Refine
Year of publication
Document Type
- Doctoral Thesis (40)
Has Fulltext
- yes (40)
Is part of the Bibliography
- no (40)
Keywords
- DNS-Synthese (3)
- Nucleinsäuren (3)
- Organische Synthese (3)
- RNS (3)
- Antisense-Oligonucleotide (2)
- Elektronenspinresonanz (2)
- Nitroxylradikal (2)
- Sequenzierung durch Synthese (2)
- photolabile Schutzgruppe (2)
- Bivalentes Ion (1)
Institute
- Biochemie und Chemie (38)
- Biowissenschaften (2)
Im Rahmen dieser Arbeit werden die Synthese, Eigenschaften und Anwendungsmöglichkeiten von Arylalkyl-Rückgrat modifizierten DNA-Oligonucleotiden untersucht. Das erste Ziel der vorliegenden Arbeit war, lipophile, arylalkylmodifizierte Oligonucleotide zu synthetisieren und die Auswirkungen der absoluten Konfiguration der Modifikationen auf die Eigenschaften der resultierenden Duplexe zu untersuchen. Als zweites sollten die Modifikationen in Antisense-Oligonucleotide eingebaut werden um diese auf ihre Anwendbarkeit für die lnhibierung der HCV Genexpression zu testen. Im Rahmen dieser Arbeit wurden 18 unterschiedliche Rückgrat-Modifikationen synthetisiert. Dabei wurde die Alkylkettenlänge wie auch die Größe des aromatischen Systems variiert. Zudem wurde untersucht, welchen Einfluss Ringsubstituenten auf die Eigenschaften der resultierenden Oligonucleotide ausüben. Die Rückgratmodifikationen wurden über die Festphasensynthese nach der Phosphoramiditmethode in Oligonucleotide eingebaut. Als Ausgangsverbindungen für die modifizierten Phosphoramidite dienten die Arylalkylhalogide. Diese wurden in einer dreistufigen in situ Reaktion - über das Grignard-Reagenz zu der entsprechenden cadmiumorganischen Verbindung und deren weitere Reaktion mit Phosphortrichlorid - zu den Arylalkyldichlorphosphanen umgesetzt. Die als Phosphorylierungsreagenzien fungierenden (Arylalkyl)(diisopropylamin)-chlorphosphane konnten durch Umsetzung mit N,N-Diisopropylamin erhalten werden. Die folgende Reaktion mit den 5'-hydroxyl- und aminogeschützten, natürlichen Nucleosiden führte zu den modifizierten Phosphoramidit-Bausteinen. Diese wurden mittels der OligonucleotidFestphasensynthese selektiv, an verschiedenen Positionen in sehr guten Ausbeuten in ModellOligonucleotide eingebaut und die erhaltenen Diastereoisomeren mittels RP-HPLC getrennt. Die einfach modifizierten, diastereoisomerenreinen Oligonucleotide zeigten eine signifikant erhöhte Lipophilie im Vergleich zu den unmodifizierten Strängen. Die Lipophilie nahm bei der Verlängerung der Alkylkettenlänge und der Vergrößerung des aromatischen Ringsystems pro (CH2)-Gruppe sowie pro weiterem Sechsring in konstanten Schritten zu, wodurch die Lipophilie gezielt gesteuert werden kann. Um den Einfluss der Modifikationen im Doppelstrang zu untersuchen wurden die Tm-Werte der Duplexe bestimmt und diese zudem CD- und Fluoreszenzspektroskopisch untersucht. Die erhaltenen Tm-Werte variierten sehr stark in Abhängigkeit der Alkylkettenlänge, der Ringgröße und der absoluten Konfiguration. Mit den Rp-konfigurierten benzyl- (B), (naphth-1-yl)methyl- (I) und 2,4-difluorbenzylmodifizierten (M) Oligonucleotid-Duplexen konnte eine Schmelzpunktserhöhung erzielt werden. Auch konnte mit den 3-(Anthracen-9-yl)propylphosphonaten K eine signifikante Tm-Wert Steigerung aufgrund eines "Dangling-End-Effektes" beobachtet werden. Die erhaltenen Tm-Werte korrelierten hervorragend mit den erhaltenen CD- und Fluoreszenz-Daten. Für die Zuordnung der absoluten Konfiguration der Modifikation wurden drei 3-Phenylpropylphosphonat-Dimere E synthetisiert. Die Zuordnung erfolgte mittels der 2D-ROESY-NMR-Spektren und den berechneten Protonenabständen der diastereoisomerenreinen Dimere sowie über empirische Regeln die von den Methylphosphonaten S abgeleitet wurden. Diese Ergebnisse lassen sich auf längere Oligonucleotide übertragen. Neben den Untersuchungen der Charakteristika der Arylalkyl-Rückgrat modifizierten Oligonucleotide wurden während dieser Arbeit einige Modifikationen gezielt auf ihre Einsetzbarkeit für den Antisense-Einsatz getestet. Als