Refine
Document Type
- Doctoral Thesis (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- 9-HODE (1)
- Eosinophils (1)
- G2A receptor (1)
- GPCR (1)
- Immunbiology (1)
- Immune cells (1)
- Inflammation (1)
- Macrophages (1)
- NSAID (1)
- Pharmacology (1)
Institute
Neuropathic pain, a form of chronic pain, is a steadily rising health problem due to health costs and increasing numbers of patients. Neuropathic pain conditions arise upon metabolic disorders, infections, chemotherapeutic treatment, trauma or nerve injury. Especially nerve injury induced neuropathic pain is characterized by spontaneous or ongoing pain due to neuroimmune interactions. Thereby, inflammatory mediators, released by the injured nerve, recruit to and activate immune cells at the site of injury. Those mediators further activate transient receptor potential vanilloid 1 (TRPV1), a known channel involved in pain perception, or bind to G-protein coupled receptors (GPCR) in peripheral nerve endings. The following activated second messenger signaling pathways lead to sensitization of TRPV1. One of those GPCRs is G2A.
The overall aim of this thesis was to investigate the role of G2A in nerve-injury induced neuropathic pain. For this, the common mouse model of nerve-injury induced neuropathic pain, the spared-nerve injury, was used. As measurements with dynamic plantar aesthesiometer showed, G2A-deficiency leads to reduced mechanical hypersensitivity. Upon analysis with FACS, ELISA and Luminex a reduced number of macrophages and neutrophils at the injured nerve, as well as less inflammatory mediators (TNFα, IL-6, VEGF) in G2A-deficient animals was observed. In dorsal root ganglia (DRGs) there was only a reduced number of macrophages and less IL-12 observed in G2A-deficient animals. Additionally, in wild-type mice, G2A agonist 9-HODE was elevated at the injured nerve, as a LC-MS/MS analysis showed.
To investigate the underlying pathways of G2A-9-HODE signaling, a proteom screen was performed. This screen revealed upregulation of multiple proteins involved in migration in wild-type macrophages. Additionally, Ca-Imaging and transwell migration assays showed that the G2A antagonist G2A11, had desensitizing effects on DRG neurons and inhibited macrophage migration.
Overall, the results suggest that loss of G2A has dual effects. On the one hand loss of G2A is antinociceptive. On the other hand, G2A-deficiency leads to reduced inflammation, suggesting G2A as promising target in treatment of neuropathic pain. Here, an antagonist had inhibitory effects on the migration and the sensitization.
Mast cells are long-lived tissue-resident leukocytes, located most abundantly in the skin and mucosal surfaces. They belong to the first line of defence of the body, protecting against invading pathogens, toxins and allergens. Their secretory granules are densely packed with a plethora of mediators, which can be released immediately upon activation of the cell. Next to their role in IgE-mediated allergic diseases and in promoting inflammation, potential anti-inflammatory functions have been assigned to mast cells, depending on the biological setting. The aim of this thesis was to contribute to a better understanding of the role of mast cells during the resolution of a local inflammation. Therefore, in a first of step a suitable model of a local inflammation had to be identified. Since comparison of the two Toll-like receptor (TLR)-agonists zymosan and lipopolysaccharide (LPS), which are most commonly used to locally induce inflammation, revealed a systemic response after LPS-injection and a local inflammation after zymosan-injection, the TLR2 agonist zymosan was chosen for the subsequent experiments. Multi epitope ligand cartography (MELC) combined with statistical neighbourhood analysis showed that mast cells are located in an anti-inflammatory microenvironment next to M2 macrophages during resolution of inflammation, while neutrophils and M1 macrophages are located in the zymosan-filled core of the inflammation. Furthermore, infiltrating neutrophils during peak inflammation and an increasing population of macrophages phagocytosing neutrophils during resolution of inflammation could be observed. MELC as well as flow cytometry analysis of mast cell-deficient mice revealed a decreased phagocytosing activity of macrophages in the absence of mast cells. As an untargeted approach to identify mast cell-derived mediators induced by zymosan, mRNA sequencing of bone marrow-derived mast cells (BMMCs) was performed. Gene ontology term analysis of the sequencing data revealed the induction of the type I interferon (IFN) pathway as the dominant response. Contradicting previous studies, I could validate the production of IFN-β by mast cells in response to zymosan and LPS in vitro. Furthermore IFN-β expression by mast cells was also detected in vivo. In accordance with previous studies regarding other cell types the release of IFN-β by mast cells depends on endosomal signaling. The potential of IFN-β to enhance the phagocytosing activity of macrophages has been demonstrated recently. Besides IFN-β, various other mediators with reported enhancing effects on macrophage phagocytosis were also induced by zymosan in BMMCs, including Interleukin (IL)-1β, IL-4, IL-13, and Prostaglandin (PG) E2. Thus, either one of these mediators alone or a combination of them could promote macrophage phagocytosis.
