Refine
Document Type
- Doctoral Thesis (6)
Language
- German (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Gentherapie (1)
- Gentransfer (1)
- Paul-Ehrlich-Institut (1)
- R peptide (1)
- R-Peptid (1)
- Retroviren (1)
- Stammzellen (1)
- cell targeting (1)
- gene therapy (1)
- retrovirus (1)
Institute
- Biochemie und Chemie (5)
- Medizin (1)
Mechanismus der Inhibition APOBEC3-vermittelter Restriktion durch das Bet Protein der Foamyviren
(2009)
Der Selektionsdruck seitens der Pathogene führte im Laufe der Evolution zur Entwicklung verschiedener Abwehrmechanismen. Neben der angeborenen und adaptiven Immunabwehr rückte in den letzten Jahren ein neuer Immunitätszweig in den Fokus der Wissenschaft, die sogenannte intrinsische Immunität. Dieser Begriff geht einher mit der Entdeckung zellulärer, antiviral wirkender Deaminasen aus der Familie der APOBEC3 Proteine (A3A, -B, -C, -DE, -F, -G und -H). Diese Proteine übten einen starken Selektionsdruck aus, so dass nur die Viren überleben konnten, die einen Weg gefunden haben diesen zellulären Replikationsblock zu umgehen. Die komplexen Retroviren, wie Lenti- und Foamyviren, haben dazu Proteine entwickelt, welche in der Lage sind die A3 vermittelte, zelluläre Abwehr auszuhebeln. Während das Vif Protein des HI-Virus, das den proteasomalen Abbau des Zielproteins induziert, intensiv erforscht wurde, ist die Wirkungsweise des foamyviralen Bet noch unbekannt und Gegenstand dieser Arbeit. Die Aufklärung der Wirkungsweise des Bet Proteins erforderte zunächst die Etablierung eines experimentellen Systems, das die Messung antiviraler Aktivität verschiedener A3 Proteine, sowie deren Neutralisation durch Bet erlaubt. Bet zeigt sich aktiv gegen die meisten Deaminasen der Primaten, nicht aber gegen die Deaminasen der Katze und der Maus. Da die Aktivität sowohl im homologen (PFV), als auch heterologen (SIV) System bestimmt wurde, wird eine Beteiligung anderer viraler Komponenten ausgeschlossen. Aus dem breiten Spektrum sensitiver A3 Proteine wurden das humane A3B, -C und –G für weitere Untersuchungen verwendet. Durch Titrationsexperimente mit huA3C und –G zeigte sich, dass Bet dosisabhängig agiert und unterschiedliche A3 Proteine unterschiedlich empfänglich sind. Die mittels Immunopräzipitation untersuchte Bindung zwischen Bet und den empfänglichen A3 Proteinen korreliert mit deren Neutralisierung. Die Bindungsstudie mit in vitro hergestelltem huA3C deutet auf eine direkte, RNase unabhängige Interaktion hin. Die Bet-bedingte Inhibition der Dimerisierung von huA3C und -G konnte mittels Immunopräzipitation und chemischer Quervernetzung gezeigt, sowie die Bet-Bindestelle mithilfe eines Rekombinationsansatzes innerhalb der Dimerisierungsfläche von huA3C lokalisiert werden. Fraktionierungen der Proteine nach Löslichkeit bzw. Dichte, sowie Immunofluoreszenzstudien und FRAP (fluorescence recovery after photobleaching) zeigten Bet-abhängige Änderungen der Lokalisierung, Komplexbildung und zytoplasmatischen Beweglichkeit von huA3B, -C und –G. Als Resultat dieser veränderten Eigenschaften Bet-sensitiver A3 Proteine wird ihre Inkorporation in Virionen verhindert, was zum Verlust der antiviralen Aktivität führt. Damit beschreiben die Ergebnisse dieser Arbeit einen neuen Weg, den Viren beschreiten um die A3 vermittelte Immunität auszuschalten.
