Refine
Document Type
- Doctoral Thesis (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Abstandsmessung (1)
- Bivalentes Ion (1)
- Elektronenspinresonanz (1)
- Elektronenspinresonanzspektroskopie (1)
- Metallion (1)
- Nanometer Abstandsmessung (1)
- Nanometer Distance Measurements (1)
- Nitroxylradikal (1)
- Oligomerisation (1)
- Porphyrine (1)
Institute
Pulsed electron-electron double resonance (PELDOR) is a well established method concerning nanometer distance measurements involving two nitroxide spin-labels. In this thesis the applicability of this method to count the number of spins is tested. Furthermore, this work explored the limits, up to which PELDOR data obtained on copper(II)-nitroxide complexes can be quantitatively interpreted. Spin counting provides access to oligomerization studies – monitoring the assembly of homo- or hetero-oligomers from singly labeled compounds. The experimental calibration was performed using model systems, which contain one to four nitroxide radicals. The results show that monomers, dimers, trimers, and tetramers can be distinguished within an error of 5% in the number of spins. Moreover, a detailed analysis of the distance distributions in model complexes revealed that more than one distance can be extracted from complexes bearing several spins, as for example three different distances were resolved in a model tetramer – the other three possible distances being symmetry related. Furthermore, systems exhibiting mixtures of oligomeric states complicate the analysis of the data, because the average number of spin centers contributes nonlinearly to the signal and different relaxation behavior of the oligomers has to be treated explicitly. Experiments solving these problems are proposed in the thesis. Thus, for the first time spin counting has been experimentally calibrated using fully characterized test systems bearing up to four spins. Moreover, the behavior of mixtures was quantitatively interpreted. In addition, it has been shown that several spin-spin distances within a molecule can be extracted from a single dataset. In the second part of the thesis PELDOR experiments on a spin-labeled copper(II)-porphyrin have been quantitatively analyzed. Metal-nitroxide distance measurements are a valuable tool for the triangulation of paramagnetic metal ions. Therefore, X-band PELDOR experiments at different frequencies have been performed. The data exhibits only weak orientation selection, but a fast damping of the oscillation. The experimental data has been interpreted based upon quantitative simulations. The influence of orientation selection, conformational flexibility, spin-density distribution, exchange interaction J, as well as anisotropy and strains of the g-tensor has been examined. An estimate of the spin-density delocalization has been obtained by density functional theory calculations. The dipolar interaction tensor was calculated from the point-charge model, the extension of the point-dipole approximation to several spin bearing centers. Even assuming asymmetric spin distributions induced by an ensemble of asymmetrically distorted porphyrins the effect of delocalization on the PELDOR time trace is weak. The observed damping of dipolar oscillations has been only reproduced by simulations, if a small distribution in J was assumed. It has been shown that the experimental damping of dipolar modulations is not solely due to conformational heterogeneity. In conclusion the quantitative interpretation of PELDOR data is extended to copper-nitroxide- and multi-spin-systems. The influence of the mean distance, of the number of coupled spins, of the conformational flexibility, of spin-density distribution and of the electronic structure of the spin centers has been analyzed using model systems. The insights on model compounds mimicking spin-labeled biomacromolecules – in oligomeric or metal bound states – calibrate the method with respect to the information that can be deduced from the experimental data. The resulting in-depth understanding allows correlating experimental results (from for example biological systems) with models of structure and dynamics. It also opens new fields for PELDOR as for example triangulation of metal centers and oligomerization studies. In general, this thesis has demonstrated that modern pulsed electron paramagnetic resonance techniques in combination with quantitative data analysis can contribute to a detailed insight into molecular structure and dynamics.
Gepulste dipolare EPR-Spektroskopie ist eine wertvolle Methode, um Abstände von 1.5 bis 10 nm zwischen zwei Spinmarkern zu messen. Diese Information kann für Strukturbestimmungen hilfreich sein, wo traditionelle Methoden wie Kristallstrukturanalyse und NMR nicht angewendet werden können. Zusätzlich ist es möglich, Änderungen in Konformation und Flexibilität zu verfolgen. Für diese Studien haben sich stabile Nitroxidradikale als Spinmarker etabliert. Diese werden spezifisch durch die site-directed spin labelling Methode (SDSL) kovalent an das zu untersuchende Biomolekül gebunden. In den letzten Jahren wurden weitere Spinmarker für Abstandsbestimmungen mittels EPR-Spektroskopie entwickelt. Besonders interessant sind Triarylmethylradikale (im Folgenden abgekürzt als Trityl) und paramagnetische Metallzentren.
Im Vergleich zu Nitroxidradikalen hat das Tritylradikal einige Vorteile: Eine höhere Stabilität in einer reduzierenden Umgebung wie im Inneren von Zellen, längere Elektronenspin-Relaxationszeiten bei Raumtemperatur und ein schmaleres EPR-Spektrum. Deswegen ist dieses organische Radikal ein alternativer Spinmarker, der besonders gut für die Forschung von Biomolekülen in einer nativen Umgebung unter physiologischen Bedingungen geeignet ist. Auch paramagnetische Metallzentren sind weniger reduktionsempfindlich als Nitroxidradikale. Zusätzlich sind diese Spinmarker interessant in biologischen Fragestellungen. Zum Beispiel besitzen zahlreiche Enzyme paramagnetische Manganzentren als Cofaktoren. Zudem kann Magnesium, ein wesentlicher Cofaktor in Enzymen, Nukleinsäuren und Nukleotid-Bindungsdomänen der G- und Membranproteine, oft durch das paramagnetische Mangan ersetzt werden. Um Abstandsmessungen an Biomolekülen, die nur ein Metallzentrum besitzen, durchzuführen, können zusätzliche Spinmarker in Form eines Nitroxid-, Tritylradikals oder eines anderen paramagnetischen Metallkomplexes mithilfe der SDSL-Methode kovalent gebunden werden.