RNA-Zielsequenz wurden die Nucleotide 326-342 der 5'-nicht codierenden Region des Hepatitis C Virus gewählt. Im Rahmen dieser Arbeit wurden fünf unterschiedlich modifizierte Antisense-Oligonucleotide synthetisiert. Die arylalkylmodifizierten Oligonucleotide zeigten gute Hybridisierungseigenschaften gegenüber der sense-DNA bzw. sense-RNA und eine deutlich erhöhte Stabilität gegenüber der Nuclease Pl. Ferner konnte die Lipophilie der Oligonucleotide signifikant gesteigert werden. Die 2-Phenylethylphosphonate (D) und 2,4-Difluorbenzylphosphonate (M) sind zudem in der Lage die RNase H zu aktivieren. Alle dargestellten Antisense-Oligonucleotide wurden in einem zellfreien in vitro- sowie in einem in vitro-Zellkultur-Translations-Assay auf ihr lnhibierungspotential gegen die Hepatitis C Virus Genexpression getestet. Dabei zeigten die Benzylphosphonate (B), Phosphorthioate (Ps) und die 2-Phenylethylphosphonate (D) im zellfreien in vitro Testsystem hohe, spezifische Inhibierungsraten (>87%), bei einer Oligonucleotid-Konzentration von 5 µM. Auch erwiesen sich die arylalkylmodifizierten Antisense-Oligonucleotide, mit Ausnahme der 4-Phenylbutylphosphonate F, als sehr gute lnhibitoren der HCV-Genexpression in CCI13- und HepG2-Zellen.
Ein wichtiges Element zur Steuerung der Transkriptionseffizienz im Replikationszyklus des HI-Virus ist das Tat/TAR-System. Im Rahmen dieser Arbeit wurden einige kleine heterozyklische Verbindungen synthetisiert, die als potenzielle Inhibitoren des Tat-TAR-Komplexes von HIV-1 wirken sollten. Nach der Synthese des 1H-Pyrazol-3,4,5-triamin-sulfates sollte diese Verbindung dann in größere Strukturmotive eingebettet werden, von denen man sich erhoffte, dass sie in ihrer reduzierten Form in der Lage sein sollten, weitere H-Brücken zu benachbarten Basen der RNA auszubilden und dadurch die Affinität zu erhöhen. Es zeigte sich, dass die im Rahmen dieser Dissertation synthetisierten Phenazinderivate zwar alle mit Natriumdithionit reduziert werden konnten, diese Strukturen aber nicht luftstabil waren.
Künstliche Ribonucleasen, die sequenzspezifisch und effizient die Spaltung von RNA-Phosphordiesterbindungen katalysieren, könnten potenziell nicht nur als biochemische Werkzeuge dienen, sondern auch als Wirkstoffe gegen eine Vielzahl von Erkrankungen, bei denen mRNA oder miRNA involviert sind, eine wichtige Rolle spielen. Obwohl in den letzten beiden Jahrzehnten zahlreiche sequenzspezifische RNA-Spalter entwickelt wurden, bleibt die Spaltaktivität dieser Verbindungen nach wie vor deutlich hinter der ihrer natürlichen Äquivalente zurück. Die Optimierung künstlicher Ribonucleasen und grundlegend dafür die Erforschung der Faktoren, die die Spaltaktivität einer Verbindung beeinflussen, sind daher weiterhin von großem Interesse. Zwar enthalten die meisten künstlichen Ribonucleasen Metallionen, doch sind auch metallfreie RNA-Spalter, zum Beispiel auf der Basis heterocyclischer Guanidine, bekannt. Prinzipiell kann die Hydrolyse des RNA-Rückgrates durch Deprotonierung der nucleophil am Phosphoratom angreifenden 2‘-OH-Gruppe, durch Protonierung der als Abgangsgruppe fungierenden 5‘-OH-Gruppe sowie durch Stabilisierung des bei der Spaltung durchlaufenen dianionischen Phosphorans katalysiert werden. Daher sollten potenzielle RNA-Spalter in der Lage sein, sowohl als Base als auch als Säure wirken zu können, was bei einem pKa-Wert im Bereich von 7 am besten gegeben ist. Fungiert ein und dasselbe Molekül als Protonenakzeptor und -donor, so kommt es im Fall von Guanidinanaloga zu einer Tautomerisierung vom Amino- zum Iminoisomer. Eine möglichst kleine Energiedifferenz zwischen beiden Formen sollte sich daher positiv auf die Spaltaktivität auswirken. In der vorliegenden Arbeit wurde eine Reihe heterocyclischer Guanidine synthetisiert, deren pKa-Werte bestimmt und die jeweiligen Energiedifferenzen zwischen Amino- und Iminotautomer grob mittels AM1-Rechnungen abgeschätzt. In Spaltexperimenten wurden Cy5-markierte RNA-Substrate mit den verschiedenen Verbindungen