• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Blasberg, Florian (1)
  • Dornhaus, Franz Ralf (1)
  • Eckensberger, Urs David (1)
  • Grotthuss, Esther von (1)
  • Haberecht, Monika Christine (1)
  • Haghiri Ilkhechi, Alireza (1)
  • Heilmann, Julia Bettina (1)
  • Hertz, Valentin Maximilian (1)
  • Januszewski, Estera (1)
  • Kaese, Thomas (1)
+ more

Year of publication

  • 2008 (4)
  • 2006 (3)
  • 2009 (3)
  • 2012 (3)
  • 2014 (3)
  • 2004 (2)
  • 2005 (2)
  • 2013 (2)
  • 2007 (1)
  • 2011 (1)
+ more

Document Type

  • Doctoral Thesis (28)

Language

  • German (27)
  • English (1)

Has Fulltext

  • yes (28)

Is part of the Bibliography

  • no (28)

Keywords

  • Chemische Synthese (2)
  • Anorganische Synthese (1)
  • Bororganische Verbindungen (1)
  • Chalcogen-Liganden (1)
  • Ethenoxidation (1)
  • Ferrocenderivate (1)
  • Heterogene Katalyse (1)
  • Makromolekül (1)
  • Metallorganische Polymere (1)
  • Mikroreaktor (1)
+ more

Institute

  • Biochemie und Chemie (23)
  • Biochemie, Chemie und Pharmazie (3)
  • Biowissenschaften (1)
  • Pharmazie (1)

