Refine
Year of publication
Document Type
- Doctoral Thesis (46)
Has Fulltext
- yes (46)
Is part of the Bibliography
- no (46)
Keywords
- Proteomics (6)
- MALDI-MS (4)
- Proteomanalyse (4)
- Analyse (2)
- Elektronensprayionisations-Massenspektrometrie (2)
- Elektrospray-Ionisation (2)
- MALDI-TOF-Massenspektrometrie (2)
- Massenspektrometrie (2)
- Proteolyse (2)
- Validierung (2)
Institute
- Pharmazie (23)
- Biochemie und Chemie (19)
- Biochemie, Chemie und Pharmazie (4)
Die toxikologische Charakterisierung von Chemikalien und Arzneimitteln basiert auch heute noch hauptsächlich auf Toxizitätstests an Labortieren. Insbesondere die Prüfung auf Kanzerogenität fordert eine große Tieranzahl mit einer hohen Belastung der eingesetzten Tiere und ist sehr zeit- und kostenintensiv. Folglich stellt die Entwicklung von Methoden als Ergänzung und potenziellen Ersatz für Tierversuche ein Ziel der molekularen und zellulären Toxikologie dar. Diese Methoden umfassen verkürzte oder minimal invasive in vivo- sowie in vitro-Versuche, welche der toxikologischen Prüfung von Substanzen gemäß dem 3R-Prinzip dienen könnten.
Das Ziel dieser Arbeit war es, den Einsatz von Toxikoproteomics und -genomics im 28-Tage-Test (Toxizitätsstudie nach wiederholter oraler Gabe in Ratten), die in der Toxikologie routinemäßig durchgeführt werden müssen, zu untersuchen. Daneben wurden entsprechende Lebergewebeproben aus der in vivo-Prüfung mit den Daten aus einem hepatozytären Zellkultursystem als Ersatz- und Ergänzungsmethode verglichen. Identifizierte mechanistische Daten und putative Biomarker könnten für die Ableitung von chronisch-toxischen Potentialen von Substanzen genutzt werden und eine frühere Vorhersage zu kanzerogenen Potentialen von Stoffen erlauben.
Die in der Arbeit gewählten Modellsubstanzen stammten aus drei verschiedenen mechanistischen Kategorien: genotoxische Kanzerogene [Diethylnitrosamin (DEN), Aflatoxin B1 (AFB), Cupferron (CUP)], nicht-genotoxische Kanzerogene [Tetrachlorkohlenstoff (CCl4), Di(2-ethylhexyl)phthalat (DEHP), Clofibrat (CF)] und hepatotoxische Nicht-Kanzerogene [Diallyl Phthalat (DAP), Benzaldehyd (BA), Ketokonazol (KC)].
Im ersten Teil der Arbeit wurden Rattenlebern aus den behandelten Tieren (ausgewählte Substanzen: AFB, CUP, CF, BA, KC) und den entsprechenden Kontrollen auf Veränderungen der globalen Genexpression nach 3, 7 und 28 Behandlungstagen untersucht. Das Ziel war es, nach kurzer Expositionsdauer charakteristische Wirkmechanismen auf Ebene der Genexpression zu erfassen, welche als frühes Indiz für zelluläre Transformation in Richtung Lebertoxizität bzw. Tumorentwicklung verwendet werden könnte. Dabei wurde gezeigt, dass eine Aktivierung verschiedener Prozesse, wie oxidativer Stress, Zellzyklus, Apoptose, Zellwachstum sowie spezifische Mechanismen infolge der verursachten Schädigung durch die eingesetzten Verbindungen bereits ab Tag 3 detektiert werden konnten. Mit der Genexpressionsanalyse wurden zudem auch einige putative Biomarker, welche kanzerogene Veränderungen beschreiben können, an Tag 28 identifiziert. Es konnte weiterhin gezeigt werden, dass die Daten der toxikogenomischen Analyse mit den histopathologischen Beobachtungen für diese Substanzen gestützt werden.
Im darauf folgenden Teil der Arbeit sollte eine Proteommethode zur Identifizierung und Charakterisierung putativer Protein-Biomarker im Plasma eingesetzt werden, die eine verbesserte Vorhersage von Prozessen der chemisch induzierten Leberkanzerogenese innerhalb des geforderten 28-Tage-Tests erlauben. Der Vorteil der Nutzung von Plasma ist, dass die Tiere dafür nicht getötet werden müssen und man den Verlauf der Veränderungen in weniger Tieren über viele Zeitpunkte hinweg verfolgen kann. Hierfür wurde das Rattenplasma von Tag 3, 7 und 28 der mit genotoxischen und Nichtgenotoxischen Kanzerogenen behandelten Tiere mittels zweidimensionaler Gelelektrophorese und anschließender Identifizierung mit MALDI Massenspektrometrie untersucht. Die Ergebnisse zeigten bei den genotoxischen als auch Nichtgenotoxischen Kanzerogenen eine Vielzahl von Proteinen, die in akut toxischen Prozessen, wie z.B. dem Fettstoffwechsel, der Immunantwort und dem Proteinmetabolismus involviert sind. Als putativer Biomarker konnte zum Beispiel Alpha-1-Antitrypsin identifiziert werden, das auch im Serum bei Patienten mit Leberzellkarzinomen erhöht ist. Eine klare Unterscheidung zwischen den Mechanismen der genotoxischen und Nicht-genotoxischen Kanzerogene war allerdings auf Basis dieser begrenzten Daten nicht möglich.
Im dritten Teil der Arbeit wurden Rattenhepatozyten mit den gleichen fünf ausgewählten Ausgangssubstanzen wie im in vivo-Experiment behandelt. Das Ziel bestand darin, die Eignung von primären Rattenhepatozyten in Collagen-Sandwich-Kulturen als in vitro-Modell zur Prädiktion von hepatotoxischen Effekten zu überprüfen. Der Vergleich des in vitro-Systems zu den in vivo-Daten an den Behandlungstagen 3 und 7 zeigte, dass zwischen in vivo und in vitro eine gute Korrelation der mechanistischen Genexpressionsveränderungen nach Behandlung mit AFB und CF zu detektieren war. Des Weiteren lieferte die Behandlung der primären Rattenhepatozyten mit CUP detaillierte Hinweise auf den toxischen Mechanismus, wogegen in den Leberproben keine vergleichbaren Erkenntnisse gewonnen werden konnten. So konnte für CUP in vitro z.B. ein starker Einfluss auf das Netzwerk der nukleären Rezeptoren gezeigt werden. Der Vergleich des in vivo- und in vitro-Testsystems nach Behandlung mit den hepatotoxischen Substanzen KC und BA zeigte im Gegensatz zu AFB und CF nur eine sehr geringe Übereinstimmung der differentiell deregulierten Gene bzw. Signalwege. Ein möglicher Grund für die Unterschiede könnten die eingesetzten Dosierungen sein, welche möglicherweise nicht direkt miteinander verglichen werden können.
Die Ergebnisse dieser Arbeit demonstrieren, dass die eingesetzten molekulartoxikologischen Methoden frühe Hinweise liefern können, die sowohl eine Zuordnung zu toxischen Wirkmechanismen als auch eine Identifizierung von kanzerogenesespezifischer Biomarker-Kandidaten ermöglichen. Zudem zeigte der Vergleich der in vivo / in vitro-Testsysteme eine gute Übereinstimmung in den identifizierten Signalwegen nach Behandlung mit den Testkanzerogenen. In Zukunft könnten diese Methoden in den kürzeren in vivo-Prüfungen wie z.B. 28-Tage-Test eingesetzt werden, um die konventionellen toxikologischen Prüfsysteme zu unterstützen.
Die Proteomforschung wurde die letzten beiden Dekaden maßgeblich durch die Massenspektrometrie geprägt und vorangetrieben. Ohne die Ionisationstechniken MALDI und ESI wäre die Analyse von Peptiden und Proteinen nicht in dem Maße möglich. Durch das Zusammenspiel zwischen Probenvorbereitung und effektiven Trennmethoden mit hochauflösenden Massenspektrometern und Auswertungssoftware können heute problemlos komplexe Proteinmischungen oder ganze Proteome untersucht werden.