Eine in vivo Modifizierung von Blutstammzellen wäre für eine Reihe gentherapeutischer Therapieansätze vorteilhaft. Dies würde voraussetzen, dass retrovirale Vektoren gezielt auf Blutstammzellen ausgerichtet werden können. Für dieses sogenannte Zelltargeting bietet sich das vom Milznekrose-Virus von Vögeln (SNV) abgeleitete Vektorsystem an, bei dem die Rezeptorbindungsdomäne des Env-Proteins modifiziert werden kann. Im Rahmen der vorliegenden Arbeit sollte ein SNV-basierter retroviraler Zelltargeting-Vektor entwickelt werden, der einen selektiven Gentransfer in die primären humanen CD34-positiven hämatopoetischen Zellen ermöglicht. Zur weitergehenden Charakterisierung des SNV-Vektorsystems sollte geklärt werden, ob das Env-Protein des SNV ein mit anderen gamma-retroviralen Env-Proteinen vergleichbares R-Peptid aufweist, dessen mögliche Rolle bei viralem Zelleintritt ebenfalls untersucht werden sollte. Um eine Zielzell-Spezifität des SNV-Vektors zu erreichen, wurde die gesamte SU-Domäne des SNV-Env-Proteins mit einem einkettigen Antikörperfragment (scFv) ersetzt, das gegen das CD34 Molekül gerichtet ist,. Mit diesem modifizierten Env gelang es, [(antiCD34-TM)SNV]-Vektorpartikel herzustellen, die spezifisch CD34-positive Zellen transduzierten. Essentiell für die Erzeugung solcher Vektoren war die Etablierung einer stabilen Verpackungszelllinie, die Vektorpartikel mit einem Titer von 2x105 i.E./ml produzierte. In Transduktionsexperimenten mit verschiedenen Zelllinien wurde gezeigt, dass [(antiCD34-TM)SNV]-Vektoren eine deutliche Präferenz für CD34+-Zellen und nicht für CD34--Zellen besitzen, wobei der Unterschied in der Transduktionseffizienz zwischen CD34-positiven und –negativen Zellen um den Faktor 100 lag. [(antiCD34-TM)SNV]-Vektoren waren in der Lage, den Reportergentransfer auch in primäre humane Stammzellen zu bewirken. Hierzu wurde ein Transduktionsprotokoll so optimiert, dass die aus dem Nabelschnurblut isolierten CD34+-Zellen transduziert werden konnten. Der für diese Zielzellen bestimmte Vektortiter betrug bis zu 2x106 i.E./ml. In einem Gemisch von primären CD34+- und CD34--Zellen konnte der Vektor zwischen dem Target- und Nontarget-Zellen unterscheiden. Somit wurde zum ersten Mal nicht nur Spezifität, sondern auch Selektivität des SNV-Vektorsystems demonstriert. Dieses Ergebnis ist für eine Weiterentwicklung des Vektors für die in vivo Anwendung in Rahmen einer Gentherapie eine wichtige Voraussetzungen. Im zweiten Teil der Arbeit wurde der Fusionsvorgang bei Virus-Eintritt näher untersucht. Anlass dafür war die experimentelle Beobachtung, dass das Env-Protein des SNV bei der Virusknospung von einer viralen Protease innerhalb der zytoplasmatischen Domäne proteolytisch gespalten wird. Ein Sequenz-Vergleich des SNV TM-Proteins mit dem MLV TM-Protein ergab Hinweise darauf, dass es sich um die Abspaltung des sogenannten R-Peptides analog zu MLV handeln könnte. Die Expression von SNV-Env- Mutanten mit einem entsprechend verkürzten C-Tail (Env delta R) führte zur Synzytien-Bildung. Die bildung hochfusogener Oberflächenhüllproteine durch die Abspaltung des R-Peptids konnte auch für andere gamma-Retroviren gezeigt werden. Die Synzytienbildung konnte quantitativ unter den Env delta R-Varianten verschiedener gamma-Retroviren in einem etablierten Fusionsassay verglichen werden. Das Env delta R des endogenen Retrovirus des Schweins (PERV) des Typs A erwies sich als potentestes Fusionsagens. Als Folge der Ergebnisse der vorliegenden Arbeit wurde postuliert, dass die Abspaltung des R-Peptides ein allgemeiner Mechanismus bei der Partikelreifung der gamma-Retroviren ist und eine fusionsregulierende Rolle besitzt. Eine Weiterentwicklung fusionsaktiver Env-Varianten als mögliche therapeutische Gene für eine Tumor-Gentherapie ist somit diskutierbar.
Bei einer HIV-1-Infektion ist die Krankheitsprogression zum Vollbild AIDS mit dem Auftreten von Virusvarianten assoziiert, die den Chemokinrezeptor CXCR4 zum Zelleintritt verwenden. Dagegen nutzen SIV ein breites Korezeptorspektrum, vor allem CCR5. Im Verlauf einer SIV-Infektion findet kein Korezeptorwechsel von CCR5 zu CXCR4 statt. In dieser Arbeit wurde der Einfluß einer solchen Änderung der Korezeptornutzung auf die SIVagm-Infektion in-vitro und auf den Verlauf der apathogenen SIV-Infektion in-vivo nach Infektion von Schweinsaffen untersucht. Um die Korezeptorspezifität eines SIV zu CXCR4 zu verändern, wurde das in AGM und Schweinsaffen apathogene SIVagm3mc verwendet, das als Korezeptoren zum Zelleintritt CCR5, BOB und BONZO nutzt. Die potentielle Korezeptorbindungsstelle, der zu HIV-1 homologe V3-Loop des Oberflächen-Hüllproteins gp130-SU des SIVagm3mc wurde durch den V3-Loop des CD4 / CXCR4-tropen HIV-1-Klons BH10 ersetzt. Das resultierende SIVagm3-X4mc erwies sich als replikationskompetent und verwendete zum Zelleintritt ausschließlich CD4 / CXCR4. Die Replikation wurde durch den natürlichen Liganden des CXCR4, SDF-1a, dosisabhängig gehemmt. Überraschenderweise besaß SIVagm3-X4mc die Eigenschaft, in-vitro nicht nur in IL2 / PHA-stimulierten sondern auch in unstimulierten PBMC von Schweinsaffen und AGM replizieren. Nach Infektion von je zwei Schweinsaffen (Macaca nemestrina) mit SIVagm3mc bzw. SIVagm3-X4mc konnte bis zu 14 Monate nach Inokulation keine Krankheitsentwicklung und kein Abfall der absoluten Anzahl der CD4 -T-Lymphozyten beobachtet werden. Die Virusbelastung der Tiere war vergleichbar und die Korezeptornutzung blieb auch nach in-vivo Replikation erhalten. Interessanterweise konnte SIVagm3-X4mc, nicht aber das Wildtypvirus SIVagm3mc, durch Sera von SIVagm3mc und SIVagm3-X4mc infizierten Schweinsaffen neutralisiert werden. HIV-1-spezifische Antikörper konnten in Sera eines mit SIVagm3-X4mc infizierten Tieren nachgewiesen werden. Diese Studie beschreibt zum ersten Mal den erfolgreichen Austausch eines V3-Loops bei SIV. Das resultierende SIVagm3-X4mc, das wie beabsichtigt CD4 / CXCR4-positive Zellen infizierte, war im Gegensatz zum Ausgangsvirus in der Lage, in nicht-stimulierten PBMC zu replizieren und zeigte Sensitivität gegenüber neutralisierenden Antikörpern, die in SIVagm3mc- und SIVagm3-X4mc-infizierten Schweinsaffen induziert wurden.