28 search hits

  • 1 to 10
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Wege zu redoxaktiven Makromolekülen aus 2,2’-Bipyridylboroniumeinheiten (2005)
Haberecht, Monika Christine
2,2’-Bipyridylboroniumkationen IIA stellen analog dem organischen Elektronenakzeptor Diquat vollständig reversible Zwei-Elektronen-Redoxsysteme dar. Da sie sich darüber hinaus leicht in luft- und wasserstabile Derivate überführen lassen, sind sie potentiell interessante Bausteine für die Entwicklung neuartiger Elektronenspeichermedien. Im Rahmen der vorliegenden Arbeit galt es, Wege zu Makromolekülen aus 2,2’-Bipyridylboroniumeinheiten zu finden. Dabei sollte die spontane Adduktbildung zwischen bor- und stickstoffhaltigen Bausteinen als zentraler Reaktionsschritt ausgenutzt werden. Um möglichst monodisperse Produkte zu erhalten, befasste sich die Arbeit im Schwerpunkt mit der Synthese von Dendrimeren, für die eine Reihe divergenter Synthesestrategien erarbeitet und auf ihre Praktikabilität hin untersucht wurden. Ein Teilprojekt widmete sich dem Aufbau linearer Polymere durch Kopolymerisation von bor- und stickstoffhaltigen Monomeren. In allen Fällen bildeten borylierte Benzolderivate wesentliche Bausteine, da sie nicht nur als Kernfragmente für Dendrimere sondern auch als Monomere in Polymerisationsreaktionen eingesetzt werden sollten. Über eine Silicium-Bor-Austauschreaktion konnten ausgehend von (Trimethylsilyl)substituierten Arylen und BBr3, die dargestellten Dibromoborylaryle 1 – 4 in guten Ausbeuten synthetisiert und anschließend über etablierte Verfahren in die Derivate 1a – 4a sowie 1b und 2b überführt werden. Erstmals gelang es dabei, die Festkörperstrukturen von 1 – 4 zu bestimmen. Der nächste Teilschritt bestand darin, das Potential borylierter Aryle als Kernfragmente für 2,2’-Bipyridylboronium-Dendrimere zu untersuchen. Zu diesem Zweck wurden 1a – 4a mit käuflichem 4,4’-Dimethyl-2,2’-bipyridyl umgesetzt, um Modellsysteme für Dendrimere der nullten Generation (G0-Dendrimere) zu schaffen. Dabei zeigte sich, dass bis zu drei 2,2’-Bipyridylboroniumeinheiten problemlos um einen Benzolring herum gruppiert werden können. Um schließlich Dendrimere aufzubauen, wurden verschiedene divergente Synthesestrategien angewendet. Umsetzung der borylierten Aromaten mit speziellen 4,4’-disubstituierten 2,2’-Bipyridylderivaten, die in ihrer Peripherie borylierbar sind, führt entsprechend dem oberen Reaktionschritt zu den jeweiligen G0-Dendrimeren. Diese gilt es im folgenden zweiten Reaktionsschritt an den Bipyridylseitenketten zu borylieren. Anschließende Umsetzung der so erhaltenen borylierten Spezies mit weiterem 2,2’-Bipyridyl führt dann zur Bildung von Bipyridylboronium-Dendrimeren der ersten bzw. jeweils höheren Generation. Im Rahmen dieser Doktorarbeit wurden fünf verschiedene 2,2’-Bipyridylliganden entwickelt, die sich durch Umsetzung mit den borylierten Aromaten 1a – 3a in die entsprechenden Dendrimere der nullten Generation überführen lassen und anschließend an ihren Seitenketten durch Anwendung der Hydroborierung (5 und 6) oder des Silicium-Bor-Austausches (7 – 9) boryliert werden können. Zur Synthese von G1-Dendrimeren über die Hydroborierungsroute eignet sich aus HSiEt3 und BBr3 in situ erzeugtes HBBr2 besonders. Umsetzung der olefinischen 2,2’-Bipyridylboroniumkationen 30Br und 31Br mit diesem Reagenz führte schon bei tiefen Temperaturen zur vollständigen Hydroborierung der olefinischen C-C-Doppelbindungen. Die nachfolgende Reaktion mit 4,4’-Dimethyl-2,2’-bipyridyl lieferte die entsprechenden Dendrimere 36Br3 und 37Br3 der ersten Generation, welche nachfolgend mit MeOH / NEt3 behandelt wurden, um alle am Bor verbliebenen Bromosubstituenten durch Methoxygruppen zu ersetzen. Die Bildung von 36Br3 und 37Br3 ließ sich mittels ESI-Massenspektrometrie eindeutig nachweisen. Allerdings gelang es nicht, die G1-Spezies analysenrein zu isolieren, da die Alkyl-2,2’-bipyridylboroniumfragmente unter den Bedingungen