Refine
Document Type
- Doctoral Thesis (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Central Nervous System (1)
- Immunologie (1)
- Immunology (1)
- Interferon (1)
- VSV (1)
- Viral Infection (1)
- Virusinfektion (1)
- Zentralnervensystem (1)
Institute
Prion-Erkrankungen sind neurodegenerative Erkrankungen, die durch die Fehlfaltung des zellulären Prion Proteins (PrPC) in seine pathogene Isoform PrPSc verursacht werden. Welche zellulären Mechanismen an dieser Fehlfaltung oder der Pathogenese beteiligt sind, ist bis heute nur teilweise geklärt. Einerseits wird vermutet, dass z.B. eine toxische cytosolische Form des PrPC aufgrund einer Störung des Proteasoms akkumulieren könnte und spontan in PrPSc umgewandelt wird. Andererseits konnte gezeigt werden, dass viele Signalwege, wie die MAPK-Signalwege am Prozess der Neurodegeneration beteiligt sein könnten.
Ziel dieser Arbeit war daher zum einen die Untersuchung der morphologischen Veränderung einer Zelllinie, die cytosolisches PrP exprimiert, und zum anderen die Identifikation weiterer Signalwege, die an der Prionpathogenese beteiligt sein könnten, was mittels Analysen des (Phospho)proteoms Prion-infizierter Zellen und Mäusegehirne durchgeführt werden sollte.
Im ersten Teil dieser Arbeit wurden murine Neuroblastoma Zellen charakterisiert, die eine cytosolische Form des Prion Proteins (CyPrP) exprimierten. Diese Zellen zeigten zwar keine cytotoxischen Merkmale, jedoch wiesen sie dramatische morphologische Veränderungen auf. Weiterhin wurde herausgefunden, dass diese Zellen vermutlich eine Isoform des cytosolischen PrP (CyPrPmod) exprimierten, die sowohl glykosyliert als auch auf der Zelloberfläche verankert war und somit Eigenschaften des Volllängen-PrP aufwies. Die Glykosylierung des CyPrPs wurde in Western Blots nachgewiesen, während die Verankerung des CyPrPs in der Plasmamembran anhand der Durchflusszytometrie untersucht wurde. Der vermutete Zusammenhang zwischen der CyPrPmod-Expression und der morphologischen Veränderung der Zellen wurde mittels Herunterregulation von CyPrP untersucht. Jedoch resultierte dies nicht in der erwarteten Reversion der morphologischen Effekte. Die Wiederholung der stabilen Transfektion in den parentalen N2a Zellen und anderen Zelllinien führte außerdem weder zu einer veränderten Morphologie noch zur Expression von CyPrPmod. Somit sind diese Veränderungen auf unspezifische Prozesse während der ersten stabilen Transfektion der N2a Zellen mit CyPrP zurückzuführen.
Um neue Therapien oder Biomarker bei Prion-Erkrankungen zu entwickeln, ist die Untersuchung von Signalwegen, die die Prionpathogenese beeinflussen können, wichtig. Oft werden zelluläre Signalwege über die Phosphorylierung von Proteinen gesteuert, allerdings gab es bisher in der Prionenforschung keine Untersuchungen des Phosphoproteoms von Prion-infizierten Zellen in vivo oder in vitro. Im zweiten Teil dieser Arbeit wurde daher das Phosphoproteom eines Prionen-replizierenden Zellkultursystems näher untersucht. In einer SILAC-Analyse von nicht infizierten und Prion-infizierten Zellen wurden über 100 Phosphoproteine identifiziert und quantifiziert, von denen drei in Western Blots validiert wurden. Die Phosphorylierung von Stathmin und Cdc2 an spezifischen Phosphorylierungsstellen war in den Prion-infizerten Zellen vermindert, während Cofilin eine erhöhte Phosphorylierung aufwies. Diese Proteine sind an der Regulation des Zellzyklus und des Zytoskeletts beteiligt und könnten eine Rolle in der Prionpathogenese spielen. Außerdem wurde nach 2D-Analysen des Proteoms Prion-infizierter Mäusegehirne eine Hochregulation des antioxidativen Proteins Peroxiredoxin 6 (PRDX6) festgestellt. Auch im Prionen-replizierenden Zellkultursystem konnte dieses Protein in erhöhten Mengen nachgewiesen werden. Experimente zur Unterdrückung bzw. Überexpression von PRDX6 ergaben, dass seine Phospholipase A2-Aktivität Signalkaskaden beeinflussen könnte, die vermutlich die Expression von PrPC und somit die Prion-Replikation regulieren können. Weitere Untersuchungen der PRDX6-abhängigen Signalwege in der Prionpathogenese sowie Inokulationen PRDX6-defizienter Mäuse mit Prionen, könnten erste Ansätze für die Entwicklung neuer Therapien bei Prion-Erkrankungen sein.