Für verschiedene gentherapeutische Ansätze zur Behandlung der HIV-Infektion oder anderer erworbener oder angeborener Krankheiten wie z. B. der angeborenen Immunschwäche SCID ist ein hocheffizienter Gentransfer in CD4-positive T- Lymphozyten erforderlich. In der vorliegenden Arbeit wurden daher geeignete retrovirale Pseudotypvektoren weiterentwickelt. Unter Einsatz von Markergenen wurden Methoden der Transduktion primärer humaner Lymphozyten optimiert. Schließlich wurden verschiedene potentielle therapeutische anti-HIV-Gene durch retroviralen Gentransfer in humane T-Zelllinien übertragen und hinsichtlich der Hemmung der in-vitro Replikation verschiedener HIV-Stämme verglichen. Zunächst wurden stabile Verpackungszelllinien zur Herstellung von [MLV(HIV-1)]- und [MLV(GaLV)]-Pseudotypvektoren entwickelt, die ein für die Analyse der Transduktionseffizienz geeignetes Markergen übertragen. [MLV(HIV-1)]-Vektoren konnten mit Titern bis zu 2 x 10 hoch 5 i.E. / ml hergestellt werden. Die Optimierung der Kultivierung primärer humaner T-Lymphozyten vor dem ex- vivo Gentransfer ergab, dass eine 24-stündige PHA/IL-2 Stimulation mit anschließender 48-stündiger Kultivierung in IL-2 Medium optimal für die Transduktion primärer CD4-positiver T-Lymphozyten unter weitgehender Erhaltung des Expressionsmusters der Chemokinrezeptoren CXCR4 und CCR5 ist. Bei längerer Stimulation mit PHA und IL-2 verändert sich sowohl das CD4/CD8-Verhältnis als auch die CCR5-Expression gegenüber nativem Blut signifikant. Die Analyse der Expression des übertragenen Markergens und anderen Oberflächenmarkern der Zellen nach der Transduktion zeigte eine strikte Abhängigkeit der Transduktion der [MLV(HIV-1)]-Vektoren vom HIV-Rezeptor CD4, während herkömmliche [MLV(GaLV)]-Vektoren sowohl CD4-positive als auch CD4-negative Zellen transduzierten. Die Effizienz von [MLV(HIV-1CXCR4)]- Vektoren für CD4-positive Zellen war signifikant höher als die der [MLV(GaLV)]-Vektoren, während die Transduktionseffizienz der [MLV(HIV-1CCR5)]-Vektoren aufgrund der geringen Anzahl CCR5-positiver CD4-T-Zellen am niedrigsten war. Zwei Tage nach der Transduktion wurde eine reduzierte Korezeptorexpression in den Zellen nachgewiesen. Gründe hierfür könnten die Internalisierung der Korezeptoren nach der Transduktion oder eine durch die Kultivierung der Zellen bedingte Änderung der Expression sein. Nach weiterer Optimierung des retroviralen Gentransferprotokolls, u.a. durch Verwendung autologen Plasmas, konnten schließlich bei einmaliger Transduktion mit einer m.o.i. von 5 mit den [MLV(HIV-1CXCR4)]-Vektoren Transduktionsraten von bis zu 80 % erreicht werden. Zum Vergleich der Wirkung potentieller anti-HIV-Gene, die mit den neuen Vektoren in der Gentherapie des Immunschwächesyndroms AIDS eingesetzt werden könnten, wurden fünf verschiedene HIV-Inhibitoren (zwei intrazellulär exprimierte Antikörperfragmente (scFv) gegen HIV-1 Integrase und Reverse Transkriptase, zwei Ribozyme, die die HIV-1 RNA in der 5´-LTR oder im Pol- Leserahmen spezifisch spalten, sowie Interleukin-16) in den gleichen Transfervektor kloniert und durch retroviralen Gentransfer in die T-Zelllinie SupT1 übertragen. In Infektionsversuchen mit zwei unterschiedlichen HIV-1 Stämmen vermittelte jedoch keiner der potentiellen Inhibitoren eine signifikante Resistenz gegenüber HIV-1. Erst nach Sortierung der Kulturen auf starke Expression der übertragenen Gene konnte in den sortierten Zellen eine geringe Hemmwirkung des 5´-LTR-spezifischen Ribozyms auf die in-vitro Replikation des Stammes HIV-1IIIB, nicht jedoch auf die des Stammes HIV-1NL4-3 gezeigt werden. Die Signifikanz dieser Beobachtung muß über den Vergleich der Hemmwirkung weiterer Inhibitorgene geklärt werden.
Die Etablierung eines HIV-1 Tiermodells ist ein großes Ziel auf dem Weg zur Entwicklung antiretroviraler Medikamente und Impfstoffe gegen HIV-1. Speziesspezifische Restriktionsfaktoren und fehlende Kofaktoren verhindern jedoch die Replikation von HIV-1 in Tieren. Restriktionsfaktoren sind Bestandteil der intrinsischen Immunität und entwickelten sich im Laufe der Evolution als Abwehrmechanismus gegen diverse Pathogene. Dazu gehören die Proteine der APOBEC3-Familie, TRIM5􀀁 und Tetherin, welche die Virusreplikation von HIV-1 an verschiedenen Punkten seines Lebenszyklus inhibieren. Koevolutionär entwickelten Retroviren Antagonisten, um die restriktive Funktion ihrer Wirtsproteine zu umgehen. Um ein replikationskompetentes, simiantropes HIV zu generieren, wurden im Rahmen dieser Arbeit die Sequenzen vifHIV-1 und vpuHIV-1 gegen vifagm.tan aus SIVagm.tan und vpugsn/den aus den Immundefizienzviren SIVgsn und SIVden substituiert, um die Restriktion gegen A3G und Tetherin in Zellen der Afrikanischen Grünen Meerkatze zu umgehen. Die TRIM5 vermittelte Restriktion wurde über eine Mutation in der Cyclophilin A Bindedomäne des Kapsids verhindert. Die Analyse der Vifagm.tan Funktion bestätigte den geänderten Tropismus des chimären HIV-1 bezüglich der APOBEC3G vermittelten Restriktion. Denn nach Austausch des vifHIV-1 Gens war das Virus nicht mehr in der Lage, die Aktivität des humanen APOBEC3G zu unterbinden und initiierte stattdessen die Degradation des Analogons aus der Afrikanischen Grünen Meerkatze. Weiterhin konnte die erfolgreiche Klonierung des vpugsn/den Gens in HIV-1 die Aktivität der SHIV-Konstrukte gegen Tetherin der Afrikanischen Grünen Meerkatze und der Rhesusaffen ändern, wohingegen humanes Tetherin nicht mehr abgebaut werden konnte. Trotz der erfolgreichen Aktivität der konstruierten SHIVs gegen die zellulären Restriktionsfaktoren der Afrikanischen Grünen Meerkatze, replizierten die generierten chimären Viren in einer AGM Zelllinie, nicht aber in periphären mononuklearen Blutzellen der Afrikanischen Grünen Meerkatze. Ein Indiz, das für weitere strukturelle Anpassungen der Viren gegenüber ihren Wirten spricht, die zur Bildung der Spezies-Barriere beitragen und Zoonosen erschweren. Im zweiten Teil der Dissertation wurden die Aktivitäten der Proteine der APOBEC3-Familie und VifHIV-1 auf ihre Regulation durch Phosphorylierung untersucht. Proteinphosphorylierungen gehören zu den wichtigsten posttranslationalen Proteinmodifikationen, um diverse Funktionen wie die Enzymaktivität, Proteininteraktionen und die zelluläre Lokalisation zu steuern. Dabei konnte die durch Yang et al. postulierte Phosphorylierung von VifHIV-1 nicht bestätigt werden. Analysen der mutmaßlichen VifHIV-1 Phosphomutanten enthüllten, dass die Funktion von VifHIV-1, die Infektiosität von HIV-1 zu gewährleisten, durch Substitution der mutmaßlichen Phosphoaminosäuren nicht beeinträchtigt wird und ebenso sämtliche Phosphomutanten die Degradation von A3G initiierten, wenn auch in unterschiedlichem Maße. Weiterhin wurde im Rahmen dieser Arbeit gezeigt, dass A3C entweder in einem phosphorylierten Protein-Komplex vorliegt oder ein phosphoryliertes Protein bindet. Zudem konnte ermittelt werden, dass APOBEC3A als einziges Protein der APOBEC3-Familie nach TPA- und cAMP-Stimulation phosphoryliert wird. In vitro Kinase Studien konnten zeigen, dass die Phosphorylierung unter anderem durch ERK2 erfolgt. Es konnte jedoch kein Zusammenhang zwischen der Phosphorylierung von A3A und dessen zellulärer Lokalisation, Aktivität gegen HIV-1 als auch gegen die Retrotranspositionselemente IAP und LINE-1 hergestellt werden. Dies lässt den Schluss zu, dass die Phosphorylierung die untersuchten Aktivitäten von APOBEC3A nicht beeinflusst oder APOBEC3A eine bisher unbekannte durch Phosphorylierung regulierte Funktion besitzt.