Um Proteine in Peptide zu schneiden, wird in den allermeisten Fällen die Protease Trypsin verwendet, deren Eigenschaften in vielerlei Hinsicht die bestmögliche Lösung für die nachfolgende Analyse mit Massenspektrometern bieten. Allerdings stößt die Anwendbarkeit dieses Enzyms bei der Analyse von einigen Proteinen oder Proteinklassen wie Membranproteinen an ihre Grenzen, da nur sehr wenige potentielle Schnittstellen vorhanden sind. In solchen Fällen wurden eine Reihe von weniger spezifischen Enzymen wie Chymotrypsin, Proteinase K oder Elastase in den vergangenen Jahren genutzt, die Proteine auch in für Trypsin weniger gut zugänglichen Bereichen wie Transmembranhelices, in massenspektrometrisch analysierbare Peptide spalten können.
Allerdings stellen die wenig spezifischen Enzyme und die von ihnen generierten Peptide die Massenspektrometrie vor neue Herausforderungen. Für eine Identifizierung benötigen die Peptide eine sehr hohe Massengenauigkeit, daneben sind insbesondere bei der Verwendung von MALDI-Massenspektrometern neutrale und sehr saure Peptide schwerer ionisierbar und analysierbar als basische.
Genügte es bis vor einigen Jahren, nur die Identität einzelner Proteine in komplexen Proben zu bestimmen, hat sich die Fragestellung mittlerweile einem Wandel unterzogen. Heute ist man daran interessiert, wie viel eines bestimmten Proteins vorliegt, besonders im Vergleich mit anderen, unterschiedlich behandelten Proben ist die Regulation von Proteinen von Interesse. Zum Quantifizieren stehen viele unterschiedliche Methoden zur Verfügung. Eine solche stellen die isobaren Derivatisierungsreagenzien TMT und iTRAQ dar, mit denen unterschiedliche Proben nach Peptidfragmentierung quantifiziert werden können.
Fast alle Arbeiten zur Quantifizierung in der Vergangenheit benutzten Trypsin als Protease.
Im Zuge dieser Arbeit sollten die Vorteile, die durch die Verwendung von Elastase bei der Identifizierung von Membranproteinen bereits gezeigt werden konnten, auf die Quantifizierung mit TMT erweitert werden.Wurde in der Vergangenheit noch in manchen Publikationen davon abgeraten, Elastase zu verwenden,weil die Nutzbarkeit der dabei gebildeten komplexen Peptidmischungen in Frage gestellt wurde, konnte in dieser Arbeit gezeigt werden, dass Elastase wie auch Trypsin sich eignen, als Enzym für Quantifizierungsexperimente verwendet zu werden. Dies wurde an Modellproteinen evaluiert und dann auf komplexe Membranproben von Hefezellen erweitert.
Bei Vorexperimenten zur Derivatisierung mit TMT wurde desweiteren festgestellt, dass Peptidklassen, die zuvor nur mit ESI als Ionisationsmethode identifiziert werden konnten, durch die Derivatisierung nun auch mit MALDI zugänglich waren. Die dadurch analysierten kleinen, hydrophoben und sehr sauren Peptide lieferten bei der Kombination mit der underivatisierten Probe einen deutlichen Zugewinn in der Sequenzabdeckung der identifizierten Proteine.
Ein weiterer Teil der Arbeit beschäftigt sich mit der nachträglichen Korrektur von gemessenen Peptidmassen über selbst geschriebene Softwarelösungen für verschiedene Massenspektrometer. Es wurde das Ziel verfolgt, eine möglichst hohe Massengenauigkeit und damit hohe Anzahl an Identifizierungen von Proteinen nach Verdau mit wenig spezifischen Proteasen zu erreichen. Weitere Computerprogramme wurden mit dem Ziel geschrieben, den Arbeitsablauf zu erleichtern und zu verbessern.
Für die früher schon beschriebene Kombination zweier Massenspektrometer mit hoher Massengenauigkeit und Auflösung auf der einen Seite und effizienter Peptidfragmentierung auf der anderen Seite konnte durch Veränderung der Instrumentierung und Software nun eine Automatisierbarkeit geschaffen werden, die es ermöglicht, die Methode standardmäßig bei Routineanalysen zu verwenden.
So ergeben sich viele neue Möglichkeiten neben den oft gewählten Standardprotokollen mit der Analyse tryptischer Verdauansätze mittels LC-ESI-MS/MS, die häufig nur der Einfachheit halber und ohne Anpassung an die eigene Zielsetzung gewählt werden.
Die Arbeit zeigt aber auch auf, dass die Verwendung weniger spezifischer Enzyme sowohl eine Optimierung des Arbeitsablaufs als auch eine Datenauswertung benötigt, die die Besonderheiten der Proteasen berücksichtigt. Wenn dies gewährleistet wird, kann vor allem mit dem Zugewinn durch die Derivatisierung mit TMT eine wertvolle Alternative zu Trypsin genutzt werden.
Das bioanalytische Arbeiten mit integralen Membranproteinen ist aufgrund der hohen Hydrophobizität dieser Proteine stark eingeschränkt. Allgemein anwendbare Arbeitsvorschriften für die Analyse mittels Gelelektrophorese und Massenspektrometrie lassen sich für diese besonderen Proteine bislang nicht angeben. Infolge ihrer Schwerlöslichkeit in typischen wäßrigen Lösungsmittelsystemen erfordert die Isolierung von integralen Membranproteinen stets den Einsatz von Detergentien und häufig eine individuelle Anpassung der Solubilisierungsprotokolle. Hydrophobe Membranproteine mit einer hohen Anzahl an Transmembran-Helices und somit einem hohen Gravy-Score können unter den Bedingungen der für die Proteomanalyse eingesetzten zweidimensionalen IEF/SDS-Gelelektrophorese häufig nicht aufgetrennt werden. Ihre hohe Aggregationsneigung und die Inkompatibilität zu den Lösungsmittelsystemen der isoelektrischen Fokussierung sind unter anderem der Grund, weshalb Membranproteine bei der Gesamtstatistik von Proteomanalysen häufig unterrepräsentiert sind. Neben den Limitierungen bei der gelelektrophoretischen Auftrennung stellen Membranproteine auch für die massenspektrometrische Analyse und Identifizierung eine besondere Herausforderung dar. Hohe Sequenzabdeckungen und damit eindeutige Datenbankidentifizierungen, wie sie nach einem enzymatischen Verdau von wasserlöslichen Proteinen häufig erreichbar sind, werden bei Membranproteinen in der Regel nicht beobachtet. Insbesondere integrale Membranproteine mit einem hohen Anteil an Transmembran-Helices haben häufig nur wenige Schnittstellen für die routinemäßig eingesetzte Protease Trypsin; dies führt zu wenigen und großen Peptiden, die darüber hinaus in den verwendeten Lösungsmittelsystemen schwerlöslich sind. Verstärkt wirkt sich dieses Problem bei kleinen Membranproteinen aus. Oftmals erlaubt nur der Einsatz von Fragmentierungstechniken der Massenspektrometrie die Identifizierung eines solchen Proteins anhand eines oder zweier Peptide. Ziel der vorliegenden Arbeit ist es deshalb, durch die Entwicklung und Etablierung von neuen Protokollen und Methoden eine verbesserte gelelektrophoretische Trennung und massenspektrometrische Identifizierung dieser besonderen Proteine zu erreichen.
In dieser Arbeit sollten auf Grundlage eines in vitro Transkriptions-/Translations-Assays (TTA) neue Substanzen als Hemmer der bakteriellen Proteinbiosynthese gefunden werden. Um dieses Ziel verfolgen zu können, wurde zuerst ein zellfreies Testsystem aus kommerziellen Komponenten entwickelt und als Screening-Tool für Inhibitoren der bakteriellen Proteinbiosynthese evaluiert. Anhand des allgemein akzeptierten Bewertungskriteriums Z‘-Faktor konnte die Performance des etablierten Assays als exzellent eingeordnet werden. Mit diesem System war es nun möglich, Substanzen aus unterschiedlichen Quellen bei der Wirkstoffsuche als potentielle Antibiotika einzuordnen, welche die Proteinbiosynthese hemmen.
In zwei nachfolgenden Projekten wurde die Praktikabilität dieses neuen Assays bei der Auffindung möglicher Antibiotika-Kandidaten bewiesen. In dem ersten Ansatz wurde ein virtuelles Screening der Substanzdatenbanken Specs und Asinex anhand eines Pseudorezeptormodells für Aminoglykoside durchgeführt. In Kombination mit dem TTA sowie einem Ganzzell-Assay gegen den gram-positiven Keim Bacillus subtilis 168 konnte eine Struktur mit Ähnlichkeit zu Vanilloiden als interessanter Ausgangspunkt für weitergehende Untersuchungen identifiziert werden. Die Entdeckung korreliert mit den antimikrobiellen Eigenschaften eines anderen Vanilloid, dem Capsaicin, für welches bisher aber keine Hemmung der Proteinbiosynthese in der Literatur beschrieben ist. Somit konnte gezeigt werden, dass anhand eines virtuellen Screenings sowie weiterer Assays neue Hemmer der bakteriellen Proteinbiosynthese effizient und effektiv gefunden werden können. In einem zweiten Screening-Projekt dienten pflanzliche Naturstoffe als Substanzquelle. Hierfür wurden auf der Grundlage der diterpenoiden Fusidinsäure, einem Proteinbiosynthesehemmer (PBS-Hemmer), tetra-und pentazyklische Isoprenoide ausgewählt.