der HPLC-Trennung nicht stabil sind. Ein weiterer Nachteil besteht darin, dass die Hydroborierungsreaktion stets Gemische aus Regio- (Edukt 30Br) bzw. Stereoisomeren (Edukt 31Br) liefert. Diese Probleme lassen sich in der Silicium-Bor-Austausch-Variante der Dendrimersynthese unter Einsatz der Liganden 8 und 9 vermeiden. Bei beiden Monokationen 38Br (Ligand 8) und 45Br (Ligand 9) gelang durch Reaktion mit BBr3 der vollständige Austausch der endständigen Trimethylsilylgruppen durch Dibromoborylfunktionen. Nachfolgende Umsetzung dieser borylierten Kationen mit 4,4’-Dimethyl-2,2’-bipyridyl führte zu den entsprechenden G1-Dendrimeren, die durch Behandlung mit MeOH / NEt3 in die luft- und wasserstabilen Derivate 45Br3 und 50Br3 überführt und über HPLC-Trennverfahren isoliert werden konnten. Ein Teilprojekt der vorliegenden Arbeit widmete sich der Synthese linear polymerer Makromoleküle. Im Rahmen dieser Studien wurden dipodale 2,2’-Bipyridyle, bei denen zwei 2,2’-Bipyridyleinheiten über eine Ethylen- bzw. Ethenylenbrücke miteinander verbunden sind, mit dem diborylierten Aryl 2b umgesetzt und so die löslichen Polymere (57Br2)n und (58Br2)n erhalten, welche eine intensiv violette ((57Br2)n) bzw. nahezu schwarze Farbe ((58Br2)n) besitzen. Im Rahmen dieser Doktorarbeit wurden mehrere Wege zu Dendrimeren und Polymeren aus 2,2’-Bipyridylboroniumkationen erschlossen, wobei die spontane B-N-Adduktbildung als zentraler Verknüpfungsschritt eingesetzt wurde. Dieses Synthesekonzept erwies sich als äußerst vielseitig, da durch einfache Derivatisierung der bor- und stickstoffhaltigen Bausteine, die chemischen und physikalischen Eigenschaften der resultierenden Makromoleküle gezielt verändert werden konnten. Beispielsweise zeigen die ausgehend von 9 dargestellen 2,2’-Bipyridylboroniumsalze 45Br und 50Br aufgrund des vergrößerten π-Elektronensystems gegenüber Basissystemen wie 28Br3 bathochrom verschobene Absorptionsbanden und eine intensive Lumineszenz bei einer Wellenlänge von 488 nm.
Zur Synthese von Ethenoxid in einem Mikroreaktionssystem (2004)
Kestenbaum, Harry
Das Ziel dieser Arbeit war die Evaluierung der Einsatzmöglichkeiten eines mikrostrukturierten Reaktorsystems in der heterogenen Katalyse. Hierzu wurde eine Reaktion herangezogen, welche typische Problemstellungen der heterogenen Katalyse abbildet. Zu diesen Problemen gehören Temperaturkontrolle, sichere Handhabung von explosiven Gasgemischen und das Erzielen von zufriedenstellenden Selektivitäten. Die Reaktion sollte außerdem bereits gut untersucht worden und die Prozessparameter aus der Literatur bekannt sein. Aus diesem Grund wurde die Partialoxidation von Ethen zu Ethenoxid an Silberkatalysatoren gewählt. Es konnte gezeigt werden, dass die Reaktion in einem Mikrostrukturreaktorsystem sicher durchführbar ist. Vor allem wurde an einer ganzen Reihe von Beispielen veranschaulicht, dass eine herausragende Eigenschaft des Mikrostrukturreaktors seine inhärente Explosionssicherheit ist. Gasgemische, welche sich mitten im explosiven Gemischbereich befanden, konnten bei Drücken von 2 bis 20 bar und Temperaturen von 230 bis 310 °C sicher gehandhabt werden. So konnte gezeigt werden, dass der Mikrostrukturreaktor sich dazu eignet Reaktionen mit explosiven Gasgemischen durchzuführen. Die Verwendung von Mikrostrukturreaktoren in der heterogenen Katalyse befindet sich noch im Anfangsstadium. Um Probleme bei der Übertragung von Katalysatorsystemen auf ein System mit Mikrostruktur zu vermeiden, erfolgte zunächst der Einsatz von Vollsilberkatalysatoren. Die Mikrostruktur wurde deshalb aus dem katalytisch aktiven Material selbst hergestellt. Die Herstellung wurde auf drei unterschiedliche Weisen (LIGA-, Ätz- und Sägeverfahren) durchgeführt. So konnte gezeigt werden, dass eine Kostenreduzierung bei der Darstellung von Mikrostrukturen möglich ist. Der Nachteil der Nutzung von Vollsilber war, dass sich deutlich schlechtere Selektivitäten bei der Partialoxidation