Refine
Document Type
- Bachelor Thesis (2)
- Master's Thesis (1)
Language
- German (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
- Physik (3)
Die vorliegende Arbeit beschäftigt sich mit optischen und elektrischen Untersuchungen an einer koaxial aufgebauten Lorentz-Drift-Geometrie. So wurden Messungen an der Lorentz-Drift-Sputterquelle bezüglich der Durchbruchspannung durchgeführt. Es hat sich gezeigt, dass das Verhalten der Durchbruchspannung in Abhängigkeit vom Druck trotz der koaxialen Elektrodengeometrie vergleichbar mit der Paschenkurve fur eine planparallele Anordnung ist.
Zur Untersuchung des Sputterverhaltens wurden zunächst einige Kurzzeitaufnahmen mit einer Belichtungszeit im Mikrosekundenbereich durchgefuhrt, um so die Ausbreitung der Plasmawolke zu betrachten. Bei einem Durchbruch führt der Stromfluss zu einem Magnetfeld, sodass ein Lorentz-Drift entsteht. Durch die resultierende Kraft wird das Plasma beschleunigt.
Es zeigt sich, dass sich die Plasmawolke mit zunehmender Zeit bzw. zunehmendem Abstand von den Elektroden homogener im Rezipient verteilt. Da durch die Ausbreitung der Plasmafront auch ausgelöstes Elektrodenmaterial zu einem entsprechend platzierten Substrat beschleunigt wird, lagert sich dort eine dünne Schicht an.
Die Ablagerungen am Substrat wurden bei verschiedenen Drucken und verschiedenen Abständen zu den Elektroden betrachtet. Erste Messungen zeigen, dass die Schichten mit größerem Abstand homogener werden und besser am Substrat haften bleiben, jedoch die Schichtdicke geringer wird. Bei geringem Abstand lagern sich vergleichsweise dicke Schichten an, die jedoch sehr inhomogen und instabil sind. Durch Optimierung sollte es aber möglich sein, einen gewünschten Kompromiss aus Schichtdicke, Stabilität und Homogenität zu finden.
Bei niedrigeren Drucken und somit hohen Durchbruchspannungen kommt es aufgrund der höheren Stromdichte zu stärkeren Lorentz-Drifts, sodass die Teilchenenergien im Plasma steigen und es zu dickeren Ablagerungen kommt.
Die Schlussfolgerung dieser Arbeit ist, dass die Beschichtung durch eine Lorentz-Drift-Geometrie prinzipiell möglich ist. Es konnten bisher qualitative Messungen durchgeführt werden, die jedoch noch quantitativ verifiziert werden sollten.
In der vorliegenden Arbeit wurden Messungen zur Plasmadynamik eines Lorentz-Drift- Beschleunigers (LDB) durchgeführt. Dieser basiert auf einer koaxialen Elektrodengeometrie. Bei einem Überschlag führt der entstehende Stromfluss zu einemMagnetfeld, sodass die gebildeten Ladungsträger durch die resultierende Lorentzkraft beschleunigt werden. Es hat sich gezeigt, dass die Abhängigkeit von Durchbruchspannung und Druck dem charakteristischen Verlauf einer Paschenkurve folgt.
Die Strom-Spannungs-Charakteristik des Versuchsaufbaus wurde in Konfigurationen mit und ohne Funkenstrecke untersucht. Mit Hilfe von diesem als Schalter fungierenden Spark-Gaps konnte bei Durchbruchspannungen gemessen werden, die oberhalb des Selbstdurchbruchs liegen.
Es zeigte sich, dass die im Versuchaufbau verwendete Funkenstrecke keinen wesentlichen Einfluss auf die Entladung hat. Es kommt an der Funkenstrecke lediglich zu einem Spannungsabfall im Bereich einiger hundert Volt, der den Verlauf derEntladung im LDB allerdings nicht beeinflusst.
Der Lorentz-Drift-Beschleuniger könnte in Zukunft zur Erzeugung eines Druckgradienten verwendet werden, indem Teilchen von einem Rezipienten in einen Zweiten beschleunigt werden. Als Voruntersuchung zur Eingnung dieses als Lorentz-Drift-Ventil bezeichneten Konzeptes wurden Messungen durchgeführt, die den Einfluss der Durchbruchspannung auf die Teilchenbeschleunigung mit Hilfe eines piezokeramischen Elementes untersuchen. So wurde der magnetische Druck bzw. die entsprechende Kraft einer Entladungswolke in Abhängigkeit von Durchbruchspannungen bis etwa 9,5 kV untersucht. Es hat sich gezeigt, dass der Einsatz von hohen Spannungen sinnvoll ist, da sich die auf das Piezoelement einwirkende Kraft quadratisch zur Durchbruchspannung verhält. So wurde die maximale Kraft von 0,44N bei einer Zündspannung von 9,52 kV gemessen.
Zudem wurde untersucht, in welchem Druckbereich der Einfluss der Druckwelle zu messen und wie sich die Geschwindigkeit der Ausbreitung der Druckwelle bei verschiedenen Durchbruchspannungen verhält. Bei einer Entfernung von 231mm zwischen Elektrodengeometrie und Piezoelement hat sich gezeigt, dass im Druckbereich unterhalb von etwa 0,2mbar kein wesentlicher Einfluss des Gasdruckes auf die Piezospannung erkennbar ist. Dies lässt sich durch die geringe Teilchenanzahl im Arbeitsgas begründen, sodass Teilchenstöße vernachlässigt werden können. Die maximale gemessene Geschwindigkeit der durch die Entladung verursachten Druckwelle liegt bei 55 km s ± 10%.
Die gemessene Plasmadynamik lässt darauf schließen, dass das Konzept eines gepulsten Lorentz-Drift-Ventils insbesondere mit hohen Durchbruchspannungen realisierbar ist. Zur Erzeugung eines dauerhaften Druckgradienten müsste die Repetitionsrate allerdings ausreichend hoch sein, sodass der rückfließende Gasdurchsatz geringer ist als die durch den LDB erzeugte Drift. Geht man von der Schallgeschwindigkeit als Rückflussgeschwindigkeit der Teilchen aus, so sind mindestens Repetitionszeiten im Bereich einer Millisekunde erforderlich.
Ergänzend zu den durchgeführten Untersuchungen ist es sinnvoll, die bisherigen Messungen durch Einbau eines Triggers zu verifizieren. Ein Trigger erzeugt eine Vorentladung mit deren Hilfe die eigentliche Entladung auch im Bereich unterhalb des Selbstdurchbruchs gezündet werden kann.