Refine
Year of publication
Document Type
- Doctoral Thesis (26)
- Master's Thesis (2)
- Bachelor Thesis (1)
Has Fulltext
- yes (29)
Is part of the Bibliography
- no (29)
Keywords
- Theoretische Physik (2)
- UrQMD (2)
- Boltzmann-Gleichung (1)
- Correlations (1)
- Dileptonen (1)
- Dileptons (1)
- FAIR (1)
- GPGPU (1)
- Große Extradimensionen (1)
- HBT (1)
Institute
- Physik (28)
- Informatik und Mathematik (1)
Es wird ein effektives Modell zur Berücksichtigung einer Minimalen Länge in der Quantenfeldtheorie vorgestellt. Im Falle der Existenz Großer Extradimensionen kann dies zu überprüfbaren Modifikationen verschiedener Experimente führen. Es werden verschiedene Phänomene wie z.B. der Casimir-Effekt, Neutrino-Nukleon-Reaktionen oder Neutrinooszillationen diskutiert.
Nonequilibrium phase transitions in chiral fluid dynamics including dissipation and fluctuation
(2011)
Chiral fluid dynamics combines the fluid dynamic expansion of a hot and dense plasma created in a heavy-ion collision with the explicit propagation of fluctuations at the chiral phase transition of quantum chromodynamics. From systems in equilibrium long-range fluctuations are expected at a conjectured critical point. Heavy-ion collisions are, however, finite in size and time and very dynamic. It is thus likely that nonequilibrium effects diminish the signal of a critical point. They can, however, stimulate phenomena at a first order phase transitions, like nucleation and spinodal decomposition. Both of phase transition scenarios are investigated in this work. Based on the linear sigma model with constituent quarks a consistent quantum field theoretical approach using the two-particle irreducible effective action is developed to derive both, the local equilibrium properties of the expanding quark fluid and the damping and noise terms in the Langevin equation of the order parameter of the phase transition, the sigma field. Within this formalism it is possible to obtain a conserved energy-momentum tensor of the coupled system. It describes the energy dissipation from the sigma field to the heat bath during relaxation. Within this model we investigate nonequilibrium phenomena in a scenario with a critical point and a first order phase transition. We observe long relaxation times at the phase transition, phase coexistence at the first order phase transition and critical slowing down at the critical point. We find a substantial supercooling in a first order phase transition in our model and due to the energy-momentum exchange also reheating is present. While at the critical point the correlation length increases slightly we find an enhanced intensity of nonequilibrium fluctuations at the first order phase transition, which leads to an increased production of sigma mesons.
Quantum chromodynamics predicts the existence of a phase transition from hadronic to quark-gluon matter when temperature and pressure are sufficiently high. Colliding heavy nuclei at ultra-relativistic speeds allows to deposit large amounts of energy in a small volume of space, and is the only available experimental mean to produce the extreme conditions necessary to obtain the deconfined state. Numerous models and ideas were developed in the last decades to study heavy ion physics and understand the properties of extremely heated and compressed nuclear matter. With the ever increasing energy available in the center of mass frame (and thus number of particles produced) and the development of large acceptance detectors, it has become possible to study the fluctuations of physical quantities on an event-by-event basis, and access thermodynamical properties not present in particle spectra. The characteristics of the highly excited matter produced, e.g. thermalization, effect of resonance decay. . . can be investigated by fluctuation analyses. In fact, fluctuations are good indicators for a phase transition and a plethora of fluctuation probes have been proposed to pin down the existence and the properties of the QGP. We study various fluctuation quantities within the Ultra-relativistic Quantum Molecular Dynamics UrQMD and the quantum Molecular Dynamics qMD models. UrQMD is based on hadron and string degrees of freedom and allows to disentangle purely hadronic effects. In contrast, the qMD model includes an explicit transition from quark to hadronic matter and can serve to test adequate probes of the initial QGP state. We show that the qMD model can reasonably reproduce various experimental particles rapidity distributions and transverse mass spectra in wide energy range. Within the frame of the dynamical recombination procedure used in qMD, we study the enhancement of protons over pions (p/π) ratio in the intermediate pt range (1.5 < pt < 2.5). We show that qMD can reproduce the large p/π ≈ 1 observed experimentally at RHIC energies at hadronization. However, the subsequent decay of resonances makes the ratio fall to values incompatible with experimental data. We thus conclude that resonance decay might have a drastic influence on this observable in the quark recombination picture. Charged particles multiplicity fluctuations measured at SPS by the NA49 collaboration are enhanced in midperipheral events for Pb+Pb collisions at Elab = 160 AGeV. This feature is not reproduce by hadron-string transport approaches, which show a flat centrality dependence, within the proper experimental acceptance and with the proper centrality selection procedure. However, we show that the behavior of