inkubiert (Spalter-Konzentration: 2 bzw. 10 mM). Die Analyse und Quantifizierung der Spaltprodukte erfolgten anschließend mithilfe eines DNA-Sequenziergerätes. Alle untersuchten und ausreichend löslichen Substanzen, die sowohl einen geeigneten pKa-Wert (6 – 8) als auch eine niedrige Energiedifferenz zwischen Amino- und Iminotautomer (≤ 5 kcal/mol) aufwiesen bzw. bei denen nur der pKa-Wert oder nur die Energiedifferenz in geringem Maße vom Idealwert abwich, spalteten RNA, wenn auch teilweise nur mit einer geringen Aktivität. In den Spaltexperimenten erwiesen sich Guanidinanaloga mit einem großen aromatischen System als besonders aktiv, allen voran 2-Aminoperimidin und seine Derivate, die auch bei Konzentrationen unter 50 µM Spaltaktivität zeigten. Gleichzeitig offenbarten diese Verbindungen in Fluoreszenzkorrelationsspektroskopie Experimenten eine große Tendenz zur Aggregation mit RNA, so dass die Spaltung in diesen Fällen möglicherweise nicht durch Einzelmoleküle, sondern durch Aggregate erfolgte. Um RNA-Substrate auch sequenzspezifisch spalten zu können, wurden PNA-Konjugate des bereits bekannten RNA-Spalters Tris(2-aminobenzimidazol) hergestellt, wobei der Spalter über eine neue, quecksilberfreie Route synthetisiert wurde. Es konnte gezeigt werden, dass diese PNA-Konjugate RNA sequenzspezifisch mit einer Halbwertszeit von etwa 11 h spalten, was im Rahmen der Halbwertszeit vergleichbarer DNA-Konjugate liegt. Um zu untersuchen, ob 2-Aminoperimidine auch als Einzelverbindungen aktiv sind, wurden zwei PNA-Konjugate von am Naphthylring substituierten 2-Aminoperimidin-Derivaten synthetisiert. Beide Konjugate zeigten keinerlei Spaltaktivität, was darauf hindeuten könnte, dass die Hydrolyse des RNA-Rückgrates nur durch mehrere Spalter-Einheiten – kovalent verknüpft oder in Form von Aggregaten – effizient katalysiert werden kann.
Im Rahmen der vorliegenden Arbeit wurden zwei Knockout-Mutanten für die Cyclophiline CypA1 und CypA2 hergestellt. Für die Konstruktion wurde nicht nur das eigentlich Gen verwendet, sondern auch umliegende Bereiche. Im Endeffekt standen der homologen Rekombination an beiden Seiten des Knockout-Konstrukts ca. 1000 bp zur Verfügung. Zunächst wurden die DNA-Abschnitte der Cyclophiline aus der genomischen DNA von Streptomyces lividans mittels PCR isoliert. Aufgrund des hohen GC-Gehalts wurde die Amplifikation in Fragmenten durchgeführt. Es wurden verschiedene PCR-Bedingungen getestet und für jedes Fragment optimale Bedingungen ermittelt. Nach Aufreinigung und A-Tailing folgte eine Ligation mit pGemT-Easy. Die erhaltenen Fragmente wurden sequenziert und anschließend über mehrere Klonierungsschritte in E. coli wieder zusammengefügt. Dabei wurde eine Apramycinresistenz-Kassette so in das Gen eingebaut, dass die eigentliche Information für das Cylophilin-Gen zerstört wurde. Das daraus resultierende Knockout-Konstrukt wurde in den temperatursensitiven pGM160, einem E.coli-Streptomyces-Shuttle Vektor, kloniert und in Streptomyces lividans transformiert. Nach einem Temperaturshift integrierte der temperatursensitive Vektor über homologe Rekombination in das Genom. Die DNA der potenziellen Mutanten wurde auf den zielgerichteten Einbau des Knockout-Konstrukts im gewünschten Cypclophilin-Gen untersucht. Mittels PCR konnten entsprechende Amplifikate hergestellt werden, die den Nachweis für die erfolgreiche homologe Rekombination lieferten. Der physiologische Zustand des Zellstoffwechsels kann durch extreme Umweltbedingungen wie Nährstoffdefizienz oder Hitzeschock in radikaler Weise verändert werden. Bei diesen Prozessen können Peptidyl-Prolyl cis/trans Isomerasen beteiligt sein, indem sie durch Isomerisation der Prolyl-Bindung ein Enzym modulieren oder bei der Expression von neuen Proteinen im Rahmen der Proteinfaltung mitwirken. Experimente unter veränderten Wachstumsbedingungen wie z.B. Nährstoffdefizienz oder Hitzeschock können Aufschluss darüber geben, ob in diesem Fall Peptidyl-Prolyl cis/trans Isomerasen an der Modulation von Enzymen beteiligt sind.