Zur Rolle der Typ-I-Interferone in der Abwehr von viralen Infektionen des zentralen Nervensystems
(2007)
Das zentrale Nervensystem (ZNS) bildet eine einzigartige Umgebung für Immunantworten, da Neuronen eine essentielle und in weiten Teilen nicht-erneuerbare Zellpopulation bilden. Virale Infektionen des ZNS und lokale anti-virale Immunantworten können zu dem Verlust von Neuronen und somit zu katastrophalen Erkrankungen führen. Unter normalen Bedingungen ist das ZNS weitgehend von der Kontrolle durch das Immunsystem ausgeschlossen. In diesem Zusammenhang wurde das ZNS oft auch als „immunprivilegiert“ bezeichnet. Dieses Konzept musste in den letzten Jahren revidiert werden, da es sich gezeigt hat, dass das ZNS nicht völlig vom Immungeschehen isoliert ist. Wichtige Mediatoren antiviraler Immunantworten sind die Typ I Interferone (IFN). Die verschiedenen Typ I IFN binden an einen gemeinsamen Rezeptor, den Typ I Interferon-rezeptor (IFNAR). Die Bedeutung von Typ I IFN Antworten für die Kontrolle viraler Infektionen wurde besonders eindrucksvoll mit IFNAR-defizienten Mäusen (IFNAR-/-) gezeigt. Nach Infektion mit dem neurotropen Vesikulären Stomatitis Virus (VSV) führt das Fehlen des IFNAR zu einer stark erhöhten Empfänglichkeit für tödlich verlaufende Infektionen. In allen Organen und besonders im ZNS von VSV infizierten IFNAR-/- Tieren fanden sich stark erhöhte Virusmengen. Um zu untersuchen, ob die VSV-Infektion des zentralen Nervensystems in IFNAR-/- Mäusen in erster Linie auf ein Versagen der peripheren Immunität oder des IFN Systems innerhalb des ZNS zurückzuführen ist, wurden mittels der Cre loxP Tech-nologie Mäuse hergestellt, die auf allen peripheren Zellen IFNAR exprimieren, während die Neuronen des ZNS IFNAR defizient sind (NesCre+/-IFNARflox/flox). Nach intranasaler VSV Infektion zeigten NesCre+/-IFNARflox/flox Mäuse zunächst keine Krankheitssymptome. Nach 5 bis 6 Tagen traten aber aufsteigende und halbseitige Lähmungen auf, so dass die infizierten Tiere verstärkt im Kreis liefen und schließlich verstarben. Im Vergleich dazu verstarben IFNAR-/- Mäuse bereits nach 2 bis 3 Tagen während normale C57BL/6 Tiere nach Infektion keine Symptome zeigten und überlebten. Der beobachtete Krankheitsverlauf lässt in den IFNAR-/- Mäuse auf ein Multiorganversagen als Todesursache schließen. 3 und 6 Tage nach Infektion konnte in den Organen von C57BL/6 Tieren kein Virus reisoliert werden. In den NesCre+/ IFNARflox/flox Tieren fanden sich zum Todeszeitpunkt nur im Gehirn Viruspar-tikel, während alle anderen Organe virusfrei waren. Die Virustiter im Hirn waren im Vergleich zu den IFNAR-/- Mäusen 10- bis 100-fach erhöht. In den anderen Organen und im Blut sind keine Viruspartikel nachweisbar. Dieser Befund deutete gemeinsam mit den beobachteten Krankheitsverläufen auf eine neuropathologische Symptomatik hin, bei der es wahrscheinlich zu einer VSV-Infektion des Hirnstammes kam. Die Analyse einzelner Regionen des ZNS zeigte in IFNAR-/- Tieren, dass 2 Tage nach Infektion in allen Regionen des ZNS signifikante Virusmengen zu finden waren. In den NesCre+/-IFNARflox/flox und den C57BL/6 Tieren fanden sich zu diesem Zeitpunkt nur im Riechhirn (Bulbus olfactorius) signifikante Virustiter. In den C57BL/6 Tieren blieb das Virus auf diese Region beschränkt und wurde dort innerhalb von 6 Tagen eliminiert. In den NesCre+/-IFNARflox/flox Tieren kam es in den folgenden Tagen jedoch zu einer fortschreitenden Infektion des ZNS, und auch das Großhirn, das Kleinhirn, der Hirn-stamm und das Rückenmark zeigten hohe Virustiter. In der Induktion peripherer Immunantworten unterschieden sich NesCre+/-IFNARflox/flox und C57BL/6 Mäuse nicht. In den WT Tieren kam es im Gegensatz zu den NesCre+/ IFNARflox/flox und IFNAR-/- Tieren innerhalb von 48 Stunden nach Infektion im Riechhirn zu einer Typ I IFN abhängigen Phosphorylierung von STAT-1, einer Komponente des IFNAR-Signaltransduktionsweges. Alles deutet darauf hin, dass die Induktion geringer Mengen Typ I IFN innerhalb des Riechhirns notwendig ist, um Im-munantworten zu aktivieren, die ein Übergreifen der Virusinfektion auf andere Regio-nen des ZNS verhindern. Eine funktionierende Immunität in der Peripherie und die Blut-Hirn-Schranke scheinen nicht ausreichend zu sein, um eine Infektion des ZNS mit VSV zu verhindern. Stattdessen muss es zur Aktivierung von IFN-abhängigen Mechanismen innerhalb des Riechhirns kommen, die ein Übergreifen der VSV Infektion auf andere Hirnregionen verhindert und zur Elimination von VSV im Riechhirn beiträgt.