multiplicity fluctuations in transport codes is similar to the experimental result in full 4π acceptance. We identify the centrality selection procedure as the reason for the enhanced particle multiplicity fluctuations in midperipheral reactions and argue that it can be used to distinguish between different scenarios of particle productions. We show that experimental data might indicate a strong mixing of projectile and target related production sources. Strangeness over entropy K/π and baryon number over entropy p/π ratio fluctuations have been measured by the NA49 experiment in the SPS energy range, from Elab = 20 AGeV up to Elab = 160 AGeV. We investigate the sensitivity of this observable to kinematical cuts and discuss the influence of resonance decay. We find the dynamical p/π ratio fluctuations to increase with beam energy, in agreement with the measured data points. On the contrary, the dynamical K/π ratio fluctuations are essential flat as a function of centrality and depend only weakly on the kinematical cuts applied. Our results are in line with the simulations performed earlier by the NA49 collaboration in their detector acceptance filter. Finally, we focus on the correlations and fluctuations of conserved charges. It was proposed that these fluctuations are sensitive to the fractional charge carried by the quarks in the initial QGP stage and survive the whole course of heavy ion reactions. A crucial point is the influence of hadronization that may relax the initial QGP fluctuation/correlation signals to their hadronic values. We use the quark Molecular Dynamics qMD model to disentangle the effect of recombination-hadronization on charged particles ratio fluctuations, charge transfer fluctuations, baryon number-strangeness correlation coefficient and various ratios of susceptibilities (i.e. correlations over fluctuations). We find that the dynamical recombination procedure implemented in the qMD model destroys all studied initial QGP fluctuations and correlations and might ex- plain why no signal of a phase transition based on event-by-event fluctuations was found in the experimental data until now.
In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. To model the dynamical evolution of the collective system assuming local thermal equilibrium ideal hydrodynamics seems to be a good tool. Nowadays, the development of either viscous hydrodynamic codes or hybrid approaches is favoured. For the microscopic description of the hadronic as well as the partonic stage of the evolution transport approaches have beeen successfully applied, since they generate the full phse-space dynamics of all the particles. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. It constitutes an effective solution of the relativistic Boltzmann equation and is restricted to binary collisions of the propagated hadrons. Therefore, the Boltzmann equation and the basic assumptions of this model are introduced. Furthermore, predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies and the new approach leads to reasonable results over the whole energy range. Studies of phase diagram trajectories using hydrodynamics are performed as a first move into the direction of the development of the hybrid approach. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The initial energy and baryon number density distributions are not smooth and not symmetric in any direction and the initial velocity profiles are non-trivial since they are generated by the non-equilibrium transport approach. The fulll (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. For the present work, three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. Either an in the computational frame isochronous freeze-out or an gradual freeze-out that mimics an iso-eigentime criterion. The particle vectors are generated by Monte Carlo methods according to the Cooper-Frye formula and UrQMD takes care of the final decoupling procedure of the particles. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The final pion and proton multiplicities are lower in the hybrid model calculation due to the isentropic hydrodynamic expansion while the yields for strange particles are enhanced due to the local equilibrium in the hydrodynamic evolution. The elliptic flow values at SPS energies are shown to be in line with an ideal hydrodynamic evolution if a proper initial state is used and the final freeze-out proceeds gradually. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent $v_2$ values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from $E_{\rm lab}=2-160A~$GeV. It is observed that the different freeze-out procedures have almost as much influence on the mean transverse mass excitation function as the equation of state. The experimentally observed step-like behaviour of the mean transverse mass excitation function is only reproduced, if a first order phase transition with a large latent heat is applied or the EoS is effectively softened due to non-equilibrium effects in the hadronic transport calculation. The HBT correlation of the negatively charged pion source created in central Pb+Pb collisions at SPS energies are investigated with the hybrid model. It has been found that the latent heat influences the emission of particles visibly and hence the HBT radii of the pion source. The final hadronic interactions after the hydrodynamic freeze-out are very important for the HBT correlation since a large amount of collisions and decays still takes place during this period.