von Ethen ergaben. Es konnte jedoch gezeigt werden, dass mit dem Mikrostrukturreaktor die Selektivitäten für Vollsilber im Schnitt 10 % über denen für Rohrreaktorexperimenten bei gleichen Umsätzen lagen. Die effektive Wärmeabführung und die homogene Verteilung der Wärme über den Mikrostrukturreaktor scheinen eine Verbesserung der Selektivität zu erbringen. Kinetische Untersuchungen zeigten, dass sowohl durch Anheben des Partialdrucks von Ethen als auch von Sauerstoff eine Erhöhung der Reaktionsgeschwindigkeit erzielt werden kann. Dabei wurde für Ethen eine formale Reaktionsordnung bei der Bildung von Ethenoxid von 0,53 gefunden, während sie für Sauerstoff 0,78 betrug. Mit diesen Untersuchungen wurde verdeutlicht, dass ein Erhöhen des Sauerstoffpartialdrucks einen positiven Einfluss auf die Selektivität hat. So konnte durch Anheben der Sauerstoffkonzentration von 5 %, wie es in industriellen Prozessen aus Sicherheitsgründen notwendig ist, auf bis zu 95 % eine Verbesserung der Selektivität von bis zu 15 % erzielt werden. Über diesen Sachverhalt wurde zwar bereits in der Literatur (16) berichtet, jedoch erfolgten die Untersuchungen hierfür unter Hochvakuumbedingungen. Der Mikrostrukturreaktor ermöglichte einen Nachweis dieses Phänomens auch unter Hochdruckbedingungen, wie sie für industrielle Reaktoren üblich sind. Damit konnte ein in der heterogenen Katalyse bekanntes Problem, nämlich die Übertragung von Erkenntnissen aus Ultrahochvakuumexperimenten auf Hochdruckbedingungen (pressure-gap), untersucht werden. Eine wissenschaftliche Prüfung, ob dem Ergebnis die gleichen Ursachen sowohl im Ultrahochvakuum als auch bei Hochdruckbedingungen zugrunde liegen, muss noch erfolgen. Es zeigte sich aber auch, dass durch eine Verweilzeiterhöhung keine weitere Verbesserung der Raum-Zeit-Ausbeute möglich ist. Vielmehr wurde klar, dass Reaktionsgeschwindigkeit und Selektivität mit längeren Verweilzeiten abnehmen. Als Grund hierfür konnte die Bildung von elementarem Kohlenstoff an der Silberoberfläche festgestellt werden. Aufgrund der Limitierung bei der Verweilzeit wurden maximale Umsätze von 24 % erzielt. Der Einsatz von 1,2-Dichlorethan als Oxidationsinhibitor für Vollsilber wurde ebenfalls untersucht. Dabei konnte die Selektivität auf bis zu 69 % gesteigert werden. Es erfolgte jedoch eine Einbuße an Aktivität von etwa 42 %. Es ist bekannt, dass die Oberflächenmorphologie von Silberkatalysatoren unter Reaktionsbedingungen starke Veränderungen erfährt. (68) Es wurde aufgezeigt, dass dies für die Oberfläche von mikrostrukturierten Silberfolien ebenfalls festzustellen ist. Dabei wurde gleichzeitig festgestellt, dass die Katalysatoren trotz unterschiedlicher Herstellungsmethoden und den daraus resultierenden unterschiedlichen Oberflächenmorphologien vergleichbare Aktivitäten aufweisen. Industriell verwendete Katalysatoren basieren auf alpha-Aluminiumoxid als Trägermaterial. Dabei wurde bereits seit vielen Jahren an Optimierungen des Katalysators gearbeitet. Durch das Einstellen der spezifischen Oberfläche und Partikelgröße des Silbers und den Einsatz von Alkali- und Erdalkalimetallen als Promotoren werden so Katalysatoren hergestellt, welche eine Selektivität von 80 % besitzen. Die Übertragung dieser Erkenntnisse auf ein Mikrostrukturreaktorsystem kann nicht ohne weiteres vorgenommen werden. Es wurden verschiedene Darstellungsmöglichkeiten für eine alpha-Aluminiumoxidschicht in einem Mikrostrukturreaktor untersucht. Dabei zeigte sich, dass nur die direkte Darstellung von alpha- Aluminiumoxid ohne Phasenumwandlung aus anderen Modifikationen erfolgversprechend ist. Eine Darstellung der Aluminiumoxidschicht durch Sol-Gel- oder CVD-Prozesse war nicht erfolgreich, da die für die Phasenumwandlung von gamma-Aluminiumoxid nach alpha-Aluminiumoxid notwendige Temperatur von 1100 °C die Ausbildung einer Eisenoxidschicht an der Oberfläche der mikrostrukturierten Edelstahlfolien zur Folge hatte. Diese eignete sich nicht