CpG-Oligodesoxynukleotide (CpG-ODN) sind von medizinischem Interesse aufgrund ihrer immunstimulierenden Wirkung, die durch chemische Wechselwirkungen zwischen dem Toll-like-Rezeptor 9 und dem CpG-Oligodesoxynukleotid ausgelöst wird. Um die molekulare Grundlage dieser DNA-Protein-Erkennung näher zu erforschen und um neue modifizierte CpG-Oligodesoxynukleotide mit einem verbessertem Wirkungsprofil für medizinische Anwendungen zu synthetisieren, wurde diese Arbeit angefertigt. Untersucht wurde, welche Synthesestrategie eine effiziente Syntheseroute zur Modifizierung von CpG-Oligodesoxynukleotiden ermöglicht. Als prinzipiell interessante Modifikationen wurden solche gewählt, die dem CpG-ODN-Liganden, Toll-like-Rezeptor 9, zusätzliche Wechselwirkungen eröffnen, wie die H-Brückenwechselwirkungen durch OH, NH2, NO2 oder pi-Stacking-Wechselwirkungen, wie durch z. B. Phenyl oder Pyren. Zunächst wurde in Erwägung gezogen, die bislang in der Literatur nicht für CpG-ODN unter-suchte Position 6 von Cytidin mit OH oder NH2 modifizieren. Hierfür wurde die allgemeine Synthesestrategie verwendet, bei der die Cytosin-Derivate stereoselektiv durch Vorbrüggen-Glykosilierung mit peracetylierter Ribose zum Nukleosid umgesetzt werden. Anschließend erfolgte die Deacetylierung, die regiospezifische Einführung der Tetra-(iso-propyl)-di-siloxan-Schutzgruppe an der 3´,5´-Position. Danach sollte die 2´-OH-Funktion mit Thio-phenylchlorid verestert und nach Barton McCombie desoxygeniert werden. Nach Dimethoxy-triphenylmethylierung an der 5´-OH-Funktion sollte die Umsetzung zum Phosphoramidit erfolgen. ...
Im Rahmen dieser Doktorarbeit wurden modifizierte Nukleoside synthetisiert, um ihren Einfluss auf die Stabilität von RNA-Duplexen zu untersuchen. Bei den fluorierten Benzimidazol-Nukleosidanaloga handelt es sich um universelle Basen, die bei der Basenpaarung nicht zwischen den vier natürlichen Nukleosiden unterscheiden können. Die dabei auftretende Destabilisierung der RNA-Duplexe sollte durch die Änderung physikalisch-chemischer Eigenschaften vermindert werden. Durch die Synthese der fluorierten Indol-Nukleosidanaloga mit denselben Fluoratompositionen sollte nachgewiesen werden, welche Rolle ein ausfallendes Stickstoffatom im Fünfring-System spielt. Weitere Untersuchungen wurden so entwickelt, dass die zwei spC-F in 4,6DFBI wie auch in 4,6DFI mit Stickstoffatomen getauscht wurden. So wurde noch eine neue Serie Nukleosidanaloga synthetisiert (Abbildung 9.2). Schließlich wurde noch 1-Desoxy-D-ribofuranose AS als absischer Baustein synthetisiert. Die Synthese der Indol- und 9-Deazapurin-Nukleosidanaloga wurde über eine Glycsilierungsreaktion mit geeignet geschützter Deoxyribose durchgeführt. Dies wurde über vier Stufen, ohne Aufreinigung, aus Deoxyribose synthetisiert. Die entsprechenden Deoxy-nukleoside wurden danach in fünf Schritten zu Ribo-nukleosiden transformiert. Nach der Entschützung von Toluoyl-Gruppen wurden die 5´- und 3´-OH Gruppen sukzessiv geschützt. Nach simultaner 5´-OH Entschützung und 3´-OMs Eliminierung, wurden die gewünschten Ribonukleoside durch katalytische Dihydroxilierung erhalten. Die Darstellung der Verbindung 7NP erfolgte über die Silyl-Hilbert-Johnson-Reaktion. Der abasische Baustein AS wurde ausgehend von 2,3,5-Tri-O-benzyl-ribofuranose durch Dehydroxylierung und anschließende Entschützung erreicht. Von allen Nukleosiden gelang es Kristalle aus Wasser oder Methanol zu erhalten und röntgenkristallographisch zu untersuchen. Die Kristallpackungen zeigten eine sehr interessante Anordnung der Moleküle. Alle Fluorindol-Nukleoside mit Ausnahme von 7-N-Purin-Nukleosid 7NP zeigten nicht die für aromatische Systeme normale Fischgräten-Struktur, sondern eine Anordnung, in der die Moleküle gegenüberliegen. Die Kristallpackung besteht abwechselnd aus hydrophilen und lipophilen Schichten. Die hydrophilen Schichten bestehen aus