Refine
Document Type
- Doctoral Thesis (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
- Mathematik (2)
Die vorliegende Arbeit beschäftigt sich mit der BFV-Reduktion von Hamiltonschen Systemen mit erstklassigen Zwangsbedingungen im Rahmen der klassischen Hamiltonschen Mechanik und im Rahmen der Deformationsquantisierung. Besondere Aufmerksamkeit wird dabei Zwangsbedingungen zuteil, die als Nullfaser singulärer äquivarianter Impulsabbildungen entstehen. Es ist schon länger bekannt, daß für Nullfasern regulärer äquivarianter Impulsabbildungen die in der theoretischen Physik gebräuchliche Methode der BFV-Reduktion zur Phasenraumreduktion nach Marsden/Weinstein äquivalent ist. In [24] konnte gezeigt werden, daß in dieser Situation die BFV-Reduktion sich auch im Rahmen der Deformationsquantisierung natürlich formulieren läßt und erfolgreich zur Konstruktion von Sternprodukten auf Marsden/Weinstein-Quotienten verwendet werden kann. Ein Hauptergebnis der vorliegenden Arbeit besteht in der Verallgemeinerung der Ergebnisse aus [24] auf den Fall singulärer Impulsabbildungen, deren Komponenten 1.) das Verschwindungsideal der Zwangsfläche erzeugen und 2.) einen vollständigen Durchschnitt bilden. Die Argumentation von [24] wird durch Gebrauch der Störungslemmata aus dem Anhang A.1 systematisiert und vereinfacht. Zum Existenzbeweis von stetigen Homotopien und stetiger Fortsetzungsabbildung für die Koszulauflösung werden der Zerfällungssatz und der Fortsetzungssatz von Bierstone und Schwarz [20] benutzt. Außerdem wird ein ’Jacobisches Kriterium’ für die Überprüfung von Bedingung 2.) angegeben. Basierend auf diesem Kriterium und Techniken aus [3] werden die Bedingungen 1.) und 2.) an einer Reihe von Beispielen getestet. Als Korollar erhält man den Beweis dafür, daß es symplektisch stratifizierte Räume gibt, die keine Orbifaltigkeiten sind und dennoch eine stetige Deformationsquantisierung zulassen. Ferner wird (ähnlich zu [92]) eine konzeptionielle Erklärung dafür gegeben, warum im Fall vollständiger Durchschnitte das Problem der Quantisierung der BRST-Ladung eine so einfache Lösung hat. Bildet die Impulsabbildung eine erstklassige Zwangsbedingung, ist aber kein vollständiger Durchschnitt, dann ist es im allgemeinen nicht bekannt, wie entsprechende Quantenreduktionsresultate zu erzielen sind. Ein Hauptaugenmerk der Untersuchung wird es deshalb sein, in dieser Situation die klassische BFV-Reduktion besser zu verstehen – natürlich in der Hoffnung, Grundlagen für eine etwaige (Deformations-)Quantisierung zu liefern. Wir werden feststellen, daß es zwei Gründe gibt, die Tate-Erzeuger (alias: Antigeister höheren Niveaus) notwendig machen: die Topologie der Zwangsfläche und die Singularitätentheorie der Impulsabbildung. Die Zahl der Tate-Erzeuger kann durch Übergang zu projektiven Tate-Erzeugern, also Vektorbündeln, verringert werden. Allerdings sorgt Halperins Starrheitssatz [57] dafür, daß im wesentlichen alle Fälle, für die die Zwangsfläche kein lokal vollständiger Durchschnitt ist, zu unendlich vielen Tate-Erzeugern führen. Erzeugen die Komponenten einer Impulsabbildung einer linearen symplektischen Gruppenwirkung das Verschwindungsideal der Zwangsfläche, so kann man eine lokal endliche Tate-Auflösung finden. Diese besitzt nach dem Fortsetzungssatz und dem Zerfällungssatz von Bierstone und Schwarz stetige, kontrahierende Homotopien. Ausgehend von einer solchen Tate-Auflösung konstruieren wir, die klassische BFV-Konstruktion für vollständige Durchschnitte verallgemeinernd, eine graduierte superkommutative Algebra. Wir können zeigen, daß diese graduierte Algebra auch im Vektorbündelfall eine graduierte Poissonklammer besitzt, die sogenannte Rothstein-Poissonklammer. Die Existenz einer solchen Poissonklammer war bereits von Rothstein [87] für die einfachere Situation einer symplektischen Supermannigfaltigkeit bewiesen worden. Darüberhinaus werden wir sehen, daß es auch im Vektorbündelfall eine BRST-Ladung gibt. Diese sieht im Fall von Impulsabbildungen etwas einfacher aus als für allgemeine erstklassige Zwangsbedingungen. Insgesamt wird also die klassische BFV-Konstruktion [95] auf den Fall projektiver Tate-Erzeuger verallgemeinert, und als eine Homotopieäquivalenz in der additiven Kategorie der Fréchet-Räume interpretiert.
Deformation quantization on symplectic stacks and applications to the moduli of flat connections
(2008)
It is a common problem in mathematical physics to describe and quantize the Poisson algebra on a symplectic quotient [...] given in terms of some moment map [...] on a symplectic manifold [...] with a hamiltonian action by a Lie group G. Among others, problems may arise in two parts of the process: c might be a singular value of the moment map and the quotient might not be well-behaving; in the interesting cases the quotient often is singular. By the famous result of Sjamaar and Lerman ([102]) X is a symplectic stratified space. We are interested in cases for which we can give a deformation quantization of the possibly singular Poisson algebra of X. To that purpose we introduce a Poisson algebra on the associated stack [...] for special cases and consider its deformations and their classification. We dedicate ourselves to use the rather geometric methods introduced by Fedosov for symplectic manifolds in [37]. That leads to the question how to perform differential geometry on a smooth stack. The Lie groupoid atlas of a smooth stack is a nice model for the same space (Tu, Xu and Laurent-Gengoux in [107] and Behrend and Xu in [16]), but both have different topoi. We give a morphism (P,R) that compares the topologies of a smooth stack and its atlas. This yields a method to transport sheaves and their sections between a smooth stack and its Lie groupoid atlas. A symplectic stack is a smooth separated Deligne-Mumford stack with a 2-form which is closed and non-degenerate in an atlas. Via (P,R) a deformation quantization on a symplectic stack can be performed in terms of an atlas. We also give a classification functor for the quantizations in the spirit of Deligne ([35]) based on the geometric interpretation given by Gutt and Rawnsely in [49]. As an application we give a deformation quantization for the moduli stack of flat connections in particular configurations. We use Darboux charts provided by Huebschmann (e.g. in [54]) to construct the corresponding Lie groupoid. This captures the symplectic form arising in the reduction process and differs from other approaches using gerbes of bundles (e.g. Teleman [105]).