Refine
Document Type
- Doctoral Thesis (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
Institute
- Mathematik (3)
In this work, we extend the Hegselmann and Krause (HK) model, presented in [16] to an arbitrary metric space. We also present some theoretical analysis and some numerical results of the condensing of particles in finite and continuous metric spaces. For simulations in a finite metric space, we introduce the notion "random metric" using the split metrics studies by Dress and al. [2, 11, 12].
Informally, commitment schemes can be described by lockable steely boxes. In the commitment phase, the sender puts a message into the box, locks the box and hands it over to the receiver. On one hand, the receiver does not learn anything about the message. On the other hand, the sender cannot change the message in the box anymore. In the decommitment phase the sender gives the receiver the key, and the receiver then opens the box and retrieves the message. One application of such schemes are digital auctions where each participant places his secret bid into a box and submits it to the auctioneer. In this thesis we investigate trapdoor commitment schemes. Following the abstract viewpoint of lockable boxes, a trapdoor commitment is a box with a tiny secret door. If someone knows the secret door, then this person is still able to change the committed message in the box, even after the commitment phase. Such trapdoors turn out to be very useful for the design of secure cryptographic protocols involving commitment schemes. In the first part of the thesis, we formally introduce trapdoor commitments and extend the notion to identity-based trapdoors, where trapdoors can only be used in connection with certain identities. We then recall the most popular constructions of ordinary trapdoor protocols and present new solutions for identity-based trapdoors. In the second part of the thesis, we show the usefulness of trapdoors in commitment schemes. Deploying trapdoors we construct efficient non-malleable commitment schemes which basically guarantee indepency of commitments. Furthermore, applying (identity-based) trapdoor commitments we secure well-known identification protocols against a new kind of attack. And finally, by means of trapdoors, we show how to construct composable commitment schemes that can be securely executed as subprotocols within complex protocols.
Okamoto (Crypto 1992) hat die RSA-Repräsentation als Basis eines gegen aktive Angreifer sicheren Identifikationsschemas eingeführt. Eine RSA- Repräsentation von X E Z * N ist ein Paar (x; r) E Z e x Z * N mit X = g x r e (mod N) für vorgegebenes g E ZN , RSA-Modul N und primen RSA- Exponenten e. Das zugehörige Repräsentationsproblem, also das Auffinden eines Wertes X samt zweier verschiedener Darstellungen, ist äquivalent zum RSA-Problem, der Berechnung einer e-ten Wurzel von g modulo N . Von Brassard, Chaum und Crépeau (Journal Computing System Science, 1988) sowie Damgard (Journal of Cryptology, 1995) stammt eine analoge Konstruktion der Form X = g x r 2 t (mod N) mit x E Z 2 t für den Spezialfall der Blum-Zahlen als Modul N und gegebenes t größer gleich 1, wo die Möglichkeit, zwei verschiedene Repräsentationen zu berechnen, gleichbedeutend zur Zerlegung des Moduls in die Primfaktoren ist. Im ersten Abschnitt der vorliegenden Arbeit verallgemeinern wir dieses Konzept systematisch auf beliebige (RSA-)Module durch die Einführung eines Anpassungsparameters r:= r (N ), so dass X = g x r 2 r t (mod N) mit x E Z 2 t. Basierend auf dieser als Faktorisierungsrepräsentation bezeichneten Darstellung leiten wir Identifikations-, Signatur- und Blinde-Unterschriften-Verfahren her. Im zweiten Teil verwenden wir sowohl RSA- als auch Faktorisierungsrepräsentation als Grundlage sogenannter non-malleable Commitment-Schemata zur Hinterlegung (Verbriefung) einer geheimen Nachricht. Bei dem von Dolev, Dwork und Naor (SIAM Journal on Computing, 2000) eingeführten Begriff der Non-Malleability soll ein Angreifer außer Stande sein, die Hinterlegung einer Nachricht m so abzuändern, dass er diese später dann mit einem in Relation zu m stehenden Wert, man denke zum Beispiel an m 1, aufdecken kann. Von Dolev, Dwork und Naor stammt ein allgemeiner Ansatz zur Konstruktion von non-malleable Commitment-Schemata aufbauend auf einem sogenannten Knowledge-Extraktor. Für die RSA-Darstellung verfügt das von Okamoto entworfene Protokoll als Proof-Of-Knowledge über einen solchen Extraktor, bei dem im Fall der Faktorisierungsrepräsentation von uns entwickelten Verfahren fehlt allerdings der Extraktor. Aus diesem Grund stellen wir mit Hilfe des Chinesischen Restsatzes ein neues, auf Commitments zugeschnittenes Protokoll mit Knowledge-Extraktor vor, das in Verbindung mit der Faktorisierungsrepräsentation ein effizientes Hinterlegungsschema ergibt. Zum Abschluß wird bei einem Commitment- Verfahren mit abgeschwächter Non-Malleability-Eigenschaft von Di Crescenzo, Katz, Ostrovsky und Smith (Eurocrypt 2001) die RSA- durch die Faktorisierungsrepräsentation ersetzt und das Schema vereinfacht.