den Zuckeruntereinheiten und die lipophilen aus den Fluoraromaten. Die Zucker sind durch Wasserstoffbrücken miteinander verbunden. Für die Orientierung der Moleküle zueinander sind aber die Fluoratome verantwortlich. In der Kristallpackung von 7-Fluorindol-Nukleosid 7FI kann ein Fluor-Wasserstoff-Abstand von nur 230 pm detektiert werden. Dies ist deutlich kürzer als die Summe der van-der-Waals Radien von Fluor und Wasserstoff von 2,55 Å. Der Abstand wird zwischen dem Fluor des einen Nukleosids und einem Wasserstoff eines gegenüberliegenden Nukleosids gemessen. Der Abstand von 2,30 Å ist einer der kürzesten jemals in Kristallen gemessenen F-H Abstände des Typs Csp²-F...H-Csp². Bedingt durch diesen kurzen Abstand kann von einer F...H Wasserstoffbrücke gesprochen werden. Auf der anderen Seite in der Kristallstruktur von 4-Fluorindol-Nukleosid 4FI konnte ein F-H Abstand von 2,69 Å nachgewiesen werden, welcher deutlich länger als die Summe der van-der-Waals Radien von Fluor und Wasserstoff ist. Die Nukleoside wurden auf ihre Lipophilie hin untersucht. Zu diesem Zweck wurden Octanol-Wasser Verteilungskoeffizienten der Nukleoside gemessen. Die fluorierten Nukleoside zeigten im Gegensatz zu den nichtfluorierten Nukleosiden eine deutlich größere Lipophilie. Nach Umsetzung der Nukleoside zu den Phosphoramiditen konnten diese kupplungsfähigen Monomere in den RNA-Festphasensynthesen eingesetzt und in RNA 12mere eingebaut werden. Um den Einfluss der aromatischen Fluorosubstitutionen auf die thermodynamische Stabilität von RNA-Duplexen zu untersuchen, wurden UV/VIS- und CD- spektroskopische Messungen an monomodifizierten RNA 12meren durchgeführt. Aus den erhaltenen Schmelzkurven wurden die Schmelzpunkte bestimmt (Abbildung 9.3) und die thermodynamischen Daten ausgerechnet. Die Anwendung hydrophober, Fluorsubstituierter Nukleobasen führte im Fall der fluorierten Indol-Nukleoside zu Destabilisierung im Vergleich mit natürlichen Basenpaaren. Aus den folgenden Resultaten lässt sich zusammenfassen: 1. Position der Fluoratom in fluorierten Indole spielt eine wesentliche Rolle für die Stabilität des RNA-Duplex 2. 6FI bildet die stabilste Basenpaaren mit natürlichen Basen. 3. Basenpaarung von 4FI trägt eine deutlich höhere Destabilisierung. Für diese Modifikation wurden auch die längsten Abstandwerte zwischen C-F…H in der Kristallpackung gemessen. (Die Vermutung liegt nahe, dass diese Base sich außerhalb des Duplex befindet). 4. Alle Fluorindol-Basenanaloga zeigen die Tendenz zur Paarung mit Adenosin. 5. Bei 4,6DFI handelt sich um universelle Base. Um noch weniger destabilisierende universelle Basen zu finden, wurde das Forschungsfeld mit Methoden aus dem Bereich der strukturellen Bioinformatik, Molekül-dynamiksimulationen und freie Energie-Rechnungen ausgeweitet. Resultierende Simulationen führten zu zwei neuen Basen: 7NP als Analogon zu 4,6DFBI und 9DP als Analogon zu 4,6DFI (siehe Kapitel 8). Theoretische Rechnungen ließen sich bestätigen durch experimentelle Ergebnisse Die so entstandene Serie von Purin-Basenanaloga hat uns gezeigt, dass der Austausch von Fluoratomen durch Stickstoffatome stabilisierende Effekte bringt. Die chemischen Änderungen beeinflussen die physikalischen Eigenschaften, welche dadurch Stabilisierung oder Destabilisierung des RNA-Duuplex dirigieren. In Abbildung 9.5 befinden sich ausgerechnete Dipolmomente. Somit können wir für diese Serie folgendes resümieren: * 4,6FI als universelles Base Analogon zu 4,6DFBI zeigt geringere destabilisierende Effekte auf den 12mer RNA-Duplex. * Umtausch von Fluoratomen in den beiden Basen (4,6DFI und 4,6DFBI) resultiert in deutlich besserer Basenpaarung. * Auserrechnete thermodynamische Parametern (von gemessenen Tm-Werten) wurde ersichtlicht, dass höhere Tm-Werte durch geringere Destabilisierung aus Solvatation resultieren, nicht aus erhöhten Stacking Effekten des RNA-Duplex.