Aus einem Ensemble von terpenoiden Strukturen gingen nach TTA und einem zellbasierten Assay gegen Bacillus subtilis 168 in absteigender Aktivität die 18β-Glycyrrhetinsäure, 11-Keto-β-boswelliaäsure und Carnosolsäure als nennenswerte antimikrobiell wirksame Vertreter und PBS-Hemmer hervor. Auch zeigten sich diese Substanzen den Stoffen aus dem virtuellen Screening sowohl im TTA als auch in der Wirksamkeit gegen Bacillus subtilis 168 deutlich überlegen. Im nächsten Schritt erfolgte deshalb nur für diese drei Terpenoide eine Charakterisierung ihrer Auswirkungen auf das Proteom des gram-positiven Bakteriums Bacillus subtilis 168.
Dafür wurde eine komplette zweidimensionale gelelektrophoretische Methodik basierend auf der Differentiellen Gelelektrophorese (DIGE) etabliert. Sie umfasst eine Strategie zur schnellen Evaluierung der optimalen Anzucht des Testkeims Bacillus subtilis 168 unter Einfluss einer antimikrobiell wirksamen Substanz und ein einfaches Aufschlussverfahren, um einen kompatiblen Proteinextrakt für DIGE zu erhalten. Außerdem wurde ein preisgünstiges Markierungsverfahren mit dem 5(6)-Carboxyfluorescein-N-hydroxysuccinimid-Ester als Alternative zu den teuren DIGE-Cyan-Farbstoffen entwickelt, um die Fluoreszenzbildqualität eines neuen unbekannten Extraktes vor dem eigentlichen kostspieligen DIGE-Versuch zu überprüfen. Eine Quantifizierung regulierter Spots im Gel ist mit diesem billigen Verfahren ebenfalls möglich, stellt aber keinen Ersatz für den DIGE-Versuch dar.
Die Ergebnisse der quantitativ vergleichenden Proteomanalyse vom behandelten und unbehandelten Bacillus subtilis 168 mittels DIGE bieten erstmals einen Einblick in die Einflussnahme der drei Terpenoide 18β-Glycyrrhetinsäure, 11-Keto-ß-boswelliaäsure und Carnosolsäure auf die Stressregulation und die Stoffwechseländerungen dieses Bakteriums.
Außerdem beinhaltet die Arbeit einen Abgleich, inwieweit andere antimikrobiell wirksame Substanzen die regulierten Proteine der drei untersuchten Naturstoffe bei Bacillus subtilis 168 beeinflussen können. Aus den erhobenen Daten konnte dann ein Wirkmechanismus für 18β-Glycyrrhetinsäure und Carnosolsäure postuliert werden. 18β-Glycyrrhetinsäure greift wahrscheinlich am membranständigen Lipid-II-System der bakteriellen Zellwand an, da wie bei den Antibiotika Vancomycin, Nisin, Daptomycin, Ramoplanin und Bacitracin das Zellwandstress-Regulationsnetzwerk (LiaRS-System) als Warnsystem aktiviert wird. Außerdem konnte für 18β-Glycyrrhetinsäure und Carnosolsäure eine Theorie für Ihre PBS-Hemmung entwickelt werden. Beide beeinflussen gegebenenfalls die GTPase-Aktivität des Translationsfaktors EF-G durch Interaktion mit dem ribosomalen Bindezentrum für Translationsfaktoren. Dieses Bindungszentrum ist neben der dekodierenden Region auf der ribosomalen 30S-Untereinheit und dem Peptidyltransferase-Zentrum auf der ribosomalen 50S-Untereinheit eine extrem wichtige Region für die Funktionalität eines Ribosoms. Fusidinsäure greift auch an dieser Stelle an, indem es den EF-G-GDP-Ribosomkomplex stabilisiert. Natürlich wären weitere Studien nötig, z. B. eine Röntgenstrukturanalyse der Ribosomen von 18β-Glycyrrhetinsäure und Carnosolsäure behandelten Bakterien, um die Bindestelle für die PBS-Hemmung zweifelsfrei zu bestätigen.
Die N- und O-Glykosylierung von Proteinen ist gekennzeichnet durch eine hohe strukturelle und funktionelle Komplexität. Da verschiedene Glykanstrukturen und Glykosylierungsstellen selbst innerhalb eines Proteins unterschiedliche Aufgaben erfüllen können, ist sowohl für die Grundlagenforschung als auch für die Pharma-Industrie eine stellenspezifische Analytik zur Aufklärung der biologischen Bedeutung und bei therapeutischen Proteinen zur Gewährleistung von Sicherheit und gleichbleibenden pharmakologischen Eigenschaften essentiell. Die niedrige Abundanz sowie die hohe Komplexität durch die variablen Glykanzusammensetzungen und Verzweigungsmöglichkeiten sowie der daraus resultierende Mikroheterogenität an jeder einzelnen Stelle stellt jedoch eine besondere Herausforderung an die Analytik dar. In dieser Arbeit wurden deshalb auf verschiedenen Ebenen der Probenvorbereitung, der chromatographischen Separation sowie der MS-Analyse- Methoden und Techniken entwickelt und charakterisiert, um die stellenspezifische Analytik der Proteinglykosylierung zu vereinfachen.
In einem ersten Schritt wurde die hohe Komplexität eines Glykoproteinverdaus reduziert. Es wurden verschiedene Methoden zur Glykopeptidanreicherung miteinander verglichen, wobei sich die HILIC-Festphasenextraktion unter optimierten Bedingungen durch eine sehr hohe Selektivität und Effizienz auszeichnete. Zur Methodenoptimierung wurden verschiedene HILIC-Materialien (Silika, Amino, Mikrokristalline Cellulose, TSKgel Amide-80 und ZIC®-HILIC) eingesetzt und durch eine Variation der Anreicherungsbedingungen die Hauptretentionsmechanismen für jedes Material beschrieben. TSKgel Amide-80 sowie ZIC®-HILIC sind am besten geeignet, da unter optimierten Bedingungen sekundäre Retentionsmechanismen wie elektrostatische Wechselwirkungen deutlich reduziert werden und die hydrophile Verteilung den Hauptretentionsmechanismus darstellt. Des Weiteren wurde gezeigt, dass Parameter wie die Pufferzusammensetzung, Inkubationszeiten und die Volumenverhältnisse zwischen HILIC-Suspension, Binde-, Wasch- und Elutionspuffer entscheidend die Reproduzierbarkeit, Ausbeute und Selektivität beeinflussen. Unter Berücksichtigung dieser Beobachtungen wurde ein Protokoll entwickelt, mit welchem Glykopeptide selektiv und quantitativ, d.h. ohne Präferenz für bestimmte Glykanstrukturen, aus komplexen Proben angereichert werden können. In Kombination mit Titandioxid zur selektiven Anreicherung sialylierter Glykopeptide bei bestimmten Fragestellungen ermöglichten in dieser Arbeit beide Methoden eine detaillierte Charakterisierung sowohl von N- als auch von O-Glykopeptiden. Die Hydrazinchemie erwies sich aufgrund eines zu komplexen Arbeitsschemas und einer unzureichenden Wiederfindung als nicht geeignet.
Da je nach Aminosäuresequenz oft mit einer einzigen Protease (z.B. Trypsin) nicht alle Glykosylierungsstellen aufgrund ihrer Eigenschaften (z.B. Größe, Hydrophobizität) für die Anreicherung und LC-MS-Analyse zugänglich sind, kamen in dieser Arbeit weitere Proteasen zum Einsatz. Durch eine sequentielle Kombination von Trypsin mit Endoproteinase Glu-C bzw. Trypsin mit Chymotrypsin konnten in allen Proteinen sämtliche N-Glykosylierungsstellen nach einer Anreicherung identifiziert werden. Bei der Analyse von O-Glykopeptiden verbesserte zusätzlich die N-Deglykosylierung des intakten Proteins und die Abtrennung der freien N-Glykane mittels Ultrafiltration vor der Anreicherung die Analytik. Neben den bereits für die N-Glykopeptide beschriebenen Enzymkombinationen wurde außerdem Proteinase K eingesetzt, um die O-Glykopeptide z.B. von Fetuin effizient anzureichern und mittels LC-ESI-MS2/MS3 zu charakterisieren. Dies war mit einem Trypsinverdau alleine nicht möglich.
Die Komplexität nach einer Glykopeptidanreicherung ist jedoch aufgrund unterschiedlicher Glykanstrukturen und Glykosylierungsstellen immer noch so hoch, dass bei 1-dimensionalen HPLC-Läufen Koelution von Glykopeptiden zu einer unzureichenden Detektion niedrig-abundanter Formen führen kann. Aus diesem Grund wurden die komplementäre HPLC-Phasen RP18 und ZIC®-HILIC eingesetzt, um sich chromatographisch die differenzierenden Eigenschaften von Peptidgerüst und Glykanrest zunutze zu machen. ZIC®-HILIC ermöglicht die Auftrennung überwiegend nach der Glykanstruktur und RP18e nach Peptidsequenz und Anzahl an Sialinsäuren. Durch die Kombination beider Phasen in 1- und 2-dimensionalen HPLC-Konfigurationen konnten deutlich mehr unterschiedliche Glykoformen nachgewiesen und die Detektion niedrig-abundanter Glykopeptide ermöglicht werden, die bei der Verwendung von nur einer stationären Phase nicht identifiziert werden konnten.
Zusammen mit einer komplementären MS-Analytik, die sowohl ESI als auch MALDI sowie unterschiedliche Fragmentierungstechniken wie CID, ETD, PSD oder CID-MS2/MS3 umfasste, konnten N- und O-Glykopeptide stellenspezifisch und vollständig sowohl mit ihrem Peptid- als auch mit ihrem Glykananteil charakterisiert werden.
Für bestimmte quantitative Fragestellungen wurden außerdem die beschriebenen Anreicherungsmethoden mit dem zur Quantifizierung eingesetzten N-Glycan Mapping kombiniert und ein Arbeitschema entwickelt, mit welchem bei einem mehrfach glykosylierten Protein die Verhältnisse der unterschiedlichen Glykanstrukturen an den einzelnen Glykosylierungsstellen getrennt voneinander quantifiziert werden können.
Mit jeder einzelnen, in dieser Arbeit beschriebenen Methode wird ein beträchtlicher Informationsgewinn erzielt, doch erst durch die Kombination einer effizienten Probenvorbereitung, einer komplementären HPLC-Separation, verschiedener MS/MS-Techniken und Methoden zur Quantifizierung kann die Glykosylierung eines komplexen Proteins stellenspezifisch und detailliert beschrieben werden.
The enzyme 5-lipoxygenase (5-LO) occupies a central role in the biosynthesis of inflammatory leukotrienes and thus takes part in the pathogenesis of related diseases. Its occurrence is mainly restricted to cells of the immune system including granulocytes, monocytes/macrophages or B-lymphocytes and can be induced by cell differentiation of myeloid cells after treatment with differentiating agents, such as DMSO, retinoic acid or the combination of TGFβ/1,25(OH)2D3. The latter contribute to the highest level of induction of mRNA and protein expression. Its cell specific occurrence is at least partly due to DNA methylation in cells that do not exhibit 5-LO activity and genetic regulation is further dependent on histone acetylation. 5-LO expression is controlled by transcription factors binding to the promoter sequence of the ALOX5 gene that induce basal promoter activity, as well as promoter independent effects including transcript initiation and elongation, which are mostly attributed to TGFβ/1,25(OH)2D3 signaling. The ALOX5 gene resembles a typical housekeeping gene, hence lacks TATA- or CAAT-boxes for transcriptional regulation, but displays a high GC-content with eight GC-boxes, five of which are arranged in tandem, that provide binding sites for transcription factors Sp1, Sp3 and Egr-1.
The proximal ALOX5 promoter is furthermore a target for additional factors, such as TGFβ effector proteins SMADs or the vitamin D receptor and possesses additional consensus sequences for transcriptional regulators, including NF-κB or PU.1. However, as yet no actual binding of these proteins to the promoter sequence was demonstrated and an unbiased screening for identifying further ALOX5 promoter interacting proteins, which might have impact on 5-LO expression, is still lacking. For this purpose, the present study focused on the identification of significantly interacting proteins, employing DNA-affinity enrichment coupled to label-free quantitative proteomics, spanning a sequence of about 270 base pairs of the proximal ALOX5 promoter. For the elucidation of potential cell specific differences in protein patterns and compositions, DNA pulldowns were performed by using oligonucleotide stretches comprising the core promoter sequence including the 5-fold GC-box, which were incubated with different cell lines and differentiation states of myeloid, as well as B-lymphocytic lineages. In order to compare different mass spectrometric quantification strategies that would allow for identification of interactors, dimethyl labeling and label-free techniques were used. Since the label-free approach outperformed the label-based one in initial experiments, it was established as standard quantification strategy in all DNA pulldowns performed. The pulldowns of myeloid cell lines in both undifferentiated and differentiated state and B-lymphocytes resulted in a cell-unspecific protein pattern whose composition was similar, regardless of cell lineage. Additionally, further DNA sequences comprising either a vitamin D response element or a SMAD binding element were investigated in the promyelocytic model cell line HL-60 in both undifferentiated and differentiated state. The identified proteins confirmed known interaction partners and furthermore revealed novel potential regulators of the 5-LO promoter. Out of these, the most prominently identified and promising proteins included transcription factors of the KLF- and CCAAT/enhancer binding protein-family. In this context, KLF5 and KLF13 are both involved in the regulation of inflammatory processes, the former additionally being an effector protein of TGFβ-signaling, whose functional characterization is of utmost interest in terms of regulation of 5-LO expression. Further protein characterization will be inevitable for the CCAAT/enhancer binding proteins C/EBPα, C/EBPβ and C/EBPε. These transcription factors are involved in the regulation of inflammatory processes and heterodimers thereof (C/EBPα/β) are known to control TGFβ/1,25(OH)2D3-mediated effects of the CD14 gene.
Several of the identified proteins of the pulldowns containing the tandem GC-box represented interactors of G-quadruplex DNA, including the helicases BLM and DHX36, the ribonucleoproteins hnRNP D and hnRNP K and transcription factor MAZ. Since G-quadruplexes form in G-rich DNA sequences as secondary DNA structures and exhibit substantial regulatory effects on the transcription of their target genes, the potential formation thereof in the ALOX5 core promoter sequence was investigated in a second project. Out of the proteins mentioned above, MAZ is shown to exert resolving effects on G4-DNA and synergistically induce Sp1-dependent gene activation of oncogene h-RAS, which displays analogous promoter characteristics to the ALOX5 gene. A DNA stretch comprising the tandem GC-box was used for elucidating the potential of secondary DNA structure formation. Intriguingly, both immune-based and spectroscopic methods provided clear evidence for the in vitro G-quadruplex formation of the proximal promoter sequence for the first time. In order to provide additional information on a possible regulatory effect of existing G-quadruplex structures on 5-LO transcription, differentiated HL-60 cells were subsequently treated with two distinct G4-DNA stabilizing agents. A porphyrin analogon (TMPyP4) did not exhibit any effects on 5-LO mRNA and protein expression after cell treatment. A second G4-DNA stabilizing agent (pyridostatin) on the other hand revealed significant reduction on 5-LO protein expression after cellular treatment. These mixed results render further experiments inevitable, in order to provide a clear assertion as to whether 5-LO expression is regulated by G-quadruplex structures or not.
Altogether, this study enlarges the knowledge of ALOX5 proximal promoter interacting proteins by corroborating the binding of already known transcription factors and identifying novel interactors. It yields essential groundwork for subsequent functional studies of proteins involved in 5-LO transcription and introduces G-quadruplexes as a new potential mechanism in ALOX5 gene regulation.
Untersuchung hochmolekularer Proteinkomplexe in menschlichen Leukämien mittels Proteomics-Werkzeugen
(2009)
Funktionelle Multiproteinkomplexe stellen im Sinne von Proteomics das kleinste isolierbare Proteom dar. Die Untersuchung von Proteinkomplexen gibt uns die Möglichkeit, Funktionen innerhalb der Zelle oder des Zellkompartiments genauer zu verstehen. Erst durch das Verständnis der einzelnen kleinen Zusammenspiele innerhalb einer Zelle, können wir die Auswirkungen auf ein betreffendes Organ und damit auf den Körper betrachten. Wir erhalten dadurch auch Informationen über die Funktion von spezifischen Genen und können so Erklärungsansätze für Gendefekte finden und über mögliche Therapieansätze nachdenken. Neben den Hefe-Zwei-Hybrid-Analysen und dem Nachweis von Protein-Interaktionen mittels Immunopräzipitationsexperimenten stellt die Massenspektrometrie seit den 90er Jahren ein essentielles Werkzeug der Proteom-Forschung dar. Sie entwickelte sich zu einem etablierten Verfahren für die Charakterisierung von Biomolekülen und ermöglicht die Identifizierung unbekannter Proteine eines Komplexes. Das MLL-Gen auf Chromosom 11 Bande q23 ist in zahlreiche, reziproke chromosomale Translokationen verwickelt, die mit der Entstehung von akuten Leukämien assoziiert sind. Chromosomale Translokationen des MLL-Gens werden aufgrund ihrer sehr schlechten Prognose und Therapierbarkeit als Hochrisiko-Leukämien eingestuft. Bis heute konnten 64 Translokations-Partnergene identifiziert werden, wobei das AF4-Gen mit 42% bei allen untersuchten Leukämien und mit ca. 66% bei ALL (akute lymphatische Leukämie) den größten Prozentsatz ausmacht. Bei der Translokation t(4;11) sind das MLL-Gen auf Chromosom 11 und das AF4-Gen auf Chromosom 4 beteiligt. Akute Leukämien mit einer t(4;11)-Translokation treten häufig bei Säuglingen und Kleinkindern auf und betreffen vorwiegend den lymphatischen Zweig des blutbildenden Systems. Durch die Translokation entstehen zwei neue Derivatchromosomen – Derivat 11 (MLL•AF4, der11) und Derivat 4 (AF4•MLL, der4). Beide Fusionsgene verfügen über einen intakten Leserahmen und führen zur Expression der zwei Fusionsproteine MLL•AF4 (der11) und AF4•MLL (der4). Der pathomolekulare Mechanismus der t(4;11)-vermittelten ALL ist bis heute noch nicht hinreichend geklärt. Funktionen des der11-Fusionsproteins werden zwar schon intensiv erforscht, aber es gibt noch keine Erkenntnisse über die Funktion des der4-Fusionsproteins. Ähnlich sah die Situation zu Beginn dieser Arbeit für das AF4-Protein aus. Während schon einige Daten zur Funktion des MLL-Multiproteinkomplexes vorlagen, gab es nur wenige Informationen über die Funktion von AF4. Im Zuge dieser Arbeit wurden der AF4- und der der4-Multiproteinkomplex mittels affinitätschromatographischer Methoden aus transient transfizierten 293T-Zellen erfolgreich isoliert. Eine Größenbestimmung der Komplexe über eine Größenausschlusschromatographiesäule ergab für beide Komplexe eine Größe von ca. 2 MDa. Die Charakterisierung der beteiligten Interaktionspartner erfolgte mittels nLC-MALDI-MS/MS, Western Blot Analyse und Immunopräzipitation. Es konnte gezeigt werden, dass AF4 zusammen mit den Proteinen ENL/AF9, CDK9, CCNT1, AF10, DOT1L und der RNA-Polymerase II in einem Komplex vorliegt. Bereits 2007 konnte dieser Komplex in einem Mausmodell isoliert werden. Damit fungiert der AF4-Komplex auch in humanen Zellen als Stimulator der RNA-Polymerase-II-abhängigen transkriptionellen Elongation und vermittelt eine DOT1L-abhängige H3K79-Methylierung, die einen aktiven Transkriptionsstatus aufrechterhält. Zusätzlich konnten 6 neue Interaktionspartner identifiziert werden (AF5q31, BDR4, DDX6, HEXIM1, NFkB1/RELA und NPM1). Die Anwesenheit von BRD4 und HEXIM1 lässt vermuten, dass der AF4-Komplex in einem aktiven und einem inaktiven Zustand vorliegen kann. Außerdem wird der AF4-Komplex möglicherweise über den NFkB-Signalweg reguliert bzw. durch die Anwesenheit von NFkB1 an dessen Zielgene rekrutiert. Die Untersuchung des der4-Komplexes zeigte, dass er sich aus Mitgliedern der beiden Wildtyp-Proteinkomplexe zusammensetzt. So wurden die Proteine P-TEFb, HEXIM1, NFkB1, NPM1, DDX6 und das AF4 selbst aus dem AF4-Komplex sowie ASH2L, RBBP5, WDR5, DPY-30, CBP, HCF-1 und HCF-2 aus dem MLL-Komplex identifiziert. Der der4-Komplex weist somit partielle Eigenschaften des AF4- und MLL-Wildtyp-Proteins auf. Diese Eigenschaften sind ausreichend für eine kompetitive Situation zwischen dem der4-Komplex und den beiden AF4- und MLL-Wildtyp-Komplexen. Die Gleichgewichte dieser Wildtyp-Komplexe werden vermutlich gestört. Für beide Komplexe wurde mit Hilfe eines in vitro Histon-Methyltransferase-Assays eine Histon-Methyltransferase-Aktivität nachgewiesen. Für den AF4-Komplex muss zusätzlich eine bisher noch unbekannte Methyltransferase-Aktivität angenommen werden, da eine Methylierung des Histons H3 in den ersten 46 Aminosäuren gezeigt werden konnte, die sich nicht auf die Methyltransferase-Aktivität des DOT1L-Proteins im AF4-Komplex zurückführen lässt. Die H3K4-Methyltransferase-Aktivität des der4-Komplexes wird auf die Anwesenheit des SET-Domänen-Komplexes (ASH2L, WDR5, RBBP5 und DPY-30) zurückgeführt. Im Zusammenhang mit dem AF4-Protein wurde auch der ENL-Komplex untersucht. Mittels Western Blot konnten die Interaktionspartner AF4, CDK9, CCNT1, RNA-Polymerase II, NFkB1 und RING1 identifiziert werden. Damit ist auch das ENL mit dem globalen positiven transkriptionellen Elongationsfaktor P-TEFb assoziiert und beeinflusst die RNA-Polymerase-II-abhängige transkriptionelle Elongation.
Der Nachweis nichtkovalenter Komplexe mittels ESIMS erfordert Analysebedingungen, die sich deutlich von den Bedingungen der etablierten Standard-ESIMS kovalent gebundener Biopolymere unterscheiden. Für die ESIMS-Analyse nichtkovalenter Komplexe ist insbesondere die Einschränkungen auf das Lösungsmittel Wasser mit Zusatz von Salzen oder Puffern problematisch, was den Nachweis vollständig desolvatisierter Analytionen unter Erhalt der häufig relativ schwachen nichtkovalenten Wechselwirkungen erschwert. Die Problematik für die massenspektrometrische Analyse nichtkovalenter Komplexe steht dabei in engem Zusammenhang mit dem Mechanismus der ElektrosprayIonisierung. Ziel der vorliegenden Arbeit war es daher, grundlegende Phänomene des ESIProzesses zu untersuchen und so ein besseres Verständnis der einzustellenden Randbedingungen beim ESImassenspektrometrischen Nachweis nichtkovalenter Komplexe zu erlangen. Die Untersuchungen erfolgten dabei unter Verwendung geeigneter Modellsysteme, wie Salze, Kohlenhydrate, Peptide und ausgewählte nichtkovalente Komplexe. Eine wesentliche Bedeutung kam der Charakterisierung der physikalischen Randbedingungen der im Rahmen der vorliegenden Arbeit eingesetzten ESIMS-Systeme zu. Auf experimenteller und theoretischer Basis wurden die verschiedenen Aufbautypen im Eingangsbereich des oTOFMS-Systems MICKEY verglichen, wobei ein besonderes Augenmerk auf deren desolvatisierende Wirkung gelegt wurde. Es ließ sich zeigen, daß an diesem oTOFMS-System der Aufbau mit geheizter Transferkapillare dem Aufbau mit Stickstoffgegenstrom vorzuziehen ist, um eine effiziente Desolvatisierung von Analytionen in der ESI zu erzielen. Am oTOFMS-System MARINER wurde die Bedeutung des Drucks in der ersten Druckstufe für die Desolvatisierung von Analytionen am Beispiel ausgewählter nichtkovalenter Proteinkomplexe demonstriert. Dabei konnte gezeigt werden, daß eine Erhöhung des Drucks den Nachweis vollständig desolvatisierter, aber dennoch intakter nichtkovalenter Komplexe dramatisch begünstigt. Dies kann auf die mit der Druckerhöhung einhergehenden Veränderungen der Stoßbedingungen der Analytionen mit dem Restgas beim Passieren der ersten Druckstufe sowie auf die größere Verweilzeit der Ionen in diesem Bereich zurückgeführt werden. Als weitere Randbedingung für Untersuchungen an ESIoTOFMS-Systemen wurde zudem der Einfluß der Axialgeschwindigkeit der Ionen auf das Erreichen des Detektors auf der Grundlage theoretischer und experimenteller Befunde charakterisiert. Die Bedeutung der Axialgeschwindigkeit insbesondere für den Nachweis von Analytionen mit hohen m/zVerhältnissen konnte dabei am Beispiel des nichtkovalenten Komplexes Hämoglobin gezeigt werden. Ebenfalls wurden ausgewählte Phasen des ESIProzesses bei der Überführung gelöster Analyte in massenspektrometrisch detektierbare Gasphasenionen untersucht. So wurde der Einfluß der Zerstäubungsbedingungen auf das resultierende Ionensignal am Beispiel der diskontinuierlichen Zerstäubung von Analytlösung getestet. Künstlich induzierte Zerstäubungsimpulse an der Spraykapillare wurden mit den Extraktionsimpulsen des verwendeten oTOFMSSystems synchronisiert, was die gezielte Analyse einzelner Phasen der diskontinuierlichen Emission von Flüssigkeit ermöglicht. Mit Hilfe des Modellanalyts Bariumbromid ließ sich anhand charakteristischer Indikatorsignale in den Massenspektren auf qualitativer Basis zeigen, daß zu Beginn einzelner Sprayimpulse zunächst kleine Tröpfchen an der Spraykapillare emittiert werden und die Tröpfchengröße im zeitlichen Verlauf des Emissionsimpulses zunimmt. Dieser Befund steht im Einklang mit der von Juraschek [Jur97] vorgestellten Verteilung der Tröpfchengrößen während der diskontinuierlichen Zerstäubung unter den Bedingungen der ESIMS. Ferner konnte durch synchronisierte ESIoTOFAnalyse am Modellsystem einer ZuckerPeptidMischung gezeigt werden, daß Analyte mit höherer Aufenthaltswahrscheinlichkeit an der Flüssigkeitsoberfläche bevorzugt (d.h. zu früheren Zeitpunkten der diskontinuierlichen Zerstäubung) in die geladenen Initialtröpfchen gelangen. Analyte, welche eine höhere Aufenthaltswahrscheinlichkeit im Flüssigkeitsinneren aufweisen, gelangen mit geringerer Wahrscheinlichkeit und somit zu einem späteren Zeitpunkt eines Zerstäubungsimpulses in die Tröpfchen. Die vorgestellten Resultate stehen im Einklang mit den Modellvorstellungen zur Verteilung der Analyte beim für die Desolvatisierung relevanten unsymmetrischen Tropfenzerfall, die unter anderem die geringere Nachweiseffizienz hydrophiler Analyte zu erklären vermag. Der Einfluß des Lösungsmittels auf das resultierende Ionensignal wurde im Rahmen dieser Arbeit im Hinblick auf seine Wirkung als chemische Umgebung des Analyten, auf seine Eigenschaften als Trägerkomponente des Analyten und auf seine Wirkung als Reaktionspartner der Analytionen in der Gasphase untersucht. Als Modellsystem diente der Analyt Bariumbromid in verschiedenen Alkoholen und AlkoholMischungen. Die Untersuchungen ergaben, daß insbesondere die Polarität des eingesetzten Lösungsmittels einen relevanten Aspekt für dessen Wirkung als chemische Umgebung des Modellanalyten darstellt. Eine hohe Polarität des eingesetzten Lösungsmittels begünstigt die Dissoziation des Analyten in Lösung und wirkt somit dem Nachweis von AnalytGegenionAddukten entgegen. Als maßgebliche Eigenschaft in der Rolle der Trägerkomponente ließ sich am Modellanalyt Bariumbromid die Verdampfbarkeit des Lösungsmittels identifizieren. Untersuchungen an einer Analytmischung aus Turanose und Octylglucosid ergaben ferner, daß ebenfalls ausgeprägte Wechselwirkungen zwischen Analyt und Lösungsmittelmolekülen der Verdampfung des Lösungsmittels entgegenwirken. Eine geringe Verdampfbarkeit des Lösungsmittels und eine starke Solvatisierung des Analyten erschweren somit die Desolvatisierung der Analytionen und haben geringe Analytsignalintensitäten in den Massenspektren zur Folge. Ebenfalls ist dem Einfluß der Leitfähigkeit der Analytlösung und somit der Polarität des Lösungsmittels auf die Intensität des resultierenden Ionensignals Rechnung zu tragen. Reaktionen in der Gasphase sind in den ausgewählten Modellsystemen im wesentlichen stoßinduzierte Elektronentransferreaktionen zwischen Lösungsmittel molekülen und zweiwertigen Metallkationen. Eine niedrige Ionisierungsenergie sowie ein hoher Energieeintrag während der Stoßaktivierung - und somit eine hohe Molekülmasse des Lösungsmittels - konnten dabei als begünstigende Faktoren für diese Reaktionen ermittelt werden. Die Resultate zum grundsätzlichen Einfluß des Lösungsmittels dienten als Basis zur Untersuchung des Lösungsmitteleinflusses auf die Bildung von Gramicidin DDimeren mit Hilfe der ESIMS. Am Beispiel dieser nichtkovalenten Peptidkomplexe konnte gezeigt werden, daß die resultierenden Massenspektren unter schonenden Desolvatisierungsbedingungen die Veränderungen des Dimerisierungsgleichgewichts bei Variation des Lösungsmittels widerspiegeln. Die verschiedenen Komponenten der Peptidmischung Gramicidin D bilden zudem in Lösung gemischte Dimere, deren Signale in den Massenspektren eine eindeutige Identifizierung auch geringer Mengen Dimere zulassen. Es ließ sich ferner zeigen, daß die Veränderung der Zusammensetzung von Lösungsmittelgemischen während der Desolvatisierung aus kinetischen Gründen keinen Einfluß auf den detektierbaren Anteil GramicidinDimere aufweist. Untersuchungen zur unspezifischen Adduktbildung in der ESIMS zwischen einem Analyten und weiteren Komponenten der Lösung wurden im Rahmen der vorliegenden Arbeit am Beispiel verschiedener PeptidAnionenAddukte durchgeführt. Es konnte gezeigt werden, daß insbesondere im negativen Ionenmodus eine ausgeprägte unspezifische Adduktbildung eintritt, während im positiven Ionenmodus nur in geringem Maße PeptidAnionenAddukte zu beobachten sind. MS 2 Untersuchungen der Addukte im negativen Ionenmodus ergaben, daß deren Dissoziation unter Abspaltung der zum Anion korrespondierenden Säure erfolgt, wobei in der Reihe der untersuchten Anionen die Stabilität des Addukts mit abnehmender Gasphasenbasizität des Anions zunimmt. Es konnte aber ferner gezeigt werden, daß neben der Gasphasenbasizität noch weitere Faktoren für die Adduktstabilität von Bedeutung sind; insbesondere sind in diesem Zusammenhang dem Einfluß von CoulombWechselwirkungen und räumlichen Faktoren im Addukt Rechnung zu tragen. Soll die Adduktbildung eines Analyten mit in der Lösung vorhandenen Anionen generell vermindert werden, so ist eine Analyse im positiven Ionenmodus vorzuziehen. Untersuchungen zur Stabilität spezifischer nichtkovalenter Komplexe in der ESIMS wurden im Rahmen der vorliegenden Arbeit am Beispiel der HämGlobinKomplexe von Hämoglobin und Myoglobin durchgeführt. Unter schonenden Desolvatisierungsbedingungen sind die in Lösung vorhandenen nichtkovalenten Komplexe ebenfalls in den ESIMassenspektren detektierbar. Durch vergleichende Untersuchungen im positiven und negativen Ionenmodus sowie durch Variation des Ladungszustands der HämGruppe ließ sich allerdings zeigen, daß die Stabilisierung dieser Komplexe in der ESIMS im wesentlichen auf CoulombWechselwirkungen zwischen Protein und prosthetischer Gruppe in der Gasphase beruht. Die Resultate demonstrieren deutlich, daß die in der ESIMS beobachtete Stabilität nichtkovalenter Komplexe in der Gasphase unter Umständen erheblich von der biologisch relevanten Stabilität dieser Spezies in Lösung abweicht. Zwar kann mit Hilfe der ESIMS die Stöchiometrie nichtkovalenter Komplexe zuverlässig ermittelt werden; zur Ermittlung ihrer Stabilität sind jedoch analytische Untersuchungen in kondensierter Phase prinzipiell vorzuziehen. Zum Nachweis nichtkovalenter Komplexe mittels ESIMS ist für jedes Instrument und jede neue analytische Fragestellung stets eine Optimierung der Analysebedingungen erforderlich. Die vorgestellten Resultate bestätigen anhand ausgewählter Beispiele, daß in Lösung vorhandene spezifische Komplexe intakt in Gasphasenionen überführt und massenspektrometrisch detektiert werden können, sofern die Analyseparameter sorgfältig angepaßt wurden. Dabei stellt der Energieeintrag in die Analytionen während der Desolvatisierung ebenso einen bedeutenden Parameter dar wie die Stabilität des nichtkovalenten Komplexes in der Gasphase, welche in einigen Fällen durch die Wahl des ''richtigen" Ionenmodus zur Analyse beeinflußt werden kann. Ein grundsätzliches ''Patentrezept" zum erfolgreichen massenspektrometrischen Nachweis nichtkovalenter Komplexe kann jedoch nicht gegeben werden. Die Desolvatisierung von Analyten aus einem relativ schwer verdampfbaren Lösungsmittel, wie z.B. Wasser, ist problematisch, und die Freisetzung hydrophiler Analytionen wird durch die ausgeprägte Solvatisierung dieser Spezies erschwert. Um neben diesen unabänderlichen Schwierigkeiten weitere Probleme, wie die Bildung von Addukten, zu vermeiden, sollten für die ESIMSAnalyse möglichst saubere Proben Verwendung finden. Ist zur Stabilisierung des Komplexes in Lösung allerdings der Zusatz von Salzen erforderlich, so sollten unter anderem solche Anionen gewählt werden, die nur in geringem Maße Addukte bilden. Ferner ist im Hinblick auf eine Minimierung der Adduktbildung mit Anionen eine Untersuchung im positiven Ionenmodus vorzuziehen. Für die Weiterentwicklung der ESIMS zur Analyse nichtkovalenter Komplexe ist eine weitere Optimierung der grundsätzlichen Desolvatisierungsmöglichkeiten wünschenswert, welche eine schonende Desolvatisierung des Analyten unter Erhalt der spezifischen nicht kovalenten Wechselwirkungen ermöglichen. Ferner sind Methoden zu entwickeln, um Proben effizient und schnell zu reinigen, ohne die Proteinkomplexe irreversibel zu dissoziieren. Durch Entwicklungen dieser Art sollten erhebliche Fortschritte in der ESIMSAnalytik nichtkovalenter Komplexe möglich sein, die dem Ziel eines zuverlässige en Einsatzes dieser Methode in der Routineanalytik biologisch bedeutender Proben näherkommen.
Biopharmazeutika sind heutzutage ein wichtiger Bestandteil des Arzneimittelmarktes. Ihr komplexer Aufbau und ihre Mikroheterogenität erfordern eine genaue strukturelle Charakterisierung auf verschiedenen Ebenen der Moleküle, wobei die Anwendung neuer Methoden von den entsprechenden Richtlinien durchaus erwünscht ist. Die Massenspektrometrie als Analysemethode hat sich in diesem Gebiet bereits fest etabliert. Verschiedenste massenspektrometrische Untersuchungen können an den intakten Biopharmazeutika sowie an größeren und kleineren Bruchstücken derselben durchgeführt werden. Trotzdem wird meist auf wenige, lange etablierte Protokolle zurückgegriffen, die häufig mit langwieriger Probenvorbereitung verbunden sind. Bei der Analyse der Glykosylierung wird immer noch die chromatographische Trennung mit anschließender Detektion durch UV- oder Fluoreszenzmessung bevorzugt.
In dieser Arbeit sollten die Möglichkeiten der Massenspektrometrie bei der Analyse von Biopharmazeutika genauer untersucht werden. Dazu gehört auch, den hohen Informationsgehalt der üblichen chromatographischen Auftrennung von Peptiden aus einem proteolytischen Verdau vollständig zu nutzen. Es wurde gezeigt, dass die manuelle Auswertung der Analyse zusätzliche Ergebnisse bringt, und dass gleichzeitig eine Analyse von posttranslationalen und prozessbedingten Modifikationen möglich ist. Zudem wurde der Verdau mit der Protease Trypsin auf das jeweilige Biopharmazeutikum und auf das Ziel der Analyse optimiert. Da mit Trypsin eine vollständige Sequenzabdeckung nicht erreichbar war, wurden zusätzlich verschiedene weniger spezifische Proteasen angewendet. Alle untersuchten weniger spezifischen Proteasen (Elastase, Chymotrypsin und Thermolysin) waren für eine solche Analyse gut geeignet. Die Komplementarität von MALDI- und ESI-MS-Analysen konnte durch ihre Kombination optimal ausgeschöpft werden. Zudem wurden weitere Methoden zur Erhöhung der Sequenzabdeckung wie die Derivatisierung der Peptide mit TMTzero vorgestellt.
Für die Analyse intakter Biopharmazeutika wurden neben der Größenausschlusschromatograph und gelelektrophoretischen Trennungen sowohl MALDI- als auch ESI-MS-Analysen verwendet. Die Trennung großer Proteinmoleküle in kleinere Untereinheiten erleichterte dabei die massenspektrometrische Analyse maßgeblich. Die Fragmentierung der Biopharmazeutika mittels MALDI-ISD war für die Bestimmung der Protein-N- und C-Termini sehr gut geeignet.
Die Analyse der Glykosylierung wurde an den freien N-Glykanen aus einem PNGaseF-Verdau sowie an Glykopeptiden aus einem Verdau mit Pronase durchgeführt. Die freien N-Glykane konnten zudem für die MALDI-MS-Analyse mit der MALDI-Matrix 3-Aminochinolin direkt auf dem Probenteller derivatisiert werden. Die Derivatisierung und Vermessung der N-Glykane wurde zunächst an verschiedenen Standardoligosacchariden, Humanmilcholigosacchariden und N-Glykanen aus Standardglykoproteinen optimiert. Durch die Fragmentierung der N-Glykane konnten diese sequenziert und isomere Strukturen unterschieden werden.
Bei einem Pronaseverdau wurden Proteine so weit verdaut, dass nur noch einzelne Aminosäuren bzw. Di- oder Tripeptide übrig blieben. Lediglich die Glykosylierungsstellen waren durch die voluminösen Glykanstrukturen vor dem Verdau geschützt und behielten eine kurze Peptidsequenz, die für eine Identifizierung der Glykosylierungsstelle ausreichend war. So konnten die N- und O-Glykopeptide direkt ohne Aufreinigung mittels MALDI-MS aus den Verdauansätzen analysiert werden, ohne dass nicht glykosylierte Peptide störten. Das Verdauprotokoll wurde zunächst an mehreren Standard-N- und -O-Glykoproteinen optimiert und anschließend auf die untersuchten Biopharmazeutika angewendet. N- und O-Glykopeptide konnten sogar nebeneinander analysiert werden. Die hohe Massengenauigkeit des verwendeten MALDI LTQ-Orbitrap Massenspektrometers ließ eine eindeutige Identifizierung der Glykopeptide mit Hilfe eines dafür entwickelten Programms zu. Weiterhin konnte die Identifizierung durch die Fragmentierung der Glykopeptide unterstützt werden.
Somit konnten in dieser Arbeit verschiedene massenspektrometrische Analysen von Biopharmazeutika neu entwickelt, optimiert oder vereinfacht werden. Dabei wurden für jede Strukturebene (intaktes Molekül, größere und kleinere Fragmente) sowohl Ansätze mit MALDI-MS als auch mit ESI-MS verfolgt. Einige Methoden, die in der Proteomforschung bereits Anwendung fanden, konnten erfolgreich auf Biopharmazeutika übertragen werden. Die Arbeit zeigt, dass die Massenspektrometrie ein großes Potential in der Analyse der Biopharmazeutika besitzt, das aber bisher noch nicht vollständig ausgeschöpft wird. Durch die Wahl der richtigen Methoden und der geeigneten Instrumentierung wird eine vollständige strukturelle Charakterisierung ermöglicht.
Durch die beiden Ionisationstechniken Matrix-Assisted Laser Desorption/Ionization (MALDI) und Electrospray-Ionization (ESI) sind Biopolymere für die Massenspektrometrie zugänglich geworden und die Zahl der biochemischen Applikationen ist sprunghaft angestiegen. Dagegen sind die zugrundeliegenden Prozesse der Ionenbildung nur zum Teil bekannt. Bei MALDI wird die Laserstrahlung durch die Matrix absorbiert, wodurch es zur explosiven Auflösung der festen Phase unter Bildung von geladenen Molekülen kommt. Der genaue Mechanismus vom Festkörper zum gasförmigen Ion ist nur teilweise aufgeklärt und Gegenstand vieler Diskussionen. Eine wichtige Funktion der Matrix ist die räumliche Separierung und Isolierung der Analyte beim Einbau in die Matrixkristalle. Während der Einschluß von Molekülen in Wirtskristalle schon früh als wesentliches Merkmal von MALDI erkannt wurde, ist bisher noch nicht systematisch untersucht worden, in welcher Form die Analyte im Kristall vorliegen. Genau diese Information ermöglicht jedoch Aussagen über die Relevanz verschiedener Mechanismen der Ionenbildung bei MALDI. Die Bestimmung des Ausgangszustandes des Analyten im Matrixkristall und die Abschätzung möglicher Reaktionen bei der nachfolgenden Freisetzung der Analytionen ist das zentrale Thema der vorliegenden Arbeit. In dieser wurde insbesondere der Ladungszustand der Analyte sowie der Einschluß von Lösungsmittel untersucht. Des weiteren wurden Experimente zur Zahl und Koordination möglicher Gegenionen, zur Neutralisation dieser Ionenpaare und zur Adduktbildung bei MALDI durchgeführt. Die Ergebnisse erlauben Aussagen über primäre und sekundäre Ionisationsreaktionen, die zu einem stimmigen Bild der Ionenbildung bei MALDI zusammengefaßt wurden. Grundlage des vorgestellten Modells sind bereits veröffentlichte Modelle, deren wesentliche Aspekte teilweise schon in den ersten Jahren nach der Einführung von MALDI, zu einem erheblichen Teil aber erst in jüngster Zeit erkannt wurden. Einen erneuten Anstoß für die Diskussion um den Mechanismus von MALDI gab die Hypothese, daß die Ionisation eng mit der Bildung von Clustern verbunden ist und dabei sowohl eine Freisetzung präformierter Ionen als auch nachfolgende Reaktionen unter Transfer von Protonen und Elektronen erfolgen. Der Ausgangspunkt für all diese Prozesse ist der Analyt im Matrixkristall. Die in dieser Arbeit vorgestellten Experimente zeigen, daß einige wesentliche Postulate des "Cluster-Modells" richtig sind. Insbesondere konnte der Beweis geführt werden, daß Analyte geladen im Matrixkristall existieren und daß die gelöste Form des Analyten weitgehend im Matrixkristall konserviert wird. Als einfache Testsysteme wurden Matrixlösungen mit verschiedenen pH-Indikatoren versetzt und die Farbe der Kristalle dokumentiert. Dabei zeigte sich, daß in Abhängigkeit vom pH-Wert der Lösung sowohl Moleküle mit einer positiven oder negativen Nettoladung als auch neutrale Zwitterionen gleichermaßen effizient in Matrixkristalle eingebaut werden. Die Ladung aller sauren und basischen funktionellen Gruppen des Analyten im Kristall ist damit durch den pH-Wert der Matrixlösung bestimmt. Wenn eine Nettoladung vorhanden ist, muß zudem diese Ladung durch Gegenionen kompensiert sein, so daß Ionenpaare entstehen. Aber auch bei Zwitterionen können Gegenionen vorhanden sein. Darüber hinaus gelang durch 1H-NMR-Spektroskopie der Nachweis, daß Lösungsmittel im Kristall eingeschlossen ist und selbst nach Trocknen der Kristalle bei erhöhter Temperatur oder im Vakuum dort verbleibt. Dies führt zu dem anschaulichen Bild, daß Analyte in Abhängigkeit vom pH-Wert als "Multi-Ionenpaare" und partiell solvatisiert im Matrixkristall konserviert werden. Ausgehend von diesen präformierten, solvatisierten Ionenpaaren wird durch den plötzlichen Energieeintrag des Laserpulses die explosive Bildung von Clustern ausgelöst. Für die Bildung von geladenem Clustern gibt es zwei plausible Erklärungsansätze. Durch die Existenz der geladenen Analyte im Kristall ist eine besonders einfache Ionisation unter Freisetzung "präformierter" Ionen durch die Trennung eines Ionenpaares denkbar. Eine zweite Möglichkeit wäre die Photoionisation eines Matrixmoleküls mit nachfolgendem Protonentransfer. Da aber stets negative Ladungen vorhanden sind (entweder im Analyten selbst oder als Gegenion), wird bevorzugt ein Anion neutralisiert. In beiden Fällen entsteht ein Cluster, der durch ein fehlendes oder neutralisiertes Gegenion geladen ist. Die Freisetzung des Analytions erfolgt durch Verdampfen von Neutralmolekülen (Matrix, Lösungsmittel). Ionenpaare werden durch Protonentransfer neutralisiert, so daß kleine Neutralmoleküle abdampfen und mit Ausnahme von Metallkationen keine ionischen Addukte detektiert werden. Der Protonierungsgrad des Analyten beim Einbau hat einen erheblichen Einfluß auf die detektierten Ionen. Sind bereits in Lösung und damit im Kristall positiv geladene Gruppen vorhanden, werden besonders leicht protonierte Molekülionen gebildet. Dagegen entstehen aus deprotonierten Vorläuferionen (in der Regel negativ geladen) verstärkt kationisierte Molekülionen. Dabei ist nicht die Nettoladung entscheidend, sondern die Existenz und Anzahl positiver und negativer Gruppen im Analyten. Die Kationisierung erfolgt bereits im Kristall, da die Ionen eine hohe, MALDI-typische Anfangsgeschwindigkeit zeigen. Die Koordination der Kationen an der negativen Ladung verhindert die Neutralisation durch Protonierung, die wesentlich für die Freisetzung von protonierter Molekülionen ist. Diese Neutralisation von Ionenpaaren ist auch die Ursache dafür, daß Anionenaddukte normalerweise nicht nachgewiesen werden. Durch Zugabe einer sehr starken Säure wird jedoch diese Zwischenstufe stabilisiert und erscheint in Form von Anionenaddukten im Spektrum. Dabei zeigte sich, daß die Anzahl der detektierten Addukte mit der Zahl der basischen Stellen im Analytmolekül korreliert, welches den Einbau von (mehrfach) geladenen Analytionen zusammen mit ihren Gegenionen bestätigt. Neben der Koordination der Anionen an positiv geladenen Stellen des Analyten ist die Energiebilanz des Protonentransfers dafür entscheidend, ob die Anionenaddukte den MALDI-Prozeß überstehen, so daß Anionen mit einer vergleichsweise geringen Gasphasenbasizität zur Adduktbildung neigen. Des weiteren kann die Konkurrenz verschiedener Anionen bei der Bildung der Ionenpaare eine Verschiebung der Adduktverteilung bewirken. Aber auch eine höhere Energiezufuhr (z.B. durch höhere Laserenergie) bewirkt eine verstärkte Neutralisation der Ionenpaare, wobei ein erheblicher Anteil metastabiler Fragmentierungen auftritt. Die Koordination von Gegenionen und die "metastabile Neutralisation" führt bei Verbindungen, die zur Ionenpaarbildung neigen, zur Peakverbreiterung und zu einer begrenzten Auflösung. Darüber hinaus sind bei MALDI weitere Sekundärreaktionen beteiligt. Dazu zählt die Übertragung von Wasserstoffatomen, die wahrscheinlich auch die Ursache für prompte Fragmentierungen ist (in-source decay, ISD). Ob eine Ladungsreduktion mehrfach geladener Vorläuferionen durch Elektronen auch bei Biopolymeren eine wesentliche Rolle spielt, bleibt dagegen weiterhin offen. Durch die in Abhängigkeit von der Nettoladung zunehmende Coulomb- Anziehung der koordinierten Gegenionen werden vermutlich erst gar keine hochgeladenen Ionen in die Gasphase freigesetzt. Die vorgestellten Ergebnisse ergeben ein plausibles, qualitatives Bild der Ionenbildung bei MALDI. Es wurde gezeigt, daß die gelöste Form des Analyten inklusive Ladungen, Gegenionen und Solvathülle bei der Kristallisation weitgehend erhalten bleibt, und daß diese Ausgangssituation entscheidend für die Art der letztendlich gebildeten Gasphasenionen ist. Zudem ist nicht die Protonierung neutraler Analyte, sondern eine Neutralisation von Ionen(paaren) durch Protonentransfer ein zentraler Bestandteil von MALDI.