als Träger. Alternativ wurde erfolgreich der Einsatz von aluminiumhaltigen Edelstählen untersucht. Diese bilden beim Ausheizen bei 1100 °C eine alpha-Aluminiumoxidschicht an der Oberfläche aus, welche mittels Sputtern mit Silber geträgert wurde. Katalytische Untersuchungen zeigten, dass mit dem Einsatz von alpha-Aluminiumoxidträgern eine Verbesserung der Selektivität im Vergleich zu Vollsilber von 17 % erreicht werden kann. Gleichzeitig konnte anhand eines Gegenüberstellens von katalytischen Daten mit TEM-Aufnahmen der Sputterschichten festgestellt werden, dass eine geschlossene Silberschicht an der Oberfläche notwendig ist, um eine zufriedenstellende Aktivität und Selektivität zu erzielen. Während bei Schichtdicken von 1 nm noch einzelne Silberinseln an der Oberfläche zu finden sind, liegt bei einer Schichtdicke von 5 nm eine fast geschlossene Silberschicht vor. Ein Anheben der Schichtdicke ergab keine weitere Verbesserung der Aktivität oder Selektivität. Dagegen ergab der Einsatz von 1,2-Dichlorethan eine weitere Steigerung der Selektivität auf 77 %. Industriell eingesetzte Rohrbündelreaktoren erreichen im Sauerstoffverfahren eine Selektivität von 80 %. Die hier erzielten 77 % Selektivität bei vergleichbaren Umsätzen zeigt, dass der Einsatz eines Mikrostrukturreaktors für die Synthese von Ethenoxid möglich ist, vor allem unter dem Gesichtspunkt, dass Potenzial für die Optimierung von Reaktoren und die Katalysatorpräparation besteht. Die Nutzung von Reaktionsbedingungen, wie Ethen in reinem Sauerstoff, und der daraus resultierenden Verbesserung für Aktivität und Selektivität, ermöglichen Raum-Zeit-Ausbeuten, die über denen von Industriereaktoren liegen. Ob Mikrostrukturreaktoren in industriellen Prozessen jemals eingesetzt werden, hängt allein von ökonomischen Faktoren ab. Dazu müsste die Selektivität über die bestehenden 80 % angehoben werden. Zur Zeit entfallen 80 % der Produktionskosten von Ethenoxid auf den Rohstoff Ethen, so dass jeder Prozentpunkt, um den die Selektivität angehoben werden könnte, eine deutliche Kosteneinsparung mit sich brächte und darüber entschiede, ob ein neuer Prozess eingeführt wird. Hierzu wäre es auch notwendig, die Kosten für die Produktion der Mikrostrukturreaktoren pro Volumeneinheit um mehrere Größenordnungen zu reduzieren. Außerdem müssten Lösungen entwickelt werden, welche die Peripherie des Reaktors betreffen, vor allem die Heizung und die Gasversorgung. Im Rahmen dieser Arbeit sollte überprüft werden, welche Leistungsfähigkeit ein Mikrostrukturreaktorprozess im Vergleich zu einem bestehenden Prozess besitzt. Es konnte dargestellt werden, dass Raum-Zeit-Ausbeuten über denen eines Industriereaktors erzielt werden können bei vergleichbareren Selektivitäten. Außerdem konnte gezeigt werden, dass der Mikrostrukturreaktor ein geeignetes Werkzeug ist, welches helfen kann, Reaktionen unter bisher nicht einfach zugänglichen Bedingungen durchzuführen.
Silyl chalcogenolates: synthesis, reactivity and transition metal complexes (2006)
Kückmann, Theresa Irene
Chalcogen-based species are common ligands in transition-metal chemistry and display a variety of coordination modes. Like alkyl- and arylchalcogenolates, silylchalcogenolates are able to stabilize transition-metal complexes. Metal chalcogenolates LnM-ESiR3 with small organic residues R can serve as precursors for larger metal–chalcogenide clusters, which can be accessed by cleaving the E-Si bond. Furthermore, large silyl residues at the chalcogen atom serve to kinetically stabilize reactive systems. To explore the diverse chemistry of this class of compounds, a number of different silyl chalcogenolates were synthesized, including the sodium siloxide Ph2MeSiONa and the chalcogen derivatives of the extremely sterically hindered silyl residues tBu2PhSi- und tBu3Si-. The anionic silyl species tBu2PhSiNa and tBu3SiNa nucleophilically degrade elemental chalcogens (S, Se, and Te), thus producing the silyl