In the work presented herein the microscopic transport model BAMPS (Boltzmann Approach to Multi-Parton Scatterings) is applied to simulate the time evolution of the hot partonic medium that is created in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in Pb+Pb collisions at the recently started Large Hadron Collider (LHC). The study is especially focused on the investigation of the nuclear modification factor R_{AA}, that quantifies the suppression of particle yields at large transverse momentum with respect to a scaled proton+proton reference, and the simultaneous description of the collective properties of the medium in terms of the elliptic flow v_{2} within a common framework.
In der vorliegenden Dissertation wird die Frage der Vereinheitlichung der Quantentheorie mit der Allgemeinen Relativitätstheorie behandelt, wobei entsprechend dem Titel der Arbeit der Beziehung der Grundbegriffe der beiden Theorien die entscheidende Bedeutung zukommt. Da das Nachdenken über Grundbegriffe in der Physik sehr eng mit philosophischen Fragen verbunden ist, werden zur Behandlung dieser Thematik zunächst in einem Kapitel, das die vier jeweils drei Kapitel umfassenden Teile vorbereitet, die Entwicklung der Theoretischen Physik betreffende wissenschaftstheoretische Betrachtungen sowie einige wesentliche Gedanken aus der Klassischen Philosophie vorgestellt, welche für die weitere Argumentation wichtig sind. Bei letzteren geht es neben einer kurzen Schilderung der Platonischen Ideenlehre in Bezug auf ihre Relevanz für die Physik insbesondere um die Kantische Auffassung von Raum und Zeit als a priori gegebenen Grundformen der Anschauung, deren Bezug zur Evolutionären Erkenntnistheorie ebenfalls thematisiert wird. In den beiden ersten Teilen werden die wesentlichen Inhalte der Allgemeinen Relativitätstheorie und der Quantentheorie vorgestellt, wobei der Deutung der beiden Theorien jeweils ein Kapitel gewidmet wird. In Bezug auf die Allgemeine Relativitätstheorie wird diesbezüglich die Bedeutung der Diffeomorphismeninvarianz herausgestellt und in Bezug auf die Quantentheorie wird zunächst die Grundposition der Kopenhagener Deutung verdeutlicht, die im Mindesten als eine notwendige Bedingung zum Verständnis der Quantentheorie angesehen wird, um anschließend eine Analyse und Interpretation des Messproblems und vor allem entscheidende Argumente für die grundlegende Nichtlokalität der Quantentheorie zu geben. Im dritten Teil der Arbeit wird die seitens Carl Friedrich von Weizsäcker in der zweiten Hälfte des letzten Jahrhunderts entwickelte Quantentheorie der Ur-Alternativen beschrieben, in welcher die universelle Gültigkeit der allgemeinen Quantentheorie begründet und aus ihr die Existenz der in der Natur vorkommenden Entitäten hergeleitet werden soll, auf deren Beschreibung die konkrete Theoretische Physik basiert. Es werden sehr starke Argumente dafür geliefert, dass diese Theorie von den bislang entwickelten Ansätzen zu einer einheitlichen Theorie der Natur, welche die heute bekannte Physik in sich enthält, die vielleicht aussichtsreichste Theorie darstellt und damit die Aussicht bietet, auch für das Problem der Suche nach einer Quantentheorie der Gravitation den richtigen begrifflichen Rahmen zu bilden. Ihre große Glaubwürdigkeit erhält sie durch eine die Klassische Philosophie miteinbeziehende philosophische Analyse der Quantentheorie. Dieses Urteil behält seine Gültigkeit auch dann, wenn die Quantentheorie der Ur-Alternativen aufgrund der ungeheuren Abstraktheit der Begriffsbildung innerhalb der Theorie und der sich hieraus ergebenden mathematischen Schwierigkeiten bisher noch nicht zu einer vollen physikalischen Theorie entwickelt werden konnte. Die alles entscheidende Kernaussage dieser Dissertation besteht darin, dass aus einer begrifflichen