Characterisation of cytosolic prion protein-mediated putative cytotoxicity in neuronal cell lines
(2006)
Prion diseases are a complex group of fatal neurodegenerative disorders with a broad host spectrum, which are characterised by strong neuronal cell loss, spongiform vacuolation and astrocytic proliferation. The molecular mechanisms of prion-mediated neurodegeneration are not yet fully understood. Recently, it has been proposed that neuronal cell death might be triggered by cytosolic accumulation of misfolded cellular prion protein (PrPC) due to impairment of proteasomal degradation. Cytosolic PrPC could result from either retro-translocation via the endoplasmatic reticulum-associated degradation system (ERAD) or abortive translocation of PrPC into the ER. Indeed, expression of cytosolic PrP (Cy-PrP) was shown to be neurotoxic both in vivo and in vitro. However, contradicting results on cytosolic PrP-mediated neurotoxicity in cultured cells have been reported. Cytosolic PrP–mediated cytotoxicity may play a central role in the pathogenesis of prion diseases. In order to investigate the molecular mechanisms of this process, a detailed analysis of N2a cells conditionally expressing cytosolic PrP (Cy-PrP) was performed in this study. The following results were obtained: First, Cy-PrP expression is not per se sufficient to trigger cytotoxicity in N2a cells independently of proteasome inhibition. Second, Cy-PrP is degraded with kinetics resembling the degradation of cell membrane-anchored full-length PM-PrP. In this process, the 20/26S proteasome was responsible for Cy-PrP degradation while the proteolysis of matured full length PM-PrP is not affected by the proteasomal system. Third, Cy-PrP accumulates in fine foci when expressed at high levels and co-localises with the cytosolic chaperone Hsc70 in EEA-1 positive endocytic vesicles. From these data it was proposed that the chaperone Hsc70 acts as a regulator for the controlled formation of amorphous Cy-PrP aggregates and their transport to endosomal vesicles. This Hsc70-dependent mechanism may confer protection to N2a cells against toxic accumulation of Cy-PrP in the cytosol.
Gehirne von an Scrapie erkrankten Tieren sind histopathologisch durch Vakuolisierung, Astrogliose, Neurodegeneration und charakteristische PrPSc-Ablagerungen gekennzeichnet. Die pathologischen Mechanismen, die zu diesen Veränderungen führen, sind noch weitgehend unverstanden. Die Untersuchung der differentiellen Genexpression in Scrapie-infizierten Mausgeweben kann zu einem besseren Verständnis der pathogenen Mechanismen dieser Erkrankung auf molekularer Ebene beitragen. Auch könnten einige der differentiell exprimierten Gene zur Entwicklung eines auf Surrogatmarkern basierenden Testsystems beitragen oder für die Entwicklung von Strategien zur therapeutischen Intervention nützlich sein. Um im Verlauf der Scrapieerkrankung in Mäusen hoch- oder herunterregulierte Gene zu identifizieren, wurden RNA arbitrarily primed PCR (RAP-PCR) und suppression subtractive hybridisation (SSH) an Hirn- und Milzproben Scrapie-infizierter Mäuse und gesunder Kontrolltiere durchgeführt. Die Ergebnisse wurden anhand eines differentiellen Screening-Schrittes, Sequenzanalysen und Northernblots bestätigt. Durch einen Datenbankabgleich der erhaltenen Sequenzen wurden mehrere Kandidaten identifiziert. Einige davon, wie GFAP, Apolipoprotein D, Vimentin, Mx-Protein, MHC I und II wurden bereits als in Scrapie-infizierten Gehirnen hochreguliert von anderen Arbeitsgruppen publiziert. Eine differentielle Regulation weniger weiterer Kandidaten, wie Cytochromoxidase, Ubiqitinierungsfaktor E4a und das herunterregulierte Stathmin wurden bisher noch nicht beschrieben. Auch eine bisher unbekannte differentiell exprimierte Sequenz wurde gefunden. Ergänzend zu den Untersuchungen auf Nukleinsäureebene wurde die 2DElektrophorese für Gehirngewebe zur Untersuchung der differentiellen Expresssion auf Proteinebene unter Berücksichtigung posttranslationaler Modifikationen etabliert. Protokolle für die Vorbereitung von Mäusegehirnproben, die Durchführung der isoelektrischen Fokussierung und der 2. Dimension, sowie Färbeprotokolle für qualitative und quantitative Analysen der Gele unter Berücksichtigung der Erfordernisse nachfolgender MALDI-Analysen wurden erarbeitet.