In conclusion, I herein present mast cells as a novel source for IFN-β induced by non-viral TLR ligands and demonstrate their enhancing effect on macrophage phagocytosis, thereby contributing to the resolution of inflammation.
Das Myc-Bindeprotein 2 (MYCBP2) könnte aufgrund seiner enormen Größe, seiner multiplen funktionalen Domänen und seiner ubiquitären Expression in die verschiedensten Signaltransduktionswege involviert sein. Bisher wurde überwiegend die Funktion der C-terminalen RING-Finger-Domäne untersucht, die die E3-Ubiquitinligase-Aktivität des MycBP2 bedingt. Über die Interaktion mit verschiedenen Signalwegen, wie den p38-Signalweg oder die mTOR-Aktivierung, kann MycBP2 über Ubiquitylierung und anschließendem proteosomalen Abbau diverse Prozesse der Synaptogenese und der spinalen Schmerzverarbeitung, aber auch der peripheren Nozizeption regulieren. Über die Funktionen der N-terminalen RCC1-ähnlichen Domäne ist dagegen weniger bekannt. Bisher konnte eine direkte Protein-Protein-Interaktion mit dem neuronenspezifischen elektroneutralen Kalium- und Chlorid-Ionen Co-Transporter KCC2 und mit der Adenylylcyclase nachgewiesen werden. Bindet MycBP2 oder seine RCC1-ähnliche Domäne an membranständiges KCC2 führt dies einem verstärkten Transporteraktivität, während die Bindung an die Adenylylcyclase in deren Hemmung resultiert. In der vorliegenden Arbeit sollten nun auf Basis eines Antikörperarrays neue Interaktionspartner des MycBP2 und deren Funktion bestimmt werden.
Der Antikörperarray vergleicht die Expression diverser Proteine in DRG-Lysat von SNS-Cre positiven und SNS-Cre-negativen MycBP2lox/lox Mäusen und weist Unterschiede im Vorkommen von SUMO1 auf. Durch Analyse mittels Western Blot zeigte sich ein verstärktes Signal für ein 85 kDa-Protein. Mittels Immunpräzipitation sowohl aus HeLa-Zellen als auch aus DRG-Neuronen wurde das Protein als SUMOyliertes RanGAP1 identifiziert. Durch CO-Immunpräzipitationen konnte eine direkte Protein-Protein Interaktion nachgewiesen werden, die während einer Zymosan-induzierten Hyperalgesie zu einer MycBP2-abhängig Regulation der RanGAP1 Expression und SUMOylierung führt. Die erhöhte RanGAP1 Menge in Abwesenheit von MycBP2 ist dabei nicht auf eine MycBP2-abhängige Ubiquitinierung des RanGAP1 zurückzuführen. Dagegen konnte eine Hemmung der Ubiquitinligaseaktivität des MycBP2 in Anwesenheit von SUMOyliertem RanGAP1 festgestellt werden, die sowohl bei der Autoubiquitylierung als auch beim proteosomalen Abbau von TSC2 nachgewiesen werden konnte. Weitere Untersuchungen zeigen eine durch SUMOyliertes RanGAP1-vermittelte Translokation des MycBP2 an den Zellkern, die durch Transfektion mit RanGAP1 siRNA sowohl in HeLa-Zellen als auch in primären DRG-Kulturen gehemmt werden kann.
Im nächsten Schritt wurde die mögliche Interaktion von MycBP2 mit Ran untersucht. Es zeigte sich, dass die Ranexpression in DRGs von Cre-positiven MycBP2lox/lox Mäusen im Gegensatz zu Cre-negativen MycBP2lox/lox Mäusen signifikant gesteigert ist und auch hier eine MycBP2-abhängige Expressionsregulation während der Zymosan-induzierten Hyperalgesie vorliegt. Ein 3D-Modell von primären DRG-Kulturen nach Immunfärbung weist eine Kolokalisation von MycBP2 und Ran sowohl im Cytosol als auch im Zellkern auf. Immunfärbungen von DRG-Schnitten zeigten außerdem, dass Ran in Abwesenheit von MycBP2 verstärkt im Zellkern vorliegt, was auf eine direkte Interaktion von MycBP2 mit Ran hindeutet. Auf Grund des stationären GTPase Assays konnte eine Integration des MycBP2 in den RanGTPase Zyklus belegt werden, da die Anwesenheit von MycBP2 zu einer gesteigerten GTP-Hydrolyse führte. Anhand des Ein-Zyklus-GAP-Assay wurde daher der Einfluss des MycBP2 auf die GAP-Aktivität des RanGAP1 überprüft, wodurch sich zeigte, dass MycBP2 die GAP-Aktivität des RanGAP1 hemmt. Damit bedingt die MycBP2/RanGAP1-Interaktion eine gegenseitige Hemmung der Enzymaktivität der beteiligten Proteine. Weitere Untersuchungen durch 35S-GTP-Bindeassays deckten eine konzentrationsabhängige GEF-Aktivität des MycBP2 für Ran auf, wobei die GEF-Aktivität von der RCC1-ähnlichen Domäne des MycBP2 vermittelt wird. Des Weiteren zeigte sich anhand von Versuchen mit der konstitutiv aktiven Ran-Mutante Q69L und der inaktiven Ran-Mutante T24N, dass MycBP2 verstärkt die inaktive Form des Ran, also RanGDP bindet.
In dieser Arbeit konnte so zum ersten Mal eine Integration des MycBP2 in den RanGTPase-Zyklus gezeigt werden, die es MycBP2 ermöglicht, sowohl in die nukleare Import/Export-Maschinerie, in den Aufbau der mitotischen Spindel und die Bildung der Kernmembran einzugreifen.
Inflammation is a crucial host defense mechanism activated in response to injury or infection. Its primary goal is to eliminate the source of the disturbance, repair the damaged tissue, and restore homeostasis. Inflammatory processes can be recognized through increased blood flow, higher vascular permeability, and the recruitment of leukocytes and plasma proteins to the tissue. A pathogen-induced inflammation triggers various pro- and anti-inflammatory processes. Local tissue cells and Toll-like receptors call upon innate immune cells like neutrophils, dendritic cells (DCs), and monocytes to respond to the intruder. They move across the endothelium and respond to local signals by releasing mediators or cytotoxic compounds, phagocytosing, or polarizing. To study local pathogen-induced inflammation, a zymosan-induced inflammation model was used in the hind paws of mice, which caused a Toll-like receptor 2 mediated inflammation. Multi-Epitope-Ligand-Cartography (MELC) was used for multiple sequential immunohistochemistry with 40 different antibodies on the same tissue. Bioinformatic analysis and graphical representation revealed a specific inflammatory architecture consisting of three major areas based on macrophage polarization and their cellular neighborhoods: a core region containing the pathogen, a pro-inflammatory region containing M1-like macrophages, and a region containing anti-inflammatory cells. This discovery highlights the coexistence of pro- and antiinflammatory processes during an ongoing inflammation and challenges the concept of a gradual temporal transition from pro- to anti-inflammation. Flow cytometry of the whole paw was performed to support and refine the MELC results. Eosinophils were used as a specific immune cell population to investigate their role in the inflammatory structure. They were found to be present in all three inflammatory regions, adapting their cytokine profile according to their localization. Depleting eosinophils reduced Interleukin 4 (IL-4)- levels, increased edema formation, and mechanical and thermal hypersensitivities during inflammation resolution. In the absence of eosinophils, pro- and anti-inflammatory region could not be determined in the inflammatory architecture, neutrophil numbers increased, and efferocytosis and M2-macrophage polarization were reduced. IL-4 administration restored these regions, normalized neutrophil numbers, efferocytosis, M2-macrophage polarization, and resolution of zymosan-induced hypersensitivity. The results show that eosinophils expressing IL-4 support the resolution of inflammation by enabling the development of an anti-inflammatory framework that encloses pro-inflammatory regions.
Spatial organization of immune cells during inflammation and effects of anti-inflammatory agents
(2023)
Background: Recognition of a pathogen by Toll-like receptors (TLRs) triggers acute inflammation, which can be broadly divided into proinflammatory and anti-inflammatory processes. The primary goal of an acute innate immunity is to eliminate the pathogen and restore tissue homeostasis, resulting in increased influx of vascular proteins and immune cells, including neutrophilic and eosinophilic granulocytes as well as dendritic cells (DCs), and monocytes. These immune cells respond to inflammatory mediators by phagocytosing, releasing cytotoxic compounds, and releasing additional mediators, such as prostaglandin E2 (PGE2). Currently, the inflammatory process is mainly understood from a time-dependent perspective, without considering the spatial organization and microenvironments of these immune cells. Furthermore, inflammation is often accompanied by pain, which is commonly treated with non-steroidal anti-inflammatory drugs (NSAIDs). However, accumulating evidence suggests that inhibiting cyclooxygenase (COX)-dependent prostanoid synthesis using NSAIDs can contribute to the chronification of inflammation and pain, but the underlying mechanisms responsible for this phenomenon remain elusive.
Methods: The multiplex imaging technique “Multi-Epitope-Ligand-Cartography” (MELC) was used to examine the inflammatory response in a mouse model of zymosan-induced inflammation. This technique allows to visualize over 47 fluorescence-labeled antibodies on the same tissue slice. Zymosan particles were injected into the hind paw and localized via fluorescence labeling, which makes this model suitable for studying immune cell localization in regard to the position of the zymosan particles. To analyze high-dimensional image data obtained from MELC, a comprehensive bioinformatic analysis pipeline was established, including phenotype clustering and neighborhood analysis to reveal cell microenvironments.
Results: The analysis of MELC data provided insights into the spatial organization of the acute innate inflammation, consisting of a core-region, a proinflammatory region (PI-region), and an anti-inflammatory region (AI-region), characterized by pathogen, proinflammatory M1-like macrophages, and anti-inflammatory M2-like macrophages, respectively. This architecture was established within 24 hours after zymosan injection and persisted over time. These data challenge the current time-dependent perspective of the inflammatory course, highlighting the importance of considering the spatial structure and the dynamic changes in the sizes of these regions over time. Next, the pharmacological impact of the NSAID meloxicam on the formation of the inflammatory architecture was investigated. Meloxicam treatment led to prolonged thermal hypersensitivity and induced specific alterations in the inflammatory architecture, including locally reduced polarization of M1-like macrophages, the disappearance of the PI-region, reduced neutrophil survival, and impaired phagocytic capacity of both neutrophils and macrophages, ultimately resulting in impaired pathogen clearance. Notably, the M2-like macrophages and the AI-region remained unaffected by meloxicam treatment. Interestingly, the number of eosinophils expressing the anti-inflammatory cytokine IL-4 increased in the core-region following meloxicam treatment.
Conclusion: This thesis revealed the inflammatory architecture and demonstrated the ability of MELC analysis to assess the pharmacological impact of the NSAID meloxicam on this regional structure, providing a valuable perspective on the NSAID-associated chronification of inflammation and pain. Based on these findings, it is suggested that the administration of NSAIDs during pathogen-induced acute inflammation should be reevaluated, particularly in patients with compromised immune systems.