chalcogenolates tBu2PhSiENa and tBu3SiENa (E = S, Se, Te). The chemical and structural properties of these compounds were studied. Protonolysis produces the corresponding chalcogenols tBu2RSiEH, while oxidation leads to the dichalcogenides tBu2RSiE-ESiRtBu2 (R = tBu, Ph; E = S, Se, Te). Oxidative addition of the dichalcogenides to metal centers in low oxidation states offers one route to chalcogenolate complexes. To investigate the realm of this approach, three oligochalcogen compounds R3SiE-E′n-ESiR3 were synthesized. The tetrasulfane tBu3SiS-S2-SSitBu3 and the chalcogen(II)dithiolates (tBu3SiS)2Se and (tBu3SiS)2Te were produced, and their stability was investigated. The direct comparison of isoelectronic species allows for a deeper understanding of their similarities and differences. The silanides R3Si– can be considered as anionic phosphane analogues in which a phosphorus atom has been formally replaced with a Si– unit. Phosphanylborhydrides R2BH3P– also belong to this isoelectronic series. The same analogy holds true for the chalcogen derivatives related to the phosphane chalcogenides R3P=E. With this in mind, complexes of the CpFe(CO)2 fragment with the different isoelectronic ligands were synthesized and compared. The silyl-based ligands were found to be the strongest donors of the two isoelectronic series. The differences in donor strength were roughly twice as large for the nonchalcogen species as for the chalcogen-based ligands. To further investigate the chemistry of transition-metal silyl chalcogenolate complexes, the coordination behavior of the chalcogenolates tBu2RSiE– (R = tBu, Ph; E = S, Se, Te) was studied. Salt metathesis of silyl thiolates with appropriate metal halides leads to the multinuclear complexes [Cu(SSitBu2Ph)]4 and [ZnCl(SSitBu3)(THF)]2. Metathesis products were identified in the reactions of BrMn(CO)5 with one or two equivalents of tBu3SiSNa(THF)2. Diproporationation of these compounds leads to dimeric Mn(I)Mn(II) complexes. The crystal structure of the dinuclear disproportionation product [(CO)3Mn(mu-SSitBu3)3Mn(SSitBu3)]– displays a terminal tBu3SiS– ligand, which coordinates with a Mn-S-Si angle of 180°. This geometry indicates that the thiolate can be considered as a six-electron donor (2 sigma e–, 4 pie–), analogous to the cyclopentadienyl ligand. Photoinduced oxidative addition of the dichalcogenides to Fe(CO)5 leads to the dimeric complexes [(CO)3Fe(ESitBu3)]2 (E = S, Se, Te). The tellurolate complex forms quantitatively within 8 h. The thiolate complex, on the other hand, is formed slowly over a period of six months. IR-spectroscopic investigation of the CO vibrations of the three homologous complexes indicates that the tellurolate is the strongest donor of the series.
Entwicklung und Darstellung von Monooxygenase-Modellsystemen auf der Basis neuartiger schwefelhaltiger Skorpionatliganden (2008)
Ruth, Kai
Redoxaktive Lewissäure und gemischt-valente borverbrückte Oligo(ferrocenylene) (2008)
Kaufmann, Linda
Ferrocenbasierte Polymere stellen interessante Verbindungen dar. Sie weisen herausragende optische und/oder elektronische Eigenschaften auf, die sich auf die redoxaktiven Eisenionen sowie die kooperativen Effekte entlang des Polymerstrangs zurückführen lassen. Befindet sich Ferrocen in der Hauptkette und sind die Ferrocenbausteine jeweils über ein einzelnes Atom miteinander verbunden, so ist dieses Brückenelement maßgebend für die substanzspezifischen Merkmale des Makromoleküls. Während bereits effiziente Syntheserouten bekannt sind, auf denen sich Atome der Gruppen 14 bis 16 in die Brücke einführen lassen, bereitet die Synthese borverbrückter Poly(ferrocenylene) große Schwierigkeiten. Gerade diese Stoffklasse wäre aber besonders attraktiv, da Boratome sowohl dreifach als auch vierfach koordiniert vorliegen können und über diese Eigenschaft das Ausmaß der elektronischen Wechselwirkungen entlang des Polymerrückgrats ebenso wie die Struktur des Makromoleküls