Synthese und Optimierung von Nitroxyl-Spin-Labeln zur Analyse von Nukleinsäuren mittels EPR und NMR
(2010)
Im Rahmen dieser Doktorarbeit wurde der Einsatz der Nitroxyl-Spin-Markierung für die Strukturaufklärung von Oligonukleotiden getestet. Dafür wurden im Vorfeld verschiedene Spin-Label synthetisiert und charakterisiert. Bei den Nitroxiden handelt es sich hierbei um das Spin-Label TPA (2,2,5,5-Tetramethyl-pyrrolin-1-oxyl-3-acetylene) und TEMPA (2,2,6,6-Tetramethyl-3,4-dehydro-piperidin-N-oxyl-4-acetylene). Beide Spin-Label wurden auch als deuteriert und 15N-markiert synthetisiert. Basierend auf den erhaltenen Ergebnissen auf dem Gebiet der Modell-Systeme und Modell-RNAs wurden biologisch relevante und strukturell anspruchsvolle Oligonukleinsäuren untersucht. Dabei konnten DNA-RNA-Hybride, die HCV-IRES Domain II, ein Tetra-Loop, das Neomycin-B Aptamer, das Diels-Alder Ribozym und ein Nep1-RNA-Komplex charakterisiert werden. Die Einführung des Spin-Labels erfolgte noch auf der Festphase mittels der Sonogashira-Kreuz-Kupplungs Reaktion.
Ideale universelle Nucleosid-Analoga könnten im Hinblick auf therapeutische Oligonucleotide einen Fortschritt in der Entwicklung darstellen. Zudem bieten solche Nucleosidanaloga auch aus synthetischer Sicht Vorteile: Durch ihre Struktur sind chemische Modifikationen – wie beispielsweise Modifizierungen an der Zuckereinheit – leichter zugänglich, als bei den natürlichen Nucleosiden. Ein Ziel der vorliegenden Doktorarbeit bestand darin, bereits bekannte universelle Nucleosidbausteine solchermaßen zu modifizieren, das bei ihrer Anwendung in Oligonucleotiden ihre Vorteile besser zum Tragen kommen. Vor diesem Hintergrund besaßen vor allem protonierbare 2´-O-Modifikationsmotive eine besondere Relevanz. Im Vergleich zur bereits bekannten 2´-O-Aminoethyl-Modifikation des 4,6-Difluorbenzimidazol-Nucleosidbausteins konnte eine um eine Methyleneinheit längere 2´-O-Aminopropylfunktion des Nucleosids hergestellt werden. Dabei wurde eine Syntheseroute eingeschlagen, mit der diese Modifikation in hohen Ausbeuten und hoher Reinheit aus dem 3´-,5´-Markiewicz-geschützten Nucleosid eingeführt werden konnte. Grundlage dieser Modifizierungsmethode ist eine Michael-Addition von Acrylnitril an die 2´-OH-Funktion unter basischen Bedingungen. Damit konnte ein 2´-O-Cyanoethylrest an das Nucleosid geknüpft werden; dieser wurde als Modifikationsmotiv beibehalten und es konnte das entsprechende 3´-Phosphoramidit hergestellt werden. Außerdem lässt sich ein 2´-O-Cyanoethylrest mittels Raney-Nickel-katalysierter Hydrierung in das primäre Amin überführen. Durch diese Michael-Addition-Reduktionssequenz konnte die erwähnte 2´-O-Aminopropylmodifikation in nur zwei Stufen mit einer Gesamtausbeute von über 80 % an das Difluorbenzimidazolnucleosid geknüpft werden. Die 2´-O-Aminopropylfunktion wurde zudem als Ausgangspunkt zur Kupplung weiterer erfolgsversprechender Modifikationsmotiven verwendet: In diesem Ansatz wurden mittels standardisierter Peptidkupplungschemie Carbonsäurederivate an die freie Aminofunktion gekuppelt. Hierdurch waren neuartige 2´-O-Modifizierungen, wie z.B. Lysin- oder auch Laurinsäurekonjugate zugänglich; diese waren über den Propylamidlinker mit dem Nucleosid verbunden. Im Hinblick einer polykationischen Modifizierung konnte auch ein Sperminderivat an die Aminopropylfunktion gekuppelt werden. Sämtliche dieser Konjugate konnten ebenfalls nach mehrstufigen Synthesen in das 3´-Phosphoramidit überführt werden und wurden schließlich erfolgreich in RNA-Oligonucleotide eingebaut. Für den Einbau der 2´-modifizierten universellen Nucleosidanaloga in RNA-Oligonucleotide wurden zunächst kurze 12mer-Sequenzen gewählt, die sich bereits als gute Testsysteme für spektroskopische Untersuchungen herausgestellt haben. Hernach konnten mit diesen Duplexen spektroskopische Untersuchungen wie UV-Schmelzkurvenanalysen und CD-Spektroskopie durchgeführt werden. Zudem stand die biologische Testung dieser Modifikationen in synthetisch zugänglichen siRNA-Oligonucleotiden im Fokus dieser Arbeit. Um die Flexibilität der Konjugationsmethode zu erhöhen konnte auch eine postsynthetische Kupplung an das festphasengebundene RNA-Oligomer etabliert werden. Dies wurde durch den Einbau des geeignet geschützten 2´-Aminopropyl-Nucleosidbausteins in ein RNA-Oligomer erreicht: Durch einfache Zugabe von Bocanhydrid in den Reduktionsansatzes gelang eine simultane Boc-Schützung des 2´-O-Aminopropylderivats in quantitativer Ausbeute. Diese Prozedur konnte auch auf ein 7N-Purinnucleosidanalogon übertragen werden, welches im Hinblick auf die thermodynamische Stabilisierung eines RNA-Duplexes einem 4,6-Difluorbenzimidazolbaustein gegenüber überlegen zu sein scheint. Die Boc-geschützen Derivate wurden als Phosphoramidite in die automatisierte Festphasensynthese von Oligonucleotiden eingesetzt. Der große synthetische Vorteil dieser Methode besteht einerseits in ihrer einfachen Durchführbarkeit, andererseits in ihrer effizienteren und ökonomischeren Vorbereitung: Es muss nur jeweils ein Phosphoramiditbaustein (mit Boc-geschützter 2´-O-Aminopropylfunktion) synthetisiert und in ein Oligonucleotid eingebaut werden. Sowohl mit dem 4,6-Difluorbenzimidazolnucleosid, als auch mit seinem 7N-Purin-Pendant konnten erfolgreiche Festphasenkupplungen durchgeführt werden. Im Hinblick auf die thermodynamischen Eigenschaften konnten vor allem für das 7N-Purinnucleosid interessante Resultate erzielt werden: Das via Festphasenkupplung erhaltene RNA-12mer, welches eine Argininmodifikation am 2´-O-Aminopropyl-7N-Purinnucleosid trägt, zeigt eine im Vergleich zum unmodifizierten A-U-Basenpaar ähnliche Stabilität bei leicht erhöhtem Tm-Wert. Um den Ursprung dieses Effekts genauer zu ergründen wären weitere thermo-dynamische Untersuchungen anhand des 7N-Purinbausteines z.B. mit anderen Modifikations-motiven oder auch an unterschiedlichen Positionen im Oligomer sinnvoll.
In den vergangenen Jahren wurden in der AntisenseTechnologie grundlegende Hürden genommen, die eine Arzneimittelentwicklung auf Nukleinsäurebasis ermöglichen. Hierzu zählt vor allem die Gewährleistung einer ausreichenden metabolischen Stabilität und die Synthese im technischen Maßstab. In zahlreichen klinischen Studien wurde der Wirksamkeitsnachweis am Menschen erbracht. Als sequenzspezifische Therapeutika zeichnen sich Antisense Oligonukleotide im Vergleich zu vielen anderen Wirkstoffen dadurch aus, daß sie spezifisch mit einer RNAZielsequenz hybridisieren, ohne dabei wichtige zelluläre Funktionen zu beeinträchtigen. Neben krankheitsauslösenden Genen können Antisense Oligonukleotide auch virale Gene blockieren und nach Aktivierung der Ribonuklease H hydrolysieren. Das erste Präparat auf Oligonukleotidbasis wurde 1998 zugelassen und hemmt erfolgreich die Vermehrung des Cytomegalievirus. Hepatitis C ist eine Virusinfektion, die momentan nur unzureichend therapiert werden kann. Seit Mitte der neunziger Jahre wird nach geeigneten Antisense Oligonukleotiden und Ribozymen gesucht, um die Heilungschancen bei einer chronischen HCVInfektion zu verbessern. Im Rahmen dieser Arbeit wurde durch experimentelles Screening eine potente Zielsequenz (tS13) im Bereich der internen ribosomalen Angriffsstelle (IRES) und des Startcodons für die Proteinbiosynthese des HCV gefunden (Nukleotide 326342 des HCV Genoms). Hierzu wurde die Sequenz eines bereits bekannten 23mer Antisense Oligonukleotids durch systematisches Verkürzen auf 17 Nukleotide reduziert, ohne in vitro an Inhibitionspotential einzubüßen. Erst weitere Verkürzungen führten zu einer deutlichen Abnahme der Antisense Wirkung. Eine Schwierigkeit bei der therapeutischen Anwendung von polyanionischen Antisense Oligonukleotiden ist deren begrenzte zelluläre Aufnahme. Wie in Kapitel 3 dargelegt, wurden bislang zahlreiche Methoden zur Verbesserung der Membrangängigkeit dieser Wirkstoffklasse entwickelt. Zur Evaluierung eines leberselektiven Transports (engl.: drug targeting) und zur Steigerung der hepatozellulären Aufnahme (engl.: cell uptake) wurde das antiviral wirkende 17mer Antisense Oligonukleotid tS13 mit Biomolekülen wie den Gallensäuren, die im enterohepatischen Kreislauf das Zielorgan Leber passieren, kovalent verknüpft. Die Kupplung erfolgte dabei über die für die zelluläre Aufnahme nicht essentielle 3aHydroxylgruppe der Cholsäure und Taurocholsäure. Die Gallensäuren wurden entsprechend geschützt, in die Phosphoramidite 22a/b und 27a/b überführt und im letzten Kupplungsschritt der Festphasensynthese an das 5
Das Ziel dieser Arbeit war die Entwicklung und Synthese von spaltbaren Linkern. Dabei wurden zwei unterschiedliche Themengebiete bearbeitet: 1) Entwicklung eines enzymatisch spaltbaren Safety-Catch-Linkers, der eine flexible Modifizierung ermöglicht für den potentiellen Einsatz zur zielgerichteten Zellaufnahme von (Antisense-)Oligonukleotiden. 2) Entwicklung eines Fluorid-spaltbaren Linkers für die reversible Fluo¬reszenz¬markie¬rung von Triphosphaten zum Einsatz in einer neuen Methode der DNA-Sequenzierung. Im Rahmen dieser Arbeit wurde ein neuer, variabler enzymatisch spaltbarer Safety-Catch-Linker entwickelt und es wurden drei Derivate synthetisiert. Die drei neuen Safety-Catch-Linker sind über Amid- bzw. Esterbindungen an die 5' Position von 2' Desoxythymidin angebunden und sind Substrate für zwei unterschiedliche Enzyme. Zwei der synthetisierten Derivate des Linkers sind Substrate der Penicillin G Acylase und eins ist ein Substrat für die Pyroglutamyl Aminopeptidase I. Sie wurden hinsichtlich ihrer Spaltungs- und Stabilitätseigenschaften intensiv untersucht. Es konnte gezeigt werden, dass die Ester-verknüpften Linker für eine Anwendung unter physiologischen Bedingungen geeignet sind. Es wurden kinetische Spaltungsexperimente durchgeführt und dabei eine sehr effektive enzymatische Spaltung durch das entsprechende Enzym beobachtet. Es wurde außerdem der Mechanismus einer, bei höheren pH-Werten beobachteten, nicht-enzymatischen Spaltung aufgeklärt. Darüber hinaus konnte das sehr basenlabile, mit Pyroglutamyl Aminopeptidase I spaltbare Derivat unter Anwendung einer aminoschutzgruppenfreien Oligonukleotidsynthesemethode erfolgreich in ein Antisense-Oligonukleotid eingebaut werden. Für das EU-Projekt „ArraySBS“ wurde im Rahmen dieser Arbeit ein neuer, hoch effizient mit Fluoridionen spaltbarer Linker für die reversible Anbindung eines Fluoreszenzfarbstoffs an die Baseneinheit eines Nukleotids entwickelt. Die spaltbare Einheit des Linkers basiert auf dem Strukturmotiv der 2-Cyanoethylgruppe, als Spacer zwischen dem Nukleotid und dem Fluoreszenzfarbstoff wurde eine Triglykoleinheit verwendet. Die Spaltungseigenschaften wurden an einer Modellverbindung, einem modifizierten Nukleosid und einem immobilisierten Oligonukleotid intensiv untersucht. Dabei wurde eine vollständige Spaltung mit 1 M TBAF in THF in weniger als einer Minute gefunden und die erwartete beta-Eliminierung als Spaltungsmechanismus bestätigt. Mit Hilfe des entwickelten Linkers wurden vier neue, Fluoreszenz-markierte, reversible Terminatoren in sehr hoher Reinheit hergestellt und analytisch eindeutig identifiziert. Dabei handelt es sich um ein Fluorescein-markiertes 2'-Desoxyuridin Derivat, ein Cy3-markiertes 2' Desoxycytidin, ein Cy5-markiertes 2'-Desoxyguanosin und ein TexasRed-markiertes 2' Desoxyadenosin Derivat. Diese wurden dann in Zusammenarbeit mit den Kooperationspartnern des EU Projekts erfolgreich durch eine DNA-Polymerase in DNA-Template eingebaut und in einem ersten Anwendungsexperiment an immobilisierten Hairpin-Templaten in zwei Sequenzierungszyklen eingesetzt.