wurden in einem speziell konstruierten Experimentieraufbau durchgeführt. Beim Lorentzdriftbeschleuniger wurde der Einfluss der Elektrodenlänge auf den Bewegungsablauf der Plasmaentladung untersucht. Später, bei der Durchführung der Messungen mit dem induktiven Beschleuniger wurde der LDB als Schalter eingesetzt. Dabei stellte sich heraus, dass die Erosion der Elektroden aus Messing, die die Lebensdauer des Lorentzdriftbeschleunigers begrenzt, von der Stromstärke abhängt. Als Ergebnis stellte sich heraus, dass der LDB einen einfacheren Aufbau als der IB hatte, die Ausstoßgeschwindigkeit des Plasmas war im Vergleich zum IB höher und betrug im Durchschnitt etwa 50-60 [km/s] gegenüber ≈ 21,5±6,5 [km/s] beim IB. Dagegen wurde beim IB eine größere Plasmamasse von 27 [μg] erzeugt gegenüber 2,8 [μg] beim LDB. Somit erreichte der IB eine höhere Schubkraft von ≈ 66 [N] bei einem Impuls von 0,58±0,17 [mNs] pro Puls mit Pulslängen um 0,88 ×10 -5 [s] . Im Gegensatz dazu lag die Schubkraft des LDB`s bei etwa 27-32 [N] mit einem Impuls von 0,135-0,162 [mNs] pro Puls mit Pulslängen von 5-5,75 ×10 -6 [s].
Zeitaufgelöste Bestimmung der integrierten Elektronen- und Neutralgasdichte in einem Wasserstoff-Theta-Pinch-Plasma mittels Zweifarben-Interferometrie (2022)
Christ, Philipp
Im Zentrum dieser Arbeit steht die Diagnostik eines Wasserstoff-Theta-Pinch-Plasmas hinsichtlich der integrierten Elektronen- und Neutralgasdichte mittels Zweifarben Interferometrie. Die integrierte Elektronen- und Neutralgasdichte sind essenzielle Größen, aus welchen sich die Ratenkoeffizienten der Ionisation und Rekombination bei einer Plasma-Ionenstrahl-Wechselwirkung bestimmen lassen. Ein Theta-Pinch-Plasma ist ein induktiv gezündetes Plasma, wobei das zur Zündung notwendige elektrische Feld durch ein magnetisches Wechselfeld generiert wird. Das induzierte, azimutale elektrische Feld beschleunigt freie Elektronen im Arbeitsgas, welches durch Stoßionisation in den Plasmazustand gebracht wird. Der azimutale Plasmastrom erzeugt einen radialen magnetischen Druckgradienten, der das Plasma komprimiert. Da in axialer Richtung keine Kompressionskraft wirkt, weicht das Plasma einer weiteren Kompression aus, wodurch es zu einer axialen Expansion des Plasmas kommt. Die Expansion erzeugt eine Ionisationswelle im kalten Restgas und es wird eine lange, hoch ionisierte Plasmasäule gebildet. Dieser hochdynamische Prozess ist mit einem Mach-Zehnder-Interferometer bei der Verwendung von zwei verschiedenen Versionen des Theta-Pinchs zeitaufgelöst untersucht worden. Der Unterschied dieser Versionen liegt in der Geometrie und Induktivität der Spulen, wobei zum einen eine zylindrische und zum anderen eine sphärische Spule eingesetzt worden ist. Das grundlegende Messprinzip beruht darauf, dass das Plasma einen Brechungsindex besitzt, welcher von den Dichten der im Plasma enthaltenen Teilchenspezies abhängt. In einem Wasserstoffplasmas sind dies der Beitrag der freien Elektronen und der des Neutralgases, wodurch ein Zweifarben-Interferometer eingesetzt wird. Um eine von den Laserintensitäten unabhängige Messung zu ermöglichen, wird das heterodyne Verfahren benutzt, bei dem die Referenzstrahlen beider Wellenlängen jeweils mit einem akusto-optischen Modulator frequenzverschoben werden. Durch einen Vergleich mit einem stationären Referenzsignal mittels eines I/Q-Demodulators wird die interferometrische Phasenverschiebung aus dem Messsignal extrahiert. Mit diesem diagnostischen Verfahren ist die integrierte Elektronen- und Neutralgasdichte des Theta-Pinch-Plasmas bei Variation des Arbeitsdrucks und der Ladespannung der Kondensatorbank untersucht worden. Mit der zylindrischen Experimentversion ist eine optimale Kombination aus integrierter Elektronendichte und effektivem Ionisationsgrad η von (1,45 ± 0,04) · 1018 cm−2 bei η = (0,826 ± 0,022) bei einem Arbeitsdruck von 20 Pa und einer Ladespannung von 16 kV ermittelt worden. Dagegen beträgt die optimale Kombination bei einem Arbeitsdruck von 20 Pa und einer Ladespannung von 18 kV bei Verwendung der sphärischen Experimentversion lediglich (1,23 ± 0,03) · 1018 cm−2 bei η = (0,699 ± 0,019). Des Weiteren ist bei beiden Experimentversionen nachgewiesen worden, dass die integrierte Elektronendichte dem oszillierenden Strom folgend periodische lokale Maxima zeigt, welche zeitlich mit signifikanten Einbrüchen in der integrierten Neutralgasdichte zusammenfallen. Diese Einbrüche werden durch die axiale Expansion des Plasmas und der damit verbundenen Ionisationswelle im Restgas erzeugt. Neben diesem zentralen Teil dieser Arbeit ist eine lasergestützte polarimetrische Diagnostik durchgeführt worden, mit der die longitudinale Komponente der magnetischen Flussdichte der Theta-Pinch-Spulen zeit- und ortsaufgelöst bestimmt worden ist. Als Messprinzip ist der Faraday-Effekt eines magneto-optischen TGGKristalls verwendet worden. Vor der polarimetrischen Diagnostik ist der TGG-Kristall bezüglich seiner Verdet- Konstante kalibriert worden, wobei ein Wert von V = (−149,7 ± 6,4) rad/Tm gemessen worden ist. Die ortsaufgelöste polarimetrische Diagnostik ist durch einen Seilzug ermöglicht worden, mit dem der TGG-Kristall auf einem Schlitten an unterschiedliche Positionen entlang der Spulenachse gefahren werden konnte. An den jeweiligen Messpunkten ist für beide Experimentversionen die magnetische Flussdichte für verschiedene Ladespannungen zeitaufgelöst bestimmt worden. Als Messverfahren ist dabei das Δ/Σ-Verfahren eingesetzt worden, mit dem sich eine intensitätsunabhängige Messung erzielen ließ. Die ortsaufgelösten Messergebnisse fallen gegenüber Simulationen allerdings zu niedrig aus. Bei der zylindrischen Spule betragen die Abweichungen im Spulenzentrum circa 14 - 16% und bei der sphärischen Spule in etwa 16 - 18%. Bei einer Normierung der Messwerte und der simulierten Werte auf den jeweiligen Wert im Zentrum ist dagegen innerhalb der Fehler eine völlige Übereinstimmung zwischen den Messwerten und der Simulation für die zylindrische Spule erzielt worden. Als Ursache der negativen Abweichungen wird die Hysterese des TGG-Kristalls diskutiert. Es zeigt sich insbesondere zu Beginn der Entladung eine zeitliche Verzögerung der gemessenen magnetischen Flussdichte gegenüber dem Strom, die in der Umgebung des Stromnulldurchgangs besonders stark ausgeprägt ist.
Energieverlust von Schwerionen in hohlraumstrahlgeheizten Triacetat-Cellulose-Plasmen in Abhängigkeit von Schaumdichte und Laser-Ionenstrahl-Zeitdifferenz (2015)
Maeder, Richard
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks