Refine
Year of publication
Document Type
- Doctoral Thesis (31)
Has Fulltext
- yes (31)
Is part of the Bibliography
- no (31)
Keywords
- Chemische Synthese (2)
- Anorganische Synthese (1)
- Bororganische Verbindungen (1)
- Chalcogen-Liganden (1)
- Ethenoxidation (1)
- Ferrocenderivate (1)
- Heterogene Katalyse (1)
- Makromolekül (1)
- Metallorganische Polymere (1)
- Mikroreaktor (1)
Institute
- Biochemie und Chemie (25)
- Biochemie, Chemie und Pharmazie (4)
- Biowissenschaften (1)
- Pharmazie (1)
Poly(pyrazol-1-yl)borate, die sogenannten Skorpionate, repräsentieren eine der etabliertesten Ligandenklassen in der Koordinationschemie und finden aufgrund ihrer Vielseitigkeit zahlreiche Anwendungen. In den letzten Jahren hat sich ein besonderes Interesse an Bis- und Tris(pyrazol-1-yl)boratliganden entwickelt, die mehrere Skorpionateinheiten im selben Molekül vereinen und dadurch kooperative Effekte zwischen den Metallionen fördern. Diese Liganden können sowohl Einsatz in der homogenen Katalyse als auch in den Materialwissenschaften finden. Die bisher in unserer Arbeitsgruppe entwickelten ditopen Bis(pyrazol-1-yl)borate des Typs L (Abb. 3.1) weisen allerdings eine recht hohe Hydrolyseempfindlichkeit auf, deren Ursache wahrscheinlich im elektronenschiebenden Charakter und der Raumerfüllung der Alkylsubstituenten begründet liegt. Im Rahmen der vorliegenden Arbeit wurden daher zunächst die ditopen Skorpionatliganden M2[3] und M2[6] mit Phenyl- und Pentafluorphenylsubstituenten dargestellt, die in darauf folgenden Hydrolysestudien eine im Vergleich zu L erheblich höhere Beständigkeit gegenüber Feuchtigkeit zeigten. Die Umsetzungen der Liganden Li2[Lpara] (Dissertation Dr. Susanne Bieller; Frankfurt 2005) und Li2[6] mit MnII-chlorid verdeutlichten, dass sich das C6F5-substituierte Heteroskorpionat auch in Bezug auf sein koordinationschemisches Verhalten vom tertButyl-substituierten Liganden unterscheidet. Während Li2[Lpara] mit MnCl2 zu einem chlorid-überbrückten, makrozyklischen, dinuklearen Mangankomplex reagiert, wird mit Li2[6] das in Abb. 3.2 dargestellte Koordinationspolymer {(MnCl2)2(Li(THF)3)2[6]}∞ erhalten. Die Ladung der anionischen Polymerkette wird durch Lithium-Gegenionen ausgeglichen. Um die Bildung von diskreten Komplexen einerseits bzw. von Koordinationspolymeren andererseits gezielt steuern zu können, wurden die mit sterisch anspruchsvollen Pyrazolylsubstituenten versehenen Liganden M2[4], M2[5] und M2[7] (Abb. 3.1) dargestellt. Im Zuge der Kristallisation von Li2[4] zeigte sich, dass diese Verbindung eine hohe Affinität für Chloridionen besitzt. Auch in Anwesenheit eines Überschusses Kronenether führen Spuren des Halogenids zur Ausbildung des in Abb 3.3 gezeigten dinuklearen, chloridverbrückten Lithiumkomplexes Li2Cl[4]. Die ausgeprägte Komplexbildungstendenz lässt Li2Cl[4] im Hinblick auf die Entwicklung von Anionenrezeptoren interessant erscheinen. Komplexe, in denen zwei Metallionen durch zwei Heteroskorpionatliganden in eine makrozyklische Struktur eingebunden werden (Tmeta/para in Abb. 3.4), konnten im Rahmen dieser Arbeit nicht isoliert werden. Ein Hinweis, warum dieses Strukturmotiv ungünstig sein könnte, wurde durch die Charakterisierung des auf einem partiell hydrolysierten Derivat von Li2[Lpara] beruhenden CoII-Makrozyklus Co2[23]2 erhalten. Die Analyse der Strukturparameter dieser Verbindung deutet an, dass die Bildung eines Makrozyklus im Fallder unhydrolysierten Heteroskorpionate aufgrund sterischer Wechselwirkungen zwischen den Pyrazolylringen und der Phenylenbrücke benachteiligt sein sollte. Obwohl zwischen Aryl- und Alkyl-basierte n Heteroskorpionaten erhebliche Unterschiede hinsichtlich ihrer Neigung zur hydrolytischen Zersetzung erkennbar sind, zeigen beide Ligandentypen ähnliche Labilitäten gegenüber der stark Lewis-aziden Verbindung Brommanganpentacarbonyl. Die Reaktionen von Li2[Lpara], Li2[3] und Li2[6] mit Mn(CO)5Br führten zur Spaltung von B-N-Bindungen, die in allen drei Fällen durch Kristallisation des in Abb. 3.5 gezeigten, pyrazolid-verbrückten MnI-Carbonylkomplexes 21 dokumentiert werden konnte. Im Gegensatz zu den Heteroskorpionatliganden zeigen oligotope phenylenverknüpfte Homoskorpionate keine Tendenz, sich unter dem Einfluss von Mn(CO)5Br zu zersetzen. Reaktionen der di- und tritopen Tris(pyrazol-1-yl)borate Li2[15], Li2[16] und Li3[18] lieferten die in Abb. 3.6 dargestellten Mangantricarbonylkomplexe (Mn(CO)3)2[15], (Mn(CO)3)2[16] und (Mn(CO)3)3[18] in guten Ausbeuten. Neben der Darstellung dieser, für materialwissenschaftliche Fragestellungen (Koordinationspolymere, Metallorganische Netzwerke) interessanten Liganden, wurde im Rahmen der vorliegenden Arbeit auch der Frage nachgegangen, ob die Verknüpfung zweier Heteroskorpionateinheiten Auswirkungen auf die katalytische Aktivität entsprechender Rhodium-Cyclooctadien-Komplexe in der Polymerisation von Phenylacetylen hat. Sterisch anspruchsvolle Pyrazolylsubstituenten tragende monotope Rhodium-Cyclooctadien- Skorpionatkomplexe konnten in dieser Reaktion bereits erfolgreich als Katalysatoren eingesetzt werden und lieferten regioselektiv cis-transoid-verknüpftes Poly(phenylacetylen). Zunächst wurden die in Abb. 3.7 dargestellten Rhodiumkomplexe (Rh(cod))2[3] und (Rh(cod))2[6] von Bis(pyrazol-1-yl)boraten, die keine sterisch anspruchsvollen Pyrazolylsubstituenten tragen, synthetisiert. Ähnlich wie der analoge einkernige Komplex Rh(cod)[H2Bpz2 ] zeigten (Rh(cod))2[3] und (Rh(cod))2[6] keinerlei katalytische Aktivität. Daher sollten im Anschluss die mit Phenylpyrazolylgruppen ausgestatteten Derivate (Rh(cod))2[5] und (Rh(cod))2[7] synthetisiert und im katalytischen Prozess eingesetzt werden. Im Verlauf dieser Experimente stellte sich heraus, dass die Reaktionen der Alkalimetallskorpionate Li2[5] und K2[7] mit (Rh(Cl)(cod))2 nicht zu den Zielverbindungen, sondern zur Zersetzung der Ligandgerüste führen. In beiden Fällen konnte das Abbauprodukt 22 isoliert werden (Abb. 3.8). Weitere Untersuchungen ergaben, dass 22 in der Lage ist, Phenylacetylen in guten Ausbeuten und regioselektiv (cis-transoid-verknüpftes Poly(phenylacetylen)) zu polymerisieren. 22 stellt somit ein gut zugängliches und leicht zu modifizierendes Katalysatorsystem dar, dessen Optimierung Thema zukünftiger Untersuchungen sein wird.
Ferrocenbasierte Polymere stellen interessante Verbindungen dar. Sie weisen herausragende optische und/oder elektronische Eigenschaften auf, die sich auf die redoxaktiven Eisenionen sowie die kooperativen Effekte entlang des Polymerstrangs zurückführen lassen. Befindet sich Ferrocen in der Hauptkette und sind die Ferrocenbausteine jeweils über ein einzelnes Atom miteinander verbunden, so ist dieses Brückenelement maßgebend für die substanzspezifischen Merkmale des Makromoleküls. Während bereits effiziente Syntheserouten bekannt sind, auf denen sich Atome der Gruppen 14 bis 16 in die Brücke einführen lassen, bereitet die Synthese borverbrückter Poly(ferrocenylene) große Schwierigkeiten. Gerade diese Stoffklasse wäre aber besonders attraktiv, da Boratome sowohl dreifach als auch vierfach koordiniert vorliegen können und über diese Eigenschaft das Ausmaß der elektronischen Wechselwirkungen entlang des Polymerrückgrats ebenso wie die Struktur des Makromoleküls gezielt beeinflussbar ist. Vor diesem Hintergrund galt es im Rahmen der vorliegenden Arbeit, chemisch stabile Poly(ferrocenylene) mit tetrakoordinierten anionischen Boratbrücken darzustellen. Als Grundlage diente die Adduktbildung zwischen lewissauren 1 ,1'-fc(BRz)zDerivaten und dem lewisbasischen doppelt deprotonierten Ferrocen 1,1 '-fcLi2 x 2/3 TMEDA. Frühere Untersuchungen an BMez-verbrückten di- (35) und tri nuklearen (36) Ferrocenkomplexen haben gezeigt, dass diese Verbindungen extrem empfindlich gegenüber Luft und Feuchtigkeit sind. Auch mussten cyclovoltammetrische Messungen an 35 bzw. 36 bei tiefen Temperaturen (-78 Oe) durchgeführt werden, um zu verhindern, dass es zu einer Zersetzung der Moleküle im Zuge der Fe{fI)Oxidation kam. Im Rahmen dieser Arbeit sind Systeme dargestellt worden, bei denen die labilen BMe2-Gruppen durch BPh2- bzw. Borafluorenylbrücken ersetzt sind. An mononuklearen Verbindungen konnten (Diphenylboryl)ferrocen 57, 1, 1'MBis(diphenylboryl) ferrocen 58 und 9-Ferrocenyl-9-borafluoren 61 isoliert und voIlständig charakterisiert werden (Abb. 53). ....
Übergeordnetes Ziel der Arbeit war die Synthese von Molekülen, die zur gezielten Funktionalisierung von Oberflächen dienen sollten. Dazu mussten jeweils Synthesewege inklusive geeigneter Schutzgruppenchemie sowie Reinigungsstrategien entwickelt werden. Im Rahmen dieser Zielsetzung wurde zunächst eine Anlage zur Gradientensublimation aufgebaut, mit der sich die Substanzen in sehr hoher Reinheit erhalten ließen.
Zusammenfassung der Dissertation "9,10-Dihydro-9,10-diboraanthracen: Ein neuartiges ditopes Hydroborierungsreagenz zum Aufbau photolumineszenter pi-konjugierter Organylborane" von Andreas Lorbach (2011) Borhaltige pi-konjugierte Verbindungen eignen sich u.a. als Chemosensoren zur Detektion von Lewis-Basen sowie als Materialien für optoelektronische Bauteile, wie z.B. organische Leuchtdioden. Vertreter dieser Substanzklasse sind Vinylborane, welche sich sehr effizient durch Addition von Hydroboranen an terminale Alkine erzeugen lassen. Diese Reaktivität nutzten Chujo et al. zum Aufbau pi-konjugierter Polymere, wobei sie Aryldiine mit sterisch anspruchsvollen Organylboranen RBH2 (R = 2,4,6-Trimethylphenyl; 2,4,6-Triisopropylphenyl; 1,1,2-Trimethylpropyl) umsetzten. Zur Detektion von Lewis-Basen sind sterisch weniger anspruchsvolle Substituenten R, die einen freien Zugang zum Boratom ermöglichen, von Vorteil. Untersuchungen unserer Arbeitsgruppe haben jedoch gezeigt, dass sich die entsprechenden Organylborane RBH2 nicht als Hydroborierungsreagenzien eignen, da sie stattdessen unter Abspaltung von Diboran spontan zu Diorganylboranen kondensieren. Im Rahmen der vorliegenden Arbeit wurde gezeigt, dass sich diese unerwünschte Substituentenübertragung durch Einbindung des Borzentrums in ein cyclisches Molekülgerüst verhindern lässt und 9,10-Dihydro-9,10-diboraanthracen (1) somit ein isolierbares ditopes Hydroboran darstellt. Mittels eines in dieser Dissertation entwickelten dreistufigen Synthesewegs kann 1 in guten Ausbeuten aus 1,2-Dibrombenzol gewonnen werden. Im Festkörper bildet 1 eine polymere supramolekulare Struktur [1]n aus, in der die 9,10-Dihydro-9,10-diboraanthracen-Einheiten über 2-Elektronen-3-Zentren-BHB-Bindungen miteinander verknüpft sind. Durch Umsetzung von schwerlöslichem [1]n mit Dimethylsulfid lässt sich das supramolekulare Aggregat aufbrechen und man erhält das lösliche Addukt 1(Me2S)2, das als kristallines Material in hoher Reinheit isoliert werden kann. Bei 1(Me2S)2 handelt es sich um ein hervorragendes Hydroborierungsreagenz, welches bei Raumtemperatur mit terminalen Alkinen zu den entsprechenden Vinylboranen reagiert. Aus 1 lassen sich mit Diethinylarenen außerdem lumineszente pi-konjugierte Hydroborierungspolymere erzeugen. Die Umsetzung mit bidentaten Lewis-Basen, wie z.B. Pyridazin, führt zu sehr stabilen symmetrischen Addukten, in denen die Base die beiden aziden Borzentren des Diboraanthracens verbrückt. Um einen Einblick in die elektronischen Eigenschaften des 9,10-Dihydro-9,10-diboraanthracens (1) zu erhalten, wurde im Rahmen der vorliegenden Arbeit das zu Anthracen isoelektronische dianionische Diborataanthracen ([1]2-) isoliert und hinsichtlich seiner Festkörperstruktur und Reaktivität untersucht.
Der Einbau von Übergangsmetallionen in Polymerketten kann zu Materialien mit vielversprechenden optischen, elektronischen oder magnetischen Eigenschaften führen, wie sie auf der Basis konventioneller organischer Polymere nicht zu erzielen sind. Die für metallorganische Makromoleküle charakteristischen Eigenschaften resultieren vor allem aus der Vielfalt der Strukturtypen, die für Metallkomplexe auftreten, und in vielen Fällen aus kooperativen Effekten zwischen den Übergangsmetallzentren eines Polymerstranges. Gezieltes Materialdesign setzt daher neben einem grundlegenden Verständnis der Interaktion zwischen den Metallkomplexfragmenten die Fähigkeit voraus, diese durch geeignete Verknüpfungseinheiten so miteinander zu verbinden, dass Wechselwirkungen zwischen ihnen auftreten. Kooperative Phänomene lassen sich häufig bereits an kurzkettigen Oligomeren beobachten, die daher als Modellsysteme für die entsprechenden Polymere dienen. Vor diesem Hintergrund lag der Schwerpunkt der vorliegenden Arbeit auf der Synthese und Charakterisierung di- und trinuclearer Metallkomplexe. Darüber hinaus wurden aber auch entscheidende Fortschritte in Bezug auf die Synthese metallhaltiger Polymere auf der Basis ausgewählter Ferrocenderivate erzielt. Zur Darstellung der Zielverbindungen wurden sowohl etablierte Verknüpfungs-Konzepte genutzt als auch neue Syntheserouten entwickelt. Als wichtige Startverbindungen wurden die Ferrocenylborane FcBR2 und 1,1‘-fc(BR2)2 [Fc = (C5H5)Fe(C5H4), fc = Fe(C5H4)2, R = Br, H, CR‘3] eingesetzt, da sich deren Borylsubstituenten in vielfältiger Weise zur Verknüpfung der metallorganischen Bausteine nutzen lassen. Aufgrund der Lewis-sauren Eigenschaften der Borylsubstituenten können Ferrocenylborane mit difunktionellen organischen Lewis-Basen wie 4,4‘-Bipyridin oder Pyrazin zu Polymeren verknüpft werden. Um die Anzahl der Metallatome innerhalb derartiger Makromoleküle zu erhöhen, wurden im Rahmen dieser Arbeit erstmals metallorganische Lewis-Basen als Verknüpfungseinheiten eingesetzt. In dieser Hinsicht bieten sich 3,4-Dimethyl-1-phosphaferrocen und 3,3‘,4,4‘-Tetramethyl-1,1‘-diphosphaferrocen sowie Ferrocenyllithium und 1,1‘-Dilithioferrocen an, da in diesen Verbindungen das Lewis-basische Zentrum Bestandteil des Cyclopentadienylrings ist. Im Gegensatz zu Phosphaferrocenen bilden die starken Lewis-Basen Ferrocenyllithium und 1,1‘-Dilithioferrocen mit dem Ferrocenylboran FcBMe2 selbst in Lösung stabile Addukte (z. B. Fc2BMe2Li). Polymerisationsversuche mit den Edukten 1,1‘-(fcBMe2)2 und 1,1‘-Dilithioferrocen führen entgegen den Erwartungen jedoch nicht zu polymerem Material, sondern ergeben das borverbrückte [1.1]Ferrocenophan [{Fe-(C5H4)2}2{BMe2}2]Li2. Die Struktur von [{Fe-(C5H4)2}2{BMe2}2]Li2 im festen Zustand weist als hervorstechendstes Merkmal ein nacktes Lithium-Ion auf, das sich im Zentrum des Käfigs befindet. Dieses supramolekulare Aggregat ist auch in Lösung beständig. Werden jedoch beide Ferroceneinheiten oxidiert, verlässt das Li+-Ion den Makrozyklus, um nach vollständiger Reduktion von [{Fe-(C5H4)2}2{BMe2}2] wieder an seinen ursprünglichen Platz zurückzukehren. Komplementär zum Verknüpfungskonzept über dative Bor-Stickstoff-, Bor-Phosphor- und Bor-Kohlenstoff-Bindungen wurde im Rahmen dieser Arbeit eine Kondensationsreaktion erarbeitet, die auf einfachem Wege zu kovalent verknüpften di- und oligonuclearen Ferrocenkomplexen führt. Bei der Umsetzung von FcBBr2 mit HSiEt3 beobachtet man eine Dimerisierungsreaktion, die unter Bildung von Fc2BBr verläuft. Einer entsprechenden Reaktion lässt sich auch 1,1‘-fc(BBr2)2 unterziehen, womit sich ein Weg zu Poly(ferrocenylenen) eröffnet, in denen die Ferroceneinheiten über dreifach koordiniertes Bar verknüpft sind ([-fcB(R)-]n, R = Br). Weitere Wege zu ferrocenhaltigen Polymeren mit Bar im Polymerrückgrat wurden durch die erfolgreiche Synthese der Ferrocenylborane FcBH2 und 1,1‘-fc(BH2)2 eröffnet, die in Form ihrer Lewis-Säure-Base-Addukte mit Dimethylethylamin [FcBH2 . NMe2Et; 1,1‘-fc(BH2 . NMe2Et)2] oder Dimethylsulfid [FcBH2 . SMe2; 1,1‘-fc(BH2.SMe2)2] isoliert werden konnten. FcBH2 . NMe2Et und FcBH2 . SMe2 erwiesen sich als aktive und selektive Hydroborierungsreagenzien. Durch Umsetzung mit aromatischen Dialkinen werden dadurch konjugierte Polymere zugänglich, welche mit Polyolefinen verwandt sind, in denen einige der Kohlenstoffatome durch Boratome ersetzt wurden. Diese Materialien zeichnen sich durch ausgeprägt pi-Delokalisation aus, die sich über das Bor hinweg erstreckt, und weckten unser Interesse, da Oxidation der Ferrocenyl-Seitenketten eine elektrochemische Modifizierung der Ladungsdichte an den Borzentren erlauben sollte. Gleichzeitig ließen sich auf diese Weise paramagnetische Fe(III)-Ionen in unmittelbarer Nachbarschaft zu einem elektrisch leitfähigen Polymer generieren. Überdies erhält man Polymere des Typs [-fcB(R)-]n nicht nur über die Reaktion von 1,1‘-fc(BBr2)2 mit HSiEt3 (R = Br) sondern auch über die Kondensationsreaktion von 1,1‘-fc(BH2)2, die unter Abspaltung von BH3 verläuft (R = H).
Das Ziel dieser Arbeit war die Evaluierung der Einsatzmöglichkeiten eines mikrostrukturierten Reaktorsystems in der heterogenen Katalyse. Hierzu wurde eine Reaktion herangezogen, welche typische Problemstellungen der heterogenen Katalyse abbildet. Zu diesen Problemen gehören Temperaturkontrolle, sichere Handhabung von explosiven Gasgemischen und das Erzielen von zufriedenstellenden Selektivitäten. Die Reaktion sollte außerdem bereits gut untersucht worden und die Prozessparameter aus der Literatur bekannt sein. Aus diesem Grund wurde die Partialoxidation von Ethen zu Ethenoxid an Silberkatalysatoren gewählt. Es konnte gezeigt werden, dass die Reaktion in einem Mikrostrukturreaktorsystem sicher durchführbar ist. Vor allem wurde an einer ganzen Reihe von Beispielen veranschaulicht, dass eine herausragende Eigenschaft des Mikrostrukturreaktors seine inhärente Explosionssicherheit ist. Gasgemische, welche sich mitten im explosiven Gemischbereich befanden, konnten bei Drücken von 2 bis 20 bar und Temperaturen von 230 bis 310 °C sicher gehandhabt werden. So konnte gezeigt werden, dass der Mikrostrukturreaktor sich dazu eignet Reaktionen mit explosiven Gasgemischen durchzuführen. Die Verwendung von Mikrostrukturreaktoren in der heterogenen Katalyse befindet sich noch im Anfangsstadium. Um Probleme bei der Übertragung von Katalysatorsystemen auf ein System mit Mikrostruktur zu vermeiden, erfolgte zunächst der Einsatz von Vollsilberkatalysatoren. Die Mikrostruktur wurde deshalb aus dem katalytisch aktiven Material selbst hergestellt. Die Herstellung wurde auf drei unterschiedliche Weisen (LIGA-, Ätz- und Sägeverfahren) durchgeführt. So konnte gezeigt werden, dass eine Kostenreduzierung bei der Darstellung von Mikrostrukturen möglich ist. Der Nachteil der Nutzung von Vollsilber war, dass sich deutlich schlechtere Selektivitäten bei der Partialoxidation von Ethen ergaben. Es konnte jedoch gezeigt werden, dass mit dem Mikrostrukturreaktor die Selektivitäten für Vollsilber im Schnitt 10 % über denen für Rohrreaktorexperimenten bei gleichen Umsätzen lagen. Die effektive Wärmeabführung und die homogene Verteilung der Wärme über den Mikrostrukturreaktor scheinen eine Verbesserung der Selektivität zu erbringen. Kinetische Untersuchungen zeigten, dass sowohl durch Anheben des Partialdrucks von Ethen als auch von Sauerstoff eine Erhöhung der Reaktionsgeschwindigkeit erzielt werden kann. Dabei wurde für Ethen eine formale Reaktionsordnung bei der Bildung von Ethenoxid von 0,53 gefunden, während sie für Sauerstoff 0,78 betrug. Mit diesen Untersuchungen wurde verdeutlicht, dass ein Erhöhen des Sauerstoffpartialdrucks einen positiven Einfluss auf die Selektivität hat. So konnte durch Anheben der Sauerstoffkonzentration von 5 %, wie es in industriellen Prozessen aus Sicherheitsgründen notwendig ist, auf bis zu 95 % eine Verbesserung der Selektivität von bis zu 15 % erzielt werden. Über diesen Sachverhalt wurde zwar bereits in der Literatur (16) berichtet, jedoch erfolgten die Untersuchungen hierfür unter Hochvakuumbedingungen. Der Mikrostrukturreaktor ermöglichte einen Nachweis dieses Phänomens auch unter Hochdruckbedingungen, wie sie für industrielle Reaktoren üblich sind. Damit konnte ein in der heterogenen Katalyse bekanntes Problem, nämlich die Übertragung von Erkenntnissen aus Ultrahochvakuumexperimenten auf Hochdruckbedingungen (pressure-gap), untersucht werden. Eine wissenschaftliche Prüfung, ob dem Ergebnis die gleichen Ursachen sowohl im Ultrahochvakuum als auch bei Hochdruckbedingungen zugrunde liegen, muss noch erfolgen. Es zeigte sich aber auch, dass durch eine Verweilzeiterhöhung keine weitere Verbesserung der Raum-Zeit-Ausbeute möglich ist. Vielmehr wurde klar, dass Reaktionsgeschwindigkeit und Selektivität mit längeren Verweilzeiten abnehmen. Als Grund hierfür konnte die Bildung von elementarem Kohlenstoff an der Silberoberfläche festgestellt werden. Aufgrund der Limitierung bei der Verweilzeit wurden maximale Umsätze von 24 % erzielt. Der Einsatz von 1,2-Dichlorethan als Oxidationsinhibitor für Vollsilber wurde ebenfalls untersucht. Dabei konnte die Selektivität auf bis zu 69 % gesteigert werden. Es erfolgte jedoch eine Einbuße an Aktivität von etwa 42 %. Es ist bekannt, dass die Oberflächenmorphologie von Silberkatalysatoren unter Reaktionsbedingungen starke Veränderungen erfährt. (68) Es wurde aufgezeigt, dass dies für die Oberfläche von mikrostrukturierten Silberfolien ebenfalls festzustellen ist. Dabei wurde gleichzeitig festgestellt, dass die Katalysatoren trotz unterschiedlicher Herstellungsmethoden und den daraus resultierenden unterschiedlichen Oberflächenmorphologien vergleichbare Aktivitäten aufweisen. Industriell verwendete Katalysatoren basieren auf alpha-Aluminiumoxid als Trägermaterial. Dabei wurde bereits seit vielen Jahren an Optimierungen des Katalysators gearbeitet. Durch das Einstellen der spezifischen Oberfläche und Partikelgröße des Silbers und den Einsatz von Alkali- und Erdalkalimetallen als Promotoren werden so Katalysatoren hergestellt, welche eine Selektivität von 80 % besitzen. Die Übertragung dieser Erkenntnisse auf ein Mikrostrukturreaktorsystem kann nicht ohne weiteres vorgenommen werden. Es wurden verschiedene Darstellungsmöglichkeiten für eine alpha-Aluminiumoxidschicht in einem Mikrostrukturreaktor untersucht. Dabei zeigte sich, dass nur die direkte Darstellung von alpha- Aluminiumoxid ohne Phasenumwandlung aus anderen Modifikationen erfolgversprechend ist. Eine Darstellung der Aluminiumoxidschicht durch Sol-Gel- oder CVD-Prozesse war nicht erfolgreich, da die für die Phasenumwandlung von gamma-Aluminiumoxid nach alpha-Aluminiumoxid notwendige Temperatur von 1100 °C die Ausbildung einer Eisenoxidschicht an der Oberfläche der mikrostrukturierten Edelstahlfolien zur Folge hatte. Diese eignete sich nicht als Träger. Alternativ wurde erfolgreich der Einsatz von aluminiumhaltigen Edelstählen untersucht. Diese bilden beim Ausheizen bei 1100 °C eine alpha-Aluminiumoxidschicht an der Oberfläche aus, welche mittels Sputtern mit Silber geträgert wurde. Katalytische Untersuchungen zeigten, dass mit dem Einsatz von alpha-Aluminiumoxidträgern eine Verbesserung der Selektivität im Vergleich zu Vollsilber von 17 % erreicht werden kann. Gleichzeitig konnte anhand eines Gegenüberstellens von katalytischen Daten mit TEM-Aufnahmen der Sputterschichten festgestellt werden, dass eine geschlossene Silberschicht an der Oberfläche notwendig ist, um eine zufriedenstellende Aktivität und Selektivität zu erzielen. Während bei Schichtdicken von 1 nm noch einzelne Silberinseln an der Oberfläche zu finden sind, liegt bei einer Schichtdicke von 5 nm eine fast geschlossene Silberschicht vor. Ein Anheben der Schichtdicke ergab keine weitere Verbesserung der Aktivität oder Selektivität. Dagegen ergab der Einsatz von 1,2-Dichlorethan eine weitere Steigerung der Selektivität auf 77 %. Industriell eingesetzte Rohrbündelreaktoren erreichen im Sauerstoffverfahren eine Selektivität von 80 %. Die hier erzielten 77 % Selektivität bei vergleichbaren Umsätzen zeigt, dass der Einsatz eines Mikrostrukturreaktors für die Synthese von Ethenoxid möglich ist, vor allem unter dem Gesichtspunkt, dass Potenzial für die Optimierung von Reaktoren und die Katalysatorpräparation besteht. Die Nutzung von Reaktionsbedingungen, wie Ethen in reinem Sauerstoff, und der daraus resultierenden Verbesserung für Aktivität und Selektivität, ermöglichen Raum-Zeit-Ausbeuten, die über denen von Industriereaktoren liegen. Ob Mikrostrukturreaktoren in industriellen Prozessen jemals eingesetzt werden, hängt allein von ökonomischen Faktoren ab. Dazu müsste die Selektivität über die bestehenden 80 % angehoben werden. Zur Zeit entfallen 80 % der Produktionskosten von Ethenoxid auf den Rohstoff Ethen, so dass jeder Prozentpunkt, um den die Selektivität angehoben werden könnte, eine deutliche Kosteneinsparung mit sich brächte und darüber entschiede, ob ein neuer Prozess eingeführt wird. Hierzu wäre es auch notwendig, die Kosten für die Produktion der Mikrostrukturreaktoren pro Volumeneinheit um mehrere Größenordnungen zu reduzieren. Außerdem müssten Lösungen entwickelt werden, welche die Peripherie des Reaktors betreffen, vor allem die Heizung und die Gasversorgung. Im Rahmen dieser Arbeit sollte überprüft werden, welche Leistungsfähigkeit ein Mikrostrukturreaktorprozess im Vergleich zu einem bestehenden Prozess besitzt. Es konnte dargestellt werden, dass Raum-Zeit-Ausbeuten über denen eines Industriereaktors erzielt werden können bei vergleichbareren Selektivitäten. Außerdem konnte gezeigt werden, dass der Mikrostrukturreaktor ein geeignetes Werkzeug ist, welches helfen kann, Reaktionen unter bisher nicht einfach zugänglichen Bedingungen durchzuführen.
In dieser Arbeit konnte 1,8-Diborylnaphthalin (11) präparativ in einer Stufe und 65% Ausbeute aus dem literaturbekannten Boronsäureanhydrid 9 dargestellt werden. 11 ist das zweite bekannte, aromatisch verbrückte Derivat des Diborans B2H6. 11 kann als Startverbindung für eine Reihe strukturverwandter BNB-dotierter Phenalenderivate verwendet werden. Dazu werden zwei der vier Bor-gebundenen Protonen durch die Umsetzung mit einem Mesitylgrignard und Trimethylsilylchlorid substituiert. Die Umsetzung mit Wasser bzw. Aminen liefert BOB- bzw. BNB-Phenalene unter Freisetzung von elementarem Wasserstoff. Alle, auf diese Weise dargestellten Verbindungen, zeigen reversible Redoxeigenschaften und Photolumineszenz mit zum Teil besonders scharfen Emissionssignalen mit Halbhöhenbreiten von bis zu 31 nm. Zusätzlich wurden drei analoge Vertreter einer NBN-Phenalen Spezies dargestellt und charakterisiert. Die entgegengesetzte Dotierung äußert sich in einem grundlegend verschiedenem Redoxverhalten. Abschließend wurde die Reduktion des BNB-Phenalens 22 untersucht. Dabei gelang es das Radikal K[32] zu charakterisieren und seine Abbaureaktion in THF aufzuklären.