Analyse der Quantentheorie und der Allgemeinen Relativitätstheorie mit nahezu zwingender Notwendigkeit zu folgen scheint, dass die physikalische Realität auf fundamentaler Ebene nicht-räumlich ist. Dies bedeutet, dass die These vertreten wird, dass es sich bei dem physikalische Raum, wie er gewöhnlich schlicht vorausgesetzt wird, wenn auch in unterschiedlicher Struktur, in Wahrheit nur um eine Darstellung dahinterstehender dynamischer Verhältnisse nicht-räumlicher Objekte handelt. Diese These stützt sich auf die Diffeomorphismeninvarianz in der Allgemeinen Relativitätstheorie und in noch höherem Maße auf die Nichtlokalität in der Quantentheorie, welche sich wiederum nicht nur in konkreten für die Quantentheorie konstitutiven Phänomenen, sondern dazu parallel ebenso im mathematischen Formalismus der Quantentheorie manifestiert. In Kombination mit der Kantischen Behandlung von Raum und Zeit ergibt sich damit ein kohärentes Bild in Bezug auf die eigentliche Natur des Raumes. Die Quantentheorie der Ur-Alternativen ist diesbezüglich als einzige derzeit existierende Theorie konsequent, indem sie auf der basalen Ebene den Raumbegriff nicht voraussetzt und rein quantentheoretische Objekte als fundamental annimmt, aus deren Zustandsräumen sie die Struktur der Raum-Zeit allerdings zu begründen in der Lage ist. Damit befinden sich diese fundamentalen durch Ur-Alternativen beschriebenen Objekte nicht in einem vorgegebenen Raum, sondern sie konstituieren umgekehrt den Raum. Dies ist eine Tatsache von sehr großer Bedeutung. Im vierten Teil wird schließlich die vorläufige Konsequenz aus diesen Einsichten gezogen. Nach einer kurzen Behandlung der wichtigsten bisherigen Ansätze zu einer quantentheoretischen Beschreibung der Gravitation, wird die Bedeutung der Tatsache, dass die Allgemeine Relativitätstheorie und die Quantentheorie eine relationalistische Raumanschauung nahelegen, nun konkret in Bezug auf die Frage der Vereinheitlichung der beiden Theorien betrachtet. Das bedeutet, dass das Ziel also letztlich darin besteht, einen Ansatz zu einer quantentheoretischen Beschreibung der Gravitation zu finden, bei der so wenig räumliche Struktur wie möglich vorausgesetzt wird. In Kapitel 12 wird diesbezüglich ein von mir entwickelter Ansatz vorgestellt, um zumindest eine Theorie zu formulieren, bei der die metrische Struktur der Raum-Zeit nicht vorausgesetzt sondern in Anlehnung an die Eigenschaften eines fundamentalen Spinorfeldes konstruiert wird, das im Sinne der Heisenbergschen einheitlichen Quantenfeldtheorie die Elementarteilchen einheitlich beschreiben soll. Dieser Ansatz geht bezüglich der Sparsamkeit der Verwendung von a priori vorhandener räumlicher Struktur über die bisherigen Ansätze zu einer Quantentheorie der Gravitation hinaus. Er ist aber dennoch nur als ein erster Schritt zu verstehen. Die konsequente Weiterführung dieses Ansatzes würde in dem Versuch bestehen, eine Verbindung zur von Weizsäckerschen Quantentheorie der Ur-Alternativen herzustellen, die überhaupt keine räumliche Struktur mehr voraussetzt. Hierzu konnten bisher nur aussichtsreiche Grundgedanken formuliert werden. Es wird allerdings basierend auf den in dieser Dissertation dargelegten Argumentationen die Vermutung aufgestellt, dass es im Rahmen der von Weizsäckerschen Quantentheorie der Ur-Alternativen möglich ist, eine konsistente quantentheoretische Beschreibung der Gravitation aufzustellen. In jedem Falle scheint die Quantentheorie der Ur-Alternativen die einzige Theorie zu sein, die aufgrund ihrer rein quantentheoretischen Natur in ihrer Begriffsbildung grundsätzlich genug ist, um eine Aussicht zu bieten, diejenige Realitätsebene zu erfassen, in welcher die Dualität zwischen der Quantentheorie und der Allgemeinen Relativitätstheorie zu einer Einheit gelangt.