In der Abteilung „Medizinische Biotechnologie“ des Paul-Ehrlich-Instituts konnte gezeigt werden, dass ein SIVsmmPBj-abgeleiteter Vektor Vorteile gegenüber HIV-1-abgeleiteten Vektoren aufweist, da auch in der G0-Phase des Zellzyklus arretierte Zelllinien und Fibroblasten sowie primäre humane Monozyten transduziert werden können. Im ersten Teil der hier vorliegenden Arbeit wurden die besonderen Transduktionsfähigkeiten diese SIVsmmPBj Vektors eingehend untersucht. Zunächst wurden die transduzierbaren Monozyten morphologisch und biochemisch genauer charakterisiert; insbesondere wurde gezeigt, dass sich diese Zellen tatsächlich in der G0-Phase des Zellzyklus befinden und auch nach der Transduktion die Fähigkeit aufweisen, sowohl in Makrophagen als auch in Dendritischen Zellen auszudifferenzieren. Bei dem Versuch andere primäre humane Blutzellen zu transduzieren wurde gezeigt, dass SIVsmmPBj Vektoren für die Transduktion unstimulierter CD4+ T-Zellen nicht geeignet sind. Zum besseren Verständnis der zugrunde liegenden Mechanismen die zur Transduktion arretierter Zellen und Monozyten durch SIVsmmPBj-abgeleitete Vektoren führen, wurde der Einfluss der akzessorischen viralen Proteine untersucht. Dazu wurde ein PBj-Knockout- Vektor, bei dem die Expression aller akzessorischen Gene (vif, vpx, vpr und nef) inhibiert war, generiert und zur Transduktion von arretierten Zellen und Monozyten eingesetzt. Keines der akzessorischen Proteine war für die Transduktion der in G0 arretierten Zellen notwendig. Für die Transduktion von Monozyten erwies sich das virale Protein Vpx jedoch als essentiell, da der Knockout-Vektor zur Transduktion von Monozyten nur nach Supplementierung mit diesem Protein in der Lage war. Die Supplementierung von HIV-1 Vektoren mit Vpx des SIVsmmPBj ermöglichte keine Transduktion von Monozyten, was darauf hindeutet, dass weitere Proteine von SIVsmmPBj oder aber auch die Fähigkeit der prinzipiellen Transduktion von Zellen der G0-Phase eine Rolle spielen. Im letzten Teil dieser Arbeit wurde ein auf SIVsmmPBj basierendes Dreiplasmid-Vektorsystem entwickelt. Für das Verpackungskonstrukt wurde das Verpackungssignal charakterisiert. Dabei konnte gezeigt werden, dass der Bereich zwischen dem Promotor und dem Spleißdonor gelegene Bereich für eine effiziente Partikelbildung nötig ist und die Deletion der Region zwischen Spleißdonor und gag-Start-ATG zur Inaktivierung des Verpackungssignals ausreicht. Die aus dem Dreiplasmid-System generierten Vektoren erreichten Titer von bis zu 5 x 105 i.E./ml und waren nach Supplementierung mit Vpx dazu in der Lage, primäre humane Monozyten zu transduzieren. Der hier entwickelte, auf SIVsmmPBj basierende Vektor eröffnet neue Möglichkeiten in der Gentherapie. So sind nun auch Monozyten als wichtige Zielzellen der Tumortherapie einem Gentransfer durch lentivirale Vektoren zugänglich.