Refine
Document Type
- Doctoral Thesis (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Computersimulation (2)
- Molekulardynamik (2)
- Calcium ATPase (1)
- Calcium-ATPase (1)
- Dauerstrichlaser (1)
- Elektrostatik (1)
- Energietransduktion (1)
- FT-IR-Spectroscopy (1)
- FT-IR-Spektroskopie (1)
- Freie Energie (1)
Institute
- Physik (2)
- Biochemie und Chemie (1)
This work presents a contribution to the literature on methods in search of lowdimensional models that yield insight into the equilibrium and kinetic behavior of peptides and small proteins. A deep understanding of various methods for projecting the sampled configurations of molecular dynamics simulations to obtain a low-dimensional free energy landscape is acquired. Furthermore low-dimensional dynamic models for the conformational dynamics of biomolecules in reduced dimensionality are presented. As exemplary systems, mainly short alanine chains are studied. Due to their size they allow for performing long simulations. They are simple, yet nontrivial systems, as due to their flexibility they are rapidly interconverting conformers. Understanding these polypeptide chains in great detail is of considerable interest for getting insight in the process of protein folding. For example, K. Dill et al. conclude in their review [28] about the protein folding problem that "the once intractable Levinthal puzzle now seems to have a very simple answer: a protein can fold quickly and solve its large global optimization puzzle simply through piecewise solutions of smaller component puzzles".
Die P-Typ-ATPasen finden sich in allen Domänen des Lebens und stellen die größte Gruppe aktiver Ionentransporter in Zellen dar. Es handelt sich bei den P-Typ-ATPasen um integrale Membranproteine, die eine große Anzahl verschiedenster Ionen aktiv über eine biologische Membran transportieren. Die für diesen Ionentransport notwendige Energie wird durch Bindung und Hydrolyse von Adenosintriphosphat (ATP) und durch Phosphorylierung des Enzyms gewonnen. Diese, im cytoplasmatischen Teil gewonnene Energie, muss für den Ionentransport von der Phosphorylierungsstelle zur räumlich entfernten transmembranen Ionenbindungsstelle übertragen werden, bei dem das Protein einem Reaktionszyklus mit zwei Hauptkonformationszuständen E1 und E2 unterliegt. Zwischen diesen beiden Zuständen finden große strukturelle Änderungen statt, durch die die Ionenaffintät und die Zugänglichkeit der Ionenbindungsstelle reguliert wird. Da dieser Mechanismus der Energiegewinnung für alle Ionenpumpen dieser Art ähnlich ist, wurde die Ca2+-ATPase und die Na+/K+-ATPase als Modellproteine für die Untersuchung molekularer Mechanismen in P-Typ-ATPasen ausgewählt. Im Rahmen der vorliegenden Arbeit soll die Energietransduktion in P-Typ-ATPasen im Allgemeinen und der Protonengegentransport bzw. ein potentieller Protonentransportweg in der Ca2+-ATPase im Speziellen untersucht werden. Die beiden oben genannten Mechanismen sollen mittels computergestützter Methoden analysiert werden. Vor allem die Ca2+-ATPase ist prädestiniert für computergestützte Untersuchungen, da für diese sehr viele hochaufgelöste Röntgenstrukturdaten vorliegen, wenn auch bisher aufgrund der Größe und Komplexität des Systems nur sehr wenige theoretische Arbeiten durchgeführt wurden. Um den Energietransduktionsmechanismus in P-Typ-ATPasen zu untersuchen, wurde mittels Elektrostatik-Rechnungen der Einfluss eines elektrischen Feldes auf die verschiedenen Transmembranhelices untersucht. Dazu wurde ein Simulationssystem entwickelt, welches aus einem molekularen Kondensator besteht, der im Modell das Anlegen eines homogenen elektrischen Feldes über den Transmembranbereich simuliert. Da es sich bei dem Energietransduktionsmechanismus um einen dynamischen Prozess handelt, wurden die Elektrostatik-Rechnungen um Molekulardynamik-Simulationen erweitert. Mit diesen kann die konformelle Dynamik der P-Typ-ATPasen während der Energietransduktion in die Elektrostatik-Rechnungen einbezogen werden. Aus Spannungsklemmen-Fluorometrie-Experimenten, bei denen eine Spannung über eine Membran angelegt wird, kann geschlossen werden, dass die Helix M5 für die Energietransduktion verantwortlich ist. Mit den in dieser Arbeit durchgeführten Elektrostatik-Rechnungen konnte für verschiedene Enzymzustände der Ca2+-ATPase und für die Na+/K+-ATPase gezeigt werden, dass die Helix M5 die größten Konformeränderungen aufgrund des elektrischen Feldes aufweist. Durch die Erweiterung der Elektrostatik-Rechnungen um die Methode der Molekulardynamik-Simulation konnte zusätzlich die elektrische Feldstärke reduziert werden. Auch dabei zeigte sich, dass auf der Helix M5 die meisten Rotameränderungen durch das elektrische Feld induziert werden. Die aus Experimenten vermutete Rolle der Helix M5 als wichtiges Energietransduktionselement ließ sich mit diesen Simulationsrechnungen bestätigen. Um einen möglichen Protonenweg durch den Transmembranbereich der Ca2+-ATPase aufzuklären, wurden explizite Wassermoleküle in sechs verschiedene Enzymzustände der Ca2+-ATPase eingefügt. Aus Experimenten ist bekannt, dass in der Ca2+-ATPase ein Protonengegentransport stattfindet. Deshalb wurden für verschiedene Enzymzustände der Ca2+-ATPase mittels Elektrostatik-Rechnungen die Protonierungen der eingefügten Wassermoleküle sowie der titrierbaren Aminosäuren bestimmt. Aus den Ergebnissen dieser Rechnungen kann geschlossen werden, dass es sich bei dem Protonentransfer nicht um einen linearen Transport der Protonen handelt. Die Untersuchungen zeigen einen mehrstufigen Prozess, an dem Protonen in verschiedenen Transmembranbereichen der Ca2+-ATPase beteiligt sind. Anhand der berechneten Protonierungszustände der eingefügten Wassermoleküle und der pK-Werte der Aminosäuren im Transmembranbereich konnte weiterhin ein möglicher Protonenweg identifiziert werden.
Die Funktion biologischer Peptide und Proteine hängt wesentlich von deren intakten molekularen Struktur ab. Krankheiten, wie z.B. Alzheimer oder Diabetes, entstehen durch fehlgefaltete, aggregierte Peptidstrukturen. Die Ausbildung einer nativ gefalteten Konformation wird durch die Formierung von Sekundärstrukturelementen - in charakteristischer Weise angeordnete lokale Strukturen - initiiert und bildet einen geschwindigkeitslimitierenden Schritt in der Proteinfaltung. Die Erforschung und Analyse dieser ersten Faltungsprozesse ist deshalb von grundlegender Relevanz in der biophysikalischen Forschung, auch in Hinblick auf pharmazeutisch-medizinische Anwendungen. Bei der Untersuchung des Faltungsmechanismus kommen vor allem kleine Peptide mit eindeutig ausgebildeten Sekundärstrukturmotiven zum Einsatz. Ihre geringe Größe und strukturelle Eindeutigkeit machen diese kleinen Peptide zu idealen Modellsystemen, um diejenigen Faktoren zu untersuchen, die die Proteinfaltung steuern und beeinflussen. Die zur Untersuchung der Faltungsprozesse verwendeten Techniken müssen dabei sowohl eine Spezifität für die unterschiedlichen Strukturelemente, als auch eine der Faltungsdynamik angemessen Zeitauflösung besitzen. Im Rahmen dieser Arbeit wurden CD- und FTIR-Messungen zur Untersuchung der Strukturstabilität von Polypeptiden unter Gleichgewichtsbedingungen durchgeführt. Durch Variation von pH-Wert und Temperatur wurden damit Stabilitätseigenschaften ausgewählter Peptidsysteme analysiert. Um zeitaufgelöste Faltungsdynamiken von Peptiden detektieren zu können, wurde ein Spektrometer mit Laser-induziertem Temperatursprung (DeltaT ca. 10 °C in 10 ns) und IR-Einzelwellendetektion so modifiziert und optimiert, dass Peptiddynamiken im nanosec bis microsec Zeitbereich gemessen werden konnten. Neben der Modifikation der Temperatursprung-Apparatur, bei der optische Komponenten ersetzt und Störsignale reduziert wurden, konnte auch die Auswertung der kinetischen Daten durch die Entwicklung eines geeigneten Algorithmus verbessert werden. Als notwendige Vorarbeit der Faltungsstudien an Peptiden in wässriger Lösung wurden statische FTIR-Absorptionsmessungen am Lösungsmittel D2O durchgeführt. Dadurch wurden die durch Temperaturvariation erzeugten Absorptionsänderungen des Lösungsmittels ermittelt. Diese wurden zudem zur Kalibrierung des Laser-induzierten Temperatursprunges verwendet. Um Lösungsmittelabsorptionen von strukturellen Änderungen des Peptids zu trennen, wurde ein Auswerteverfahren entwickelt, das die temperaturabhängigen Absorptionsänderungen des Lösungsmittels berücksichtigt. Temperatur- und pH-abhängige Konformationsdynamik wurde am alpha-helikalen Peptid Polyglutaminsäure untersucht. Zunächst wurden CD- und FTIR-Messungen zur Thermostabilität und der Reversibilität der Ent- und Rückfaltung unter Gleichgewichtsbedingungen und bei unterschiedlichen pH-Werten durchgeführt. Der thermisch induzierte Strukturübergang von alpha-Helix nach ungeordneter Knäuel-Struktur wurde mit Hilfe der Laser-induzierten Temperatursprung-Technik zeitaufgelöst untersucht und Relaxationsraten bei verschiedenen pH-Werten bestimmt. Weitere Messungen zur Konformationsstabilität und –dynamik wurden an beta- Hairpin-Peptiden durchgeführt, die kleine Modellsysteme für beta-Faltblattstrukturen darstellen. Die in dieser Arbeit untersuchten Trpzip2C Peptide, die aufgrund hydrophober Wechselwirkungen der Tryptophane eine stabile beta-Hairpin-Struktur in wässriger Lösung ausbilden, waren an verschiedenen Positionen innerhalb der Aminosäure-sequenz selektiv isotopenmarkiert. Durch diese Markierungen im Peptidrückgrat werden spezifisch spektrale Änderungen im Infrarotspektrum erzeugt, die Untersuchungen zur Amidbandenkopplung und lokalisierten Strukturdynamik ermöglichen. Diese Ergebnisse stellen die erste Anwendung der Kombination von selektiv isotopenmarkierten alpha-Hairpin-Peptiden und der Temperatursprung-Technik dar, um Konformationsdynamiken ortsaufgelöst zu untersuchen. Für alle untersuchten Trpzip2C-Peptidvarianten konnte gezeigt werden, dass der Faltungsprozess in einem Temperaturbereich unterhalb von ~ 300 K nicht durch ein Zwei-Zustandsmodell beschrieben werden kann, sondern Intermediate gebildet werden. In diesem Temperaturbereich konnten wellenlängenabhängig Unterschiede in Relaxationsraten gemessen werden, die die Hypothese des „hydrophoben Kollaps“ für den Faltungsmechanismus dieser beta-Hairpin-Peptide unterstützen.