Direct photon emission from heavy-ion collisions has been calculated and compared to available experimental data. Three different models have been combined to extract direct photons from different environments in a heavy-ion collision: Thermal photons from partonic and hadronic matter have been extracted from relativistic, non-viscous 3+1-dimensional hydrodynamic calculations. Thermal and non-thermal photons from hadronic interactions have been calculated from relativistic transport theory. The impact of different physics assumptions about the thermalized matter has been studied. In pure transport calculations, a viscous hadron gas is present. This is juxtaposed with ideal gases of hadrons with vacuum properties, hadrons which undergo a chiral and deconfinement phase transition and with a system that has a strong first-order phase transition to a deconfined ideal gas of quarks and gluons in the hybrid model calculations with the various Equations of State. The models used for the determination of photons from both hydrodynamic and transport calculations have been elucidated and their numerical properties tested. The origin of direct photons, itemised by emission stage, emission time, channel and baryon number density, has been investigated for various systems, as have the transverse momentum spectra and elliptic flow patterns of direct photons. The differences of photon emission rates from a thermalized transport box and the hadronic photon emission rates that are used in hydrodynamic calculations are found to be very similar, as are the spectra from calculations of heavy-ion collisions with transport model and hybrid model with hadronic Equation of State. Taking into account the full (vacuum) spectral function of the rho-meson decreases the direct photon emission by approximately 10% at low photon transverse momentum. The numerical investigations show that the parameter with the largest impact on the direct photon spectra is the time at which the hydrodynamic description is started. Its variation shows deviations of one to two orders of magnitude. In the regime that can be considered physical, however, the variation is less than a factor of 3. Other parameters change the direct photon yield by up to approximately 20%. In all systems that have been considered -- heavy-ion collisions at E_lab = 35 AGeV and 158 AGeV, (s_NN)**1/2 = 62.4 GeV, 130 GeV and 200 GeV -- thermal emission from a system with partonic degrees of freedom is greatly enhanced over that from hadronic systems, while the difference between the direct photon yields from a viscous and a non-viscous hadronic system (transport vs. hydrodynamics) is found to be very small. Predictions for direct photon emission in central U+U-collisions at 35 AGeV have been made. Since non-soft photon sources are very much suppressed at this energy, experimental results should very easily be able to distinguish between a medium that is entirely hadronic and a system that undergoes a phase transition from partonic to hadronic matter. In the case of lead-lead collisions at 158 AGeV, the situation is not so clear. In central collisions, the complete direct photon spectra including prompt photons seem to favour hadronic emission sources, while the partonic calculations only slightly overpredict the data. In peripheral collisions at the same energy, the hadronic contribution is more than one order of magnitude smaller than the prompt photon contribution, which fits the available experimental data. A similar picture presents itself at higher energies. At RHIC energies, however, the difference between transport calculations and hadronic hybrid model calculations is largest. Hybrid model calculations with partonic degrees of freedom can describe the experimental results in gold-gold collisions at 200 GeV. The elliptic flow component of direct photon emission is found to be consistently positive at small transverse momenta. This means that the initial photon emission from a non-flowing medium does not completely overshine the emission patterns from later stages. High-pt photons dominantly come from the beginning of a heavy-ion collision and therefore do not carry the directed information of an evolving medium.
In this doctoral thesis the transformation from relativistic hydrodynamics to transport and vice versa is studied. Approximations made by hybrid (hydrodynamics + transport) simulations of relativistic heavy ion collisions are discussed and their reliability is assessed at intermediate collision energies. A new method to simulate heavy ion collisions is suggested, based on the forced thermalization in high-density regions.