gezielt beeinflussbar ist. Vor diesem Hintergrund galt es im Rahmen der vorliegenden Arbeit, chemisch stabile Poly(ferrocenylene) mit tetrakoordinierten anionischen Boratbrücken darzustellen. Als Grundlage diente die Adduktbildung zwischen lewissauren 1 ,1'-fc(BRz)zDerivaten und dem lewisbasischen doppelt deprotonierten Ferrocen 1,1 '-fcLi2 x 2/3 TMEDA. Frühere Untersuchungen an BMez-verbrückten di- (35) und tri nuklearen (36) Ferrocenkomplexen haben gezeigt, dass diese Verbindungen extrem empfindlich gegenüber Luft und Feuchtigkeit sind. Auch mussten cyclovoltammetrische Messungen an 35 bzw. 36 bei tiefen Temperaturen (-78 Oe) durchgeführt werden, um zu verhindern, dass es zu einer Zersetzung der Moleküle im Zuge der Fe{fI)Oxidation kam. Im Rahmen dieser Arbeit sind Systeme dargestellt worden, bei denen die labilen BMe2-Gruppen durch BPh2- bzw. Borafluorenylbrücken ersetzt sind. An mononuklearen Verbindungen konnten (Diphenylboryl)ferrocen 57, 1, 1'MBis(diphenylboryl) ferrocen 58 und 9-Ferrocenyl-9-borafluoren 61 isoliert und voIlständig charakterisiert werden (Abb. 53). ....
Synthese, Reaktivität und Koordinationsverhalten neuartiger oligotoper Poly(pyrazol-1-yl)boratliganden (2008)
Morawitz, Thorsten
Poly(pyrazol-1-yl)borate, die sogenannten Skorpionate, repräsentieren eine der etabliertesten Ligandenklassen in der Koordinationschemie und finden aufgrund ihrer Vielseitigkeit zahlreiche Anwendungen. In den letzten Jahren hat sich ein besonderes Interesse an Bis- und Tris(pyrazol-1-yl)boratliganden entwickelt, die mehrere Skorpionateinheiten im selben Molekül vereinen und dadurch kooperative Effekte zwischen den Metallionen fördern. Diese Liganden können sowohl Einsatz in der homogenen Katalyse als auch in den Materialwissenschaften finden. Die bisher in unserer Arbeitsgruppe entwickelten ditopen Bis(pyrazol-1-yl)borate des Typs L (Abb. 3.1) weisen allerdings eine recht hohe Hydrolyseempfindlichkeit auf, deren Ursache wahrscheinlich im elektronenschiebenden Charakter und der Raumerfüllung der Alkylsubstituenten begründet liegt. Im Rahmen der vorliegenden Arbeit wurden daher zunächst die ditopen Skorpionatliganden M2[3] und M2[6] mit Phenyl- und Pentafluorphenylsubstituenten dargestellt, die in darauf folgenden Hydrolysestudien eine im Vergleich zu L erheblich höhere Beständigkeit gegenüber Feuchtigkeit zeigten. Die Umsetzungen der Liganden Li2[Lpara] (Dissertation Dr. Susanne Bieller; Frankfurt 2005) und Li2[6] mit MnII-chlorid verdeutlichten, dass sich das C6F5-substituierte Heteroskorpionat auch in Bezug auf sein koordinationschemisches Verhalten vom tertButyl-substituierten Liganden unterscheidet. Während Li2[Lpara] mit MnCl2 zu einem chlorid-überbrückten, makrozyklischen, dinuklearen Mangankomplex reagiert, wird mit Li2[6] das in Abb. 3.2 dargestellte Koordinationspolymer {(MnCl2)2(Li(THF)3)2[6]}∞ erhalten. Die Ladung der anionischen Polymerkette wird durch Lithium-Gegenionen ausgeglichen. Um die Bildung von diskreten Komplexen einerseits bzw. von Koordinationspolymeren andererseits gezielt steuern zu können, wurden die mit sterisch anspruchsvollen Pyrazolylsubstituenten versehenen Liganden M2[4], M2[5] und M2[7] (Abb. 3.1) dargestellt. Im Zuge der Kristallisation von Li2[4] zeigte sich, dass diese Verbindung eine hohe Affinität für Chloridionen besitzt. Auch in Anwesenheit eines Überschusses Kronenether führen Spuren des Halogenids zur Ausbildung des in Abb 3.3 gezeigten dinuklearen, chloridverbrückten Lithiumkomplexes Li2Cl[4]. Die ausgeprägte Komplexbildungstendenz lässt Li2Cl[4] im Hinblick auf die Entwicklung von Anionenrezeptoren interessant erscheinen. Komplexe, in denen zwei Metallionen durch zwei Heteroskorpionatliganden in eine makrozyklische Struktur eingebunden werden (Tmeta/para in Abb. 3.4), konnten im Rahmen dieser Arbeit nicht isoliert werden. Ein Hinweis, warum dieses Strukturmotiv ungünstig sein könnte, wurde durch die Charakterisierung des auf einem partiell hydrolysierten Derivat von Li2[Lpara] beruhenden CoII-Makrozyklus Co2[23]2 erhalten. Die Analyse der Strukturparameter dieser Verbindung deutet an, dass die Bildung eines Makrozyklus im Fallder unhydrolysierten Heteroskorpionate aufgrund sterischer Wechselwirkungen zwischen den Pyrazolylringen und der Phenylenbrücke benachteiligt sein sollte. Obwohl zwischen Aryl- und Alkyl-basierte n Heteroskorpionaten erhebliche Unterschiede hinsichtlich ihrer Neigung zur hydrolytischen Zersetzung erkennbar sind, zeigen beide Ligandentypen ähnliche Labilitäten gegenüber der stark Lewis-aziden Verbindung Brommanganpentacarbonyl. Die Reaktionen von Li2[Lpara], Li2[3] und Li2[6] mit Mn(CO)5Br führten zur Spaltung von B-N-Bindungen, die in allen drei Fällen durch Kristallisation des in Abb. 3.5 gezeigten, pyrazolid-verbrückten MnI-Carbonylkomplexes 21 dokumentiert werden konnte. Im Gegensatz zu den Heteroskorpionatliganden zeigen oligotope phenylenverknüpfte Homoskorpionate keine Tendenz, sich unter dem Einfluss von Mn(CO)5Br zu zersetzen. Reaktionen der di- und tritopen Tris(pyrazol-1-yl)borate Li2[15], Li2[16] und Li3[18] lieferten die in Abb. 3.6 dargestellten Mangantricarbonylkomplexe (Mn(CO)3)2[15], (Mn(CO)3)2[16] und (Mn(CO)3)3[18] in guten Ausbeuten. Neben der Darstellung dieser, für materialwissenschaftliche Fragestellungen (Koordinationspolymere, Metallorganische Netzwerke) interessanten Liganden, wurde im Rahmen der vorliegenden Arbeit auch der Frage nachgegangen, ob die Verknüpfung zweier Heteroskorpionateinheiten Auswirkungen auf die katalytische Aktivität entsprechender Rhodium-Cyclooctadien-Komplexe in der Polymerisation von Phenylacetylen hat. Sterisch anspruchsvolle Pyrazolylsubstituenten tragende monotope Rhodium-Cyclooctadien- Skorpionatkomplexe konnten in dieser Reaktion bereits erfolgreich als Katalysatoren eingesetzt werden und lieferten regioselektiv cis-transoid-verknüpftes Poly(phenylacetylen). Zunächst wurden die in Abb. 3.7 dargestellten Rhodiumkomplexe (Rh(cod))2[3] und (Rh(cod))2[6] von Bis(pyrazol-1-yl)boraten, die keine sterisch anspruchsvollen Pyrazolylsubstituenten tragen, synthetisiert. Ähnlich wie der analoge einkernige Komplex Rh(cod)[H2Bpz2 ] zeigten (Rh(cod))2[3] und (Rh(cod))2[6] keinerlei katalytische Aktivität. Daher sollten im Anschluss die mit Phenylpyrazolylgruppen ausgestatteten Derivate (Rh(cod))2[5] und (Rh(cod))2[7] synthetisiert und im katalytischen Prozess eingesetzt werden. Im Verlauf dieser Experimente stellte sich heraus, dass die Reaktionen der Alkalimetallskorpionate Li2[5] und K2[7] mit (Rh(Cl)(cod))2 nicht zu den Zielverbindungen, sondern zur Zersetzung der Ligandgerüste führen. In beiden Fällen konnte das Abbauprodukt 22 isoliert werden (Abb. 3.8). Weitere Untersuchungen ergaben, dass 22 in der Lage ist, Phenylacetylen in guten Ausbeuten und regioselektiv (cis-transoid-verknüpftes Poly(phenylacetylen)) zu polymerisieren. 22 stellt somit ein gut zugängliches und leicht zu modifizierendes Katalysatorsystem dar, dessen Optimierung Thema zukünftiger Untersuchungen sein wird.
Synthese und Reaktivität Cymantrenyl-substituierter Poly(pyrazol-1-yl)borate und ditoper Tris(mercaptomethylimidazolyl)borat-Liganden (2009)
Kunz, Kerstin
Paramagnetische Mehrkernkomplexe mit Hydrochinon-Liganden (2004)
Margraf, Günter
Entwicklung borhaltiger Lewis-Säuren und schwach koordinierender Anionen (2008)
Vitze, Hannes
Diese Arbeit teilt sich in zwei Themenblöcke, deren zentrales Element Borat-Anionen darstellen, die unterschiedlichste Funktionen erfüllen. Durch entsprechende Wahl der Substituenten am Bor können sowohl Anionen mit schwach koordinierenden Eigenschaften erzeugt werden, als auch Borate, die sich zum Einsatz als Ligand in der Koordinationschemie eignen. ...
Untersuchungen zur Reaktivität der Kondensationsreaktion dihalogenborylierter aromatischer Verbindungen mit Triethylsilan (2009)
Eckensberger, Urs David
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks