Refine
Document Type
- Doctoral Thesis (6)
- Bachelor Thesis (1)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Antiporter (1)
- Biophysical Chemistry (1)
- Biophysik (1)
- Black Lipid Membrane (1)
- CLC (1)
- Chloridkanal (1)
- ClC-7 (1)
- Cytochrome c oxidase (1)
- Cytochromoxidase (1)
- EAAC1 (1)
Institute
The dependence of the Escherichia coli Na+H+ antiporter A (EcNhaA) pH sensor mutant E241C on H+ and Na+ concentrations was tested using a solid supported membrane (SSM) based electrophysiological approach. Proteoliposome preparations with right side out (RSO) oriented carriers were used to investigate the passive downhill uptake mode (physiologically the reverse transport mode) at zero membrane potential. Na+ concentration gradients established with a rapid solution exchange acted as the driving force. When a Na+ concentration gradient was established at symmetrical pH, the transport activity of the E241C EcNhaA variant was similar to that of the wildtype EcNhaA, with no shift of the bell-shaped pH dependence, an increase of the KmNa at acidic pH and a decrease of the KmNa at alkaline pH, supporting the model of a competitive binding of Na+ and H+ to a common binding site.
Chloridkanäle und -transporter sind an wichtigen physiologischen Prozessen beteiligt [Jentsch et al., 2002; Zifarelli & Pusch, 2007; Jentsch, 2008] und mutationsbedingte Funktionsdefekte können mit verschiedenen Krankheiten in Verbindung gebracht werden [Planells-Cases & Jentsch, 2009]. Trotz der großen physiologischen Relevanz bilden diese Proteine eine unterrepräsentierte Klasse in der pharmakologischen Wirkstoffsuche [Verkman & Galietta, 2009], auch aufgrund fehlender adäquat robuster und Durchsatz-starker Testsysteme. Vor allem die Vertreter der intrazellulären CLC-Proteine, von denen bereits zwei eindeutig relevanten Krankheiten zugeordnet werden konnten (ClC-5 – Dent´sche Krankheit; ClC-7 – Osteopetrose), entziehen sich aufgrund ihrer vesikulären Lokalisation den klassischen elektrophysiologischen Methoden. Aus diesem Grund kam in dieser Arbeit die SSM-Technik [Schulz et al., 2008] zur Charakterisierung des lysosomalen Cl-/H+-Antiporters ClC-7 zum Einsatz. Bei geeigneter Membranpräparation können mit dieser Methode auch vesikuläre Transportprozesse elektrophysiologisch untersucht werden. Neben der grundlegenden biophysikalischen Untersuchung von ClC-7 war es mit Hilfe der SSM-Technik möglich, die Protonen-gekoppelte Antiportaktivität dieses vesikulären CLC-Vertreters nachzuweisen. Außerdem wurde ein robuster Assay etabliert, der auch die pharmakologische Untersuchung von ClC-7 erlaubt. Mit diesem konnte gezeigt werden, dass ClC-7 spezifisch durch die Chloridkanalblocker DIDS und NPPB mit relativ hoher Affinität (DIDS: IC50= 39 µM, NPPB: IC50= 156 µM) zu inhibieren ist. Da ClC-7 auch als potentielles Target in der Osteoporose-Therapie diskutiert wird [Schaller et al., 2005], bietet die SSM-Technik somit eine Plattform für pharmakologische Untersuchungen an diesem Transporter. Neben dem Wildtyp Protein wurde weiterhin die Funktionalität einer physiologisch wichtigen, der Osteopetrose zuzuordnenden Mutante (G215R), untersucht. Es konnte gezeigt werden, dass die Mutante noch immer eine signifikante Transportaktivität besitzt, jedoch einen schweren Lokalisationsdefekt aufweist und nicht mehr korrekt in die Lysosomen transportiert wird. Durch Koexpression der funktionalen beta-Untereinheit Ostm1 [Lange et al., 2006] war es möglich, die lysosomale Lokalisation teilweise, jedoch nicht vollständig wiederherzustellen. Dieser Effekt könnte somit ein Grund für den relativ milden Krankheitsverlauf der mit dieser Mutation verbundenen autosomal dominanten Osteopetrose (ADOII, Alberts-Schönberg Krankheit) sein. Da die SSM-Technik bisher ausschließlich zur Untersuchung primär und sekundär aktiver Transporter zum Einsatz kam [Schulz et al., 2008; Ganea & Fendler, 2009], wurde weiterhin die Eignung der Methode zur Charakterisierung passiver Ionenkanäle anhand des ligandengesteuerten P2X2 Rezeptors überprüft. Ein Vergleich der gewonnenen elektrophysiologischen und pharmakologischen Daten lieferte gute Übereinstimmungen mit den Ergebnissen konventioneller elektrophysiologischer Untersuchungen. So konnte gezeigt werden, dass sich die SSM-Technik auch zur Charakterisierung von Ionenkanälen eignet. Da Ströme über Ionenkanäle bei den klassischen Methoden über eine extern angelegte Spannung gesteuert werden, solch eine Kontrolle bei der SSM-Technik jedoch nicht möglich ist, wurde schließlich in dieser Arbeit versucht, mit Hilfe der lichtgesteuerten Protonenpumpe Bakteriorhodopsin (bR) eine Spannungskontrolle zu etablieren. Anhand eines Fusions-basierten Modellsystems [Perozo & Hubbell, 1993] konnte gezeigt werden, dass lichtgesteuerte Ionenpumpen prinzipiell zur Kontrolle von Ionenkanälen an der SSM genutzt werden können. Allerdings eignet sich bR aufgrund seiner geringen Plasmamembranexpression in CHO Zellen nicht zur direkten Koexpression und Steuerung von Vertebraten-Proteinen. Der Einsatz eukaryotischer Ionenpumpen, kombiniert mit Anionendiffusionspotentialen [Perozo & Hubbell, 1993], könnte sich allerdings als erfolgsversprechend erweisen und die SSM-Technik auch für die Charakterisierung von stark spannungsabhängigen Ionenkanälen öffnen.
Die vorliegende Arbeit beschäftigt sich mit der vergleichenden funktionalen Charakterisierung der E.coli Transporter LacY, FucP und XylE und des Glucose-Transporters GlcP aus Staphylococcus epidermidis sowie funktionsrelevanter Mutanten. Sie katalysieren in vivo den PMF-gekoppelten Zuckertransport und repräsentieren die major facilitator superfamily (MFS), einer der größten Transporter-Familien überhaupt. Die Studien wurden mithilfe einer elektrophysiologischen Methode auf Basis Festkörper-unterstützter Membranen (SSM) durchgeführt. Komplementär dazu wurden radioaktive Transportassays, fluorometrische Messungen, kinetische Simulationen und theoretische Berechnungen auf Basis der 3D-Strukturen durchgeführt. Experimentell bestimmte Zucker- und pH-Abhängigkeiten elektrogener steady-state und pre steady-state Reaktionen wurden verwendet, um ein allgemeingültiges kinetisches Modell aufzustellen.
Insgesamt konnten bei allen Transportern zwei elementare elektrogene Reaktionen identifiziert werden. Eine schnelle Zucker-induzierte Konformationsänderung wurde dem induced fit des Zuckermoleküls zugeordnet. Die Elektrogenität im steady-state wird dagegen durch den langsamen Transfer der negativ geladenen Protonenbindestelle bestimmt. Die für den Symport ratenlimitierende Reaktion ist abhängig von den äußeren Bedingungen wie pH-Werten, Zuckerkonzentrationen, Substrat-Spezies und Membranpotential meist die Konformationsänderung des leeren (P) oder des beladenen (PSH) Carriers, welche die Substratbindestellen im Zuge des Alternating Access über die Membran transferieren. Ein Wechsel zwischen hohen Protonenbindungs-pK-Werten und niedrigen Protonenfreisetzungs-pK-Werten durch weitere lokale Konformationsänderungen ist zentraler Bestandteil des Transportmechanismus. Ein weiterer wichtiger Aspekt ist die Kopplung zwischen Zucker- und Protonen-Translokation, die sich zwischen E.coli Transportern und GlcP strikt unterscheidet. In E.coli Transportern erfolgt eine kooperative Bindung von Zucker und Proton. Zudem erfolgt keine Konformationsänderung im Zucker-gebundenen, unprotonierten Carrier (PS). In GlcP ist die Kopplung erheblich reduziert. Der Transport-Modus selbst ist abhängig von den äußeren Bedingungen. So katalysiert GlcP abhängig vom pH-Gradienten Uniport, Symport oder Antiport.
Die vorliegende Arbeit leistet einen wichtigen Beitrag zum Verständnis des PMF-gekoppelten Zuckertransports und zeigt die Grenzen des für LacY formulierten 6-Zustands-Modells mit nur zwei Konformationsänderungen auf. Ein erweitertes 8-Zustands-Modell mit vier Konformationsänderungen, die unterschiedliche Ratenkonstanten aufweisen können, erklärt sowohl Symport, Antiport als auch Uniport und berücksichtigt zudem die zahlreichen Ergebnisse für LacY aus der Literatur.
Bacteria constantly attempt to hold up ion gradients across their membranes to maintain their resting potential for routine cell function, while coping with sudden environmental changes. Under abrupt hyperosmotic conditions, as faced when invading a host, most bacteria restore their turgor pressure by taking up potassium ions to prevent death by plasmolysis. Here, the potassium transporter AB, or KtrAB for short, is a key player. KtrAB consists of the membrane-embedded KtrB dimer, which includes two pores organized in tandem, and a cytoplasmic, octameric KtrA ring, which regulates these two pores. The KtrB subunits alone were suggested to function as rather non-selective ion channels translocating potassium and sodium ions. The KtrA subunits confer transport velocity, K+ selectivity as well as Na+ and nucleotide dependency to the Ktr system. The nucleotide regulation by binding to KtrA is rather well characterized. In contrast, the regulatory role of Na+ remains elusive. Controversially discussed is how selective the ion translocation by KtrB is and how KtrA affects it. Although there are several functional and structural data available of KtrAB and its homolog TrkAH, the selectivity of the ion translocation was never thoroughly addressed. The functional characterization of whether KtrAB is a selective ion channel and how selectivity is achieved is in the focus of this thesis. Since selectivity is usually defined by the ion channels’ selectivity filter contained in the pore-forming domain, a particular attention was laid on the ion-translocating subunits KtrB.
KtrB belongs to the superfamily of K+ transporters (SKT). Each KtrB monomer consists of four covalently attached M1-P-M2 motifs, each motif is made of two transmembrane (TM or M) helices that are connected by a pore (P) helix. The four motifs, referred to as domains D1 to D4, are arranged in a pseudo-fourfold symmetry and together form the pore for potassium ion translocation. Each pore contains two structural features thought to be involved in ion selectivity and ion gating. These are the non-canonical selectivity filter and the intramembrane loop. The selectivity filter is localized at the extracellular side of the pore and mostly shaped by the backbone carbonyl groups of the loops connecting the P and M2 helices in each domain. In KtrB, each P-loop contains only one highly conserved glycine residue instead of the classical -TVGYG- signature sequence of a K+ channel. This simple constructed selectivity filter led to the hypothesis that KtrAB would only have low ion selectivity. The intramembrane loop is formed by broken helix D3M2 and is located directly under the selectivity filter. It consists mostly of polar residues and acts as a molecular gate restricting ion fluxes. The intramembrane loop has been shown to be regulated by nucleotide binding to KtrA. Additionally, it could directly or indirectly be affected by Na+ binding. Further, the loop might even be involved in ion selectivity because it presents a physical barrier inside the pore.
To address the ion selectivity of the Ktr system, first, the ion binding specificity of KtrB was investigated. Binding affinities of different cations to KtrB were determined using isothermal titration calorimetry (ITC). For this, KtrB from Vibrio alginolyticus was heterologously produced in and purified from Escherichia coli. 12 L of culture roughly yielded 4 to 8 mg of the functional KtrB dimer in detergent solution. ITC measurements were performed in two different buffers, one choline-Cl-based and one LiCl-based buffer. No differences in the affinity between Na+ (KD = 1.8 mM), K+ (KD = 2.9 mM), Rb+ (KD = 1.9 mM) or Cs+ (KD = 1.6 mM) were detected in the choline-Cl-based buffer; only Li+ did not bind. In contrast, ITC measurements in LiCl-based buffer revealed a significant preference for K+ (KD = 91 µM) over Rb+ (KD = 2.4 mM), Cs+ (KD = 1.7 mM) and particularly Na+ (for which no binding was observed). Similarly, the presence of low millimolar NaCl concentrations in the choline-Cl-based buffer led to a decreased KD value of 260 µM. Hence, small cations, which usually are present in the natural environment, seem to modulate the selectivity filter for a better binding of K+ ions providing K+ selectivity. In fact, the low binding affinities of the other ions could indicate that they do not even bind to the selectivity filter but to the cavity. However, ITC competition experiments showed that all four ions compete for the same or overlapping binding sites, with Rb+ and Cs+ even blocking K+ binding at concentrations 10-fold above their binding affinities. Importantly, at physiological NaCl concentrations of 200 mM, the apparent binding affinity for K+ to KtrB was still 3.5 mM. This suggested that Na+ can also bind to KtrB’s selectivity filter but with a comparably low binding affinity providing an unexpectedly high preference for K+ ions.
...
Das Ziel der vorliegenden Arbeit ist die Entwicklung eines geeigneten Assays (eines standardisierten Reaktionsablaufs) für die Analyse der Funktion und Aktivität der Transporter für organische Kationen (OCT) mit Hilfe der auf einer festkörperunterstützten Membran (SSM) basierenden Elektrophysiologie. Die zweite Kernaufgabe war die Entwicklung der Expressionssysteme für die heterologe OCT-Expression. In den neunzigen Jahren wurden neue Membranproteine, OCT1-3, identifiziert, die eine wichtige Komponente für den Transport der strukturell unterschiedlichen organischen Kationen im menschlichen Organismus darstellen (Gründemann et al., 1994; Koehler et al., 1997; Koepsell et al., 1998; Zhang et al., 1998). Da etwa fünfzig Prozent der in der Klinik gebräuchlichen Medikamente und viele andere exogene Substanzen (Xenobiotika) polare organische Verbindungen sind, die bei einem physiologischen pH-Wert (7,4) überwiegend in protonierter Form als Kationen vorliegen und mittels OCT aus dem Körper ausgeschieden werden, gehören diese Proteine zu den pharmazeutisch bedeutenden Zielmolekülen (Targets) bei der Entwicklung neuer Medikamente. Letztere stellt einen sehr langwierigen Prozess dar, der die Untersuchung zahlreicher Substanzbibliotheken auf ihre Wirkung auf bestimmte Targets voraussetzt. Aufgrund der rasanten technischen Entwicklung in der Laborautomatisierung und der digitalen Mikroskopie können mittlerweile mehrere tausend Wirkstoffkandidaten in Ultra-High-Throughput-Screenings (UHTS) am Tag getestet werden, von denen aber nur ein minimaler Prozentsatz eine erste positive Reaktion (Hit) mit dem Target zeigt. Die Ergebnisse aus dem primären Screening-Prozess werden in einem zweiten Screening-Prozess weiter bearbeitet. In diesen High-Content-Analysen (HCA) werden dabei entgegen den ersten Untersuchungen die Substanzen nicht mehr einzig auf ihre Interaktion mit dem Target getestet. Vielmehr werden möglichst alle Informationen gesammelt und Effekte analysiert. Zurzeit werden folgende Assays dafür eingesetzt (Geibel et al., 2006): 1) radioaktive Assays, wie Ligandbindungsassays, Flux-Assays; 2) Fluoreszenzassays auf Basis von spannungs- oder ionenabhängigen Farbstoffen; 3) Flux-Assays auf Basis von Atom-Absorptions-Spektroskopie (AAS); 4) manuelle patch-clamp-Assays. Allerdings können diese Assays wegen unterschiedlicher Einschränkungen nur begrenzt eingesetzt werden. So treten bei den Fluoreszenzassays aufgrund der Farbstoff-Substanz-Interaktionen oft falsche positive Ergebnisse auf. Methoden mit radioaktiv markierten Substraten sind aus sicherheitstechnischen Gründen mit hohem Aufwand und entsprechenden Kosten verbunden. Das patch-clamp-System verfügt zwar über eine hohe Sensitivität und einen hohen Informationsgehalt, ist jedoch für das Screening wegen des geringen Durchsatzes und erheblicher Kosten nicht effizient. Diese Beispiele zeigen die Notwendigkeit der Entwicklung neuer Techniken für die pharmazeutische Wirkstoffsuche. Die SSM-basierte elektrophysiologische Detektionstechnologie ermöglicht die Untersuchung der Transportproteine in ihren nativen Membranen mit hoher Sensitivität ohne Fluoreszenzmarkierung (Geibel et al., 2006; Kelety et al., 2006). Diese Methode hat besondere Vorteile gegenüber anderen bei der Erforschung von Transporter-Proteinen, die im Gegensatz zu Ionenkanälen relativ wenig Ladung pro Zeiteinheit (1-104 Moleküle s-1) transportieren, und viele Techniken wegen der geringeren Empfindlichkeit für deren Untersuchung nicht geeignet sind.
In der vorliegenden Arbeit wurden festkörperunterstützte Membranen in Verbindung mit schnellen Lösungswechseln als Methode zur Messung von elektrogenen Transportvorgängen in biologischen Membranen untersucht und charakterisiert. Parallel zu einem manuellen Messsystem wurde eine Technologie auf der Basis eines Pipettierroboters mitentwickelt und charakterisiert, die es erlaubt, automatisierte Messungen mit erhöhtem Durchsatz durchzuführen. Die Sensoren wurden als Sensorarray auf der Basis einer standardisierten 96er Mikrotiterplatte realisiert. Zur Lösungshantierung kam ein Pipettierroboter zum Einsatz, der mit einer selbstentwickelten Injektionseinheit bestückt wurde. In dieser Injektionseinheit ließen sich die verwendeten Lösungen überschichten, wodurch ein Lösungswechsel von einer substratfreien zu einer substrathaltigen Lösung durchgeführt werden konnte. Mit dem beschriebenen System konnten die in dieser Arbeit behandeleten Proteine EAAC1 und NhaA erfolgreich aktiviert und charakterisiert werden. Hinsichtlich der Transportaktivität wurden mit beiden Proteinen vergleichbare Ergebnisse erzielt wie mit dem manuellen Messsystem. Aus kultivierten CHO-Zellen, die den neuronalen Glutamattransporter EAAC1 rekombinant und fuktional exprimierten, wurden EAAC1-haltigen Cytoplasmamembranen in einem Aufreinigungsschritt (Membranpräparation) gewonnen. Die derart vorliegenden Membranfragmente konnten erfolgreich auf der festkörperunterstützten Membran angelagert werden. In der Abwesenheit von Natriumionen war der EAAC1 nicht aktiv, und er konnte durch den spezifischen kompetitiven Inhibitor TBOA inhibiert werden (Inhibitionskonstante Ki = 1µM). Es wurde beobachtet, dass die Transportströme des EAAC1 in der Abwesenheit von Kaliumionen eine andere Kinetik aufwiesen als in der Anwesenheit von Kaliumionen, und die Affinität für L-Glutamat war in der Abwesenheit von Kaliumionen verringert (K0,5 = 144 µM). Analysen der Signalformen ergaben eine reduzierte Relokationsrate, wobei es wahrscheinlich ist, dass der EAAC1 ohne Kaliumionen einen Single-Turnover durchführt. Eine weitere Eigenschaft des EAAC1 ist die Fähigkeit, bestimmte Anionen zu leiten. Diese Anionenleitfähigkeit ist strikt Natriumabhängig und wird durch die Bindung von L-Glutamat getriggert. Wenn bei einem Experiment zusätzlich bestimmte Anionen (z.B. Chlorid oder Thiocyanat) anwesend waren, wies der Transportstrom des EAAC1 in der Abwesenheit von Kaliumionen eine negative Komponente auf. Diese Komponente konnte auf den Einstrom der Anionen entlang des durch den Glutamattransport aufgebauten elektrischen Gradienten zurückgeführt werden. Des Weiteren konnte die Anionenleitfähigkeit mit Anionensprüngen in der Anwesenheit von L-Glutamat und Natriumionen direkt induziert werden. Damit wurden erstmals kanalartige Ionenströme an der festkörperunterstützten Membran nachgewiesen. Der Anionenstrom wies dabei die gleiche Abhängigkeit von der Glutamatkonzentration auf (K0,5 = 31 µM) wie der Transportstrom. Der Übergang in den leitfähigen Zustand und der Transport hängt demnach von dem gleichen L-glutamatgebundenen Zustand des EAAC1 ab. Dies konnte auch unter Verwendung des Inhibitors HIP-B gezeigt werden. HIP-B wurde erstmals an EAAC1 getestet und wies eine Inhibitionswirkung auf den Transportstrom auf, die nicht auf eine kompetitive Bindung zurückzuführen war. Die Anionenleitfähigkeit ließ sich mit HIP-B hingegen nicht inhibieren. Der bakterielle Natrium-Protonen-Austauscher NhaA lag rekonstituiert in Liposomen vor, die auf der festkörperunterstützten Membran angelagert wurden. Bedingt durch die RSO-Orientierung des NhaA, konnte der Natriumtransport entgegen der natürlichen Transportrichtung (extrazelluläre Natriumbindung) untersucht werden. Der Transportstrom wies eine ausgeprägte Abhängigkeit vom pH-Wert auf. Bei neutralen bzw. sauren pH-Werten (pH <= 7) war die Aktivität des NhaA gegenüber dem alkalischen Bereich (7 < pH < 9) erheblich reduziert. Dieses Verhalten entspricht Literaturangaben für die Intrazellulärseite des NhaA. Dennoch war der NhaA bei einem neutralen pH-Wert nicht vollständig inaktiv. Die Affinität für Natriumionen konnte bei einem pH-Wert von 8,5 zu K0,5 = 11 mM und bei pH 7,0 zu K0,5 = 180 mM bestimmt werden. Neben einer Verringerung der Wechselzahl sinkt im neutralen/sauren Bereich also auch die Affinität für Natriumionen. Durch die Verwendung von Liposomen, in denen der NhaA mit verschiedenen Lipid- zu Protein-Verhältnissen rekonstituiert wurde, konnte gezeigt werden, dass die Messströme auf die Aufladung der Liposomen zurückführbar sind. Der Transportstrom konnte mit der amiloridähnlichen Substanz 2-Aminoperimidin inhibiert werden (Ki = 3 µM). Eine Inhibitionswirkung war nur zu beobachten, wenn der pH-Wert kleiner als pH 8 war. Zusammmen mit der ausgeprägten pH-Wertabhängigkeit kann dieses Phänomen auf eine pH-induzierte Konformationsänderung des NhaA zurückgeführt werden.
Protonen gekoppelter Elektronentransfer ist ein zentraler Bestandteil der chemiosmotischen Theorie. Die Beschreibung seiner Natur ist aufgrund seines transienten Charakters eine komplexe Aufgabe. Elektrometrische Messungen stellen hier eine große Hilfe in der Erfassung von Ladungsverschiebungen dar. Sie erlauben die zeitliche Beschreibung des Elektronen- und Protonentransportes, der mit kaum einer geeigneten Methode beobachtet werden kann, und geben Einblick in deren molekularen Mechanismus. Diese Technik wurde hier an drei verschiedenen Membrankomplexen der Atmungskette angewandt: der Cytochrom c Oxidase (COX) aus Paracoccus denitrificans, der Quinol-Fumarat-Reduktase (QFR) aus Wolinella succinogenes und dem bc(1)-Komplex aus Saccharomyces cerevisiae. Hinsichtlich der experimentellen Vorgehensweise für kinetische Untersuchungen stellte sich ein übergreifendes Problem. Neben einer schnellen Aktivierung der Enzymsysteme bedurfte es eines definierten Ausgangszustands. Ziel dieser Arbeit war das Etablieren von Bedingungen, die elektrometrische Messungen am bc(1) und der QFR erlauben, sowie die Fortführung dieser Methodik am bereits vorhandenen System der COX. Cytochrom c Oxidase Elektrometrische Untersuchungen an der COX wurden basierend auf Vorarbeiten weitergeführt. Insbesondere die Ladungsverschiebungen nach Photoreduktion ausgehend vom völlig oxidierten Zustand rückten in den Fokus. In diesem Schritt wird ein Proton aufgenommen, während Häm a vom angeregten Zustand eines Rutheniumkomplexes reduziert wird. Dieses Verhalten ist unabhängig vom heterogenen Ausgangszustand der COX, er wird jedoch durch eine Änderung des pH-Wertes beeinflußt. Der heterogene Ausgangszustand im O-E-Übergang wurde in einem sequentiellen Modell diskutiert. Dabei wurde auf die Diskrepanz zwischen den elektrometrischen und den publizierten spektroskopischen Messungen hingewiesen. Während spektroskopisch die Cu(A)-Oxidation und Häm a-Reduktion in einer Phase verliefen, wurde in den elektrometrischen Messungen eine zweite deutlich langsamere Phase für den Protonentransfer beobachtet. Ein sequentielles Reaktionsmodell führte hier zu einem Widerspruch. Die Auswirkungen auf die Natur der Kopplung von Häm a und dem aufgenommenen Proton wurden diskutiert. Die Kinetik der Ladungsverschiebung wurde detailliert anhand der Temperaturabhängigkeit und des Isotopeneffektes untersucht und mit den Ergebnissen aus den Messungen an einem thermophilen Enzym, der ba(3)-Oxidase aus Thermus thermophilus, verglichen. Quinol-Fumarat-Reduktase Für eine schnelle Aktivierung der QFR wurde ein caged Fumarat synthetisiert, das nach Photolyse zu einer schnellen Erhöhung der Fumaratkonzentration führte. Die neue Substanz wurde bezüglich einer möglichen Verwendung für die QFR charakterisiert. Die Freisetzung erfolgte mit einer Zeitkonstante von 0,1 ms und aktivierte die QFR nur im photolysierten Zustand. Aufgrund der Photochemie der metallischen Kofaktoren in der QFR konnten jedoch keine kinetischen Messungen durchgeführt werden. Da die photochemisch induzierten Elektronenbewegungen in der QFR mit zunehmender Wellenlänge abnahmen, wurde eine neue Substanz vorgeschlagen, die im sichtbaren Spektralbereich gespalten werden kann. bc(1)-Komplex Der bc(1)-Komplex kann wie die COX durch einen Rutheniumkomplex aktiviert werden. Ein dimerer sowie ein an Cytochrom c gekoppelter Rutheniumkomplex wurde hierfür anhand von Literaturdaten synthetisiert, und die Verbindungen wurden hinsichtlich ihrer Eigenschaften nach Lichtanregung charakterisiert. Für die elektrometrischen Messungen wurde der bc(1)-Komplex in Proteoliposomen rekonstituiert, und der Ausgangszustand des bc(1)-Komplexes unter reduktiven und oxidativen Bedingungen eingestellt. Mit dem dimeren Rutheniumkomplex wurden elektrometrische Experimente durchgeführt, die zu zwei Phasen in der Spannungsantwort führten. Die Daten wurden zusammen mit den publizierten spektroskopischen diskutiert. Dabei wurde eine schnelle elektrogene Phase einem Elektronentransfers zwischen Häm c(1) und dem Eisen-Schwefel-Cluster des Rieske-Proteins zugeordnet. Eine langsamere Phase erwies sich sensitiv gegenüber Antimycin und spiegelt Vorgänge unter der Kontrolle der Q(i)-Bindungsstelle wider.