Nitroxidradikale, Tritylradikale und Metallzentren haben deutlich unterschiedliche EPR-spektroskopische Eigenschaften, welche oft als orthogonale Spinmarker bezeichnet werden. Solche Spinmarker sind nützlich für die Untersuchung von verschiedenen Untereinheiten bei makromolekularen Komplexen. Somit können die intramolekularen Abstände innerhalb einer Untereinheit sowie intermolekularen Abstände zwischen den unterschiedlichen Untereinheiten mit nur einer einzigen Probe bestimmt werden. Zusätzlich können die orthogonalen Marker sehr effektiv genutzt werden, um Metallzentren in Biomolekülen mithilfe der Trilateration-Strategie genau zu lokalisieren.
Die hier vorliegende Doktorarbeit beschäftigt sich mit der Nutzung dieser neuen Spinmarker für Abstandsmessungen. Solche Spinmarker sind noch kaum erforscht, obwohl sie für biologische Anwendungen eine große Rolle spielen könnten.
Das erste Ziel dieser Doktorarbeit war eine Studie über Tritylradikale mithilfe der dipolaren EPR-Spektroskopie. Zu diesem Zweck wurden sowohl double quantum coherence (DQC) und single frequency technique for refocussing dipolar couplings (SIFTER) Experimente als auch Hochfrequenz pulsed electron electron double resonance (PELDOR) Experimente mit einem Trityl-Modellsystem durchgeführt. Dabei wurden die Besonderheiten der unterschiedlichen dipolaren Spektroskopiemethoden mit diesem Spinmarker untersucht, um die Empfindlichkeit und Robustheit für die Abstandsmessungen zu optimieren.
Das zweite Ziel war eine Studie über den Einfluss der Hochspin-Multiplizität des Mangans auf die Abstandsbestimmungen. Für diesen Zweck wurde zuerst ein Modellsystem mit einem orthogonalen Mn2+ Ion und Nitroxidradikal mithilfe der PELDOR-Spektroskopie untersucht. Anschließend wurde ein weiteres Modellsystem mit zwei Mn2+-Ionen untersucht, um PELDOR und relaxation-induced dipolar modulation enhancement (RIDME) Experimente bezüglich ihrer Empfindlichkeit und Robustheit sowie Genauigkeit der Datenanalyse zu optimieren.
Das Trityl-Modellsystem wurde in der Arbeitsgruppe von Prof. Sigurdsson synthetisiert. Die EPR Messungen wurden bei zwei verschiedenen Mikrowellenfrequenzen (34 und 180 GHz) durchgeführt. Es wurde gezeigt, dass die Auswahl der optimalen Methode von den EPR-spektroskopischen Eigenschaften des Systems bei den jeweiligen Mikrowellenfrequenzen abhängig ist. Das EPR-Spektrum des Trityls ist bei 34 GHz so schmal, dass das ganze Spektrum von einem üblichen Mikrowellenpuls angeregt werden kann. In diesem Fall sind die DQC und SIFTER Experimente am besten geeignet. Der mit diesen Methoden bestimmte Abstand von 4.9 nm ist in guter Übereinstimmung mit Werten aus der Literatur. Es wurde festgestellt, dass die SIFTER Messung eine höhere Empfindlichkeit als DQC besitzt, da das Signal-zu-Rausch Verhältnis um den Faktor vier größer ist. Außerdem ist die SIFTER-Methode experimentell weniger anspruchsvoll, da ein deutlich kürzerer Phasenzyklus für die Mikrowellenpulse benötigt wird. ...
Summary and Outlook The aim of this work was the investigation of the Mn2+ binding sites in hammerhead and the Diels-Alder ribozymes. This project consists of three main topics. In the first part quantification and structural characterization of Mn2+ binding sites in the m- and the tsHHRz using Electron Paramagnetic Resonance (EPR) spectroscopy are described. The second part summarizes the newest results obtained for the cleavage activity of both mand tsHHRzs in the presence of different Mg2+ and Mn2+ and Na+ ion concentrations using the new method with fluorescent-labeled RNAs. Here the influence of neomycin B on the structure of Mn2+ binding pockets and on the catalytic activity of both HHRzs is discussed. In addition, a possible role of Mn2+ ions is suggested from correlation of the EPR data with the kinetic results. The last chapter is devoted to quantification and differentiation of Mn2+ binding sites of the Diels-Alder ribozyme using continuous wave (cw) EPR experiments in solution. In this work EPR spectroscopy was used to study the binding of Mn2+ ions to the cis tsHHRz and to compare it with the binding to the trans mHHRz and to the Diels-Alder ribozyme. Cw EPR measurements showed that the tsHHRz possesses a single highaffinity Mn2+ binding site with a KD of < 10 nM at a NaCl concentration of 0.1 M. This dissociation constant is three orders of magnitude smaller than the KD determined for the single high-affinity Mn2+ site in the mHHRz (KD = 4.4 μM). The measurements of catalytic activity have been performed using fluorescent-labeled RNAs. Compared to the mHHRz, the cis tsHHRz cleaves up to 20-fold faster in the presence of Mg2+/Mn2+ ions with no saturation of the cleavage rates at high metal(II) ion concentrations. This is in good agreement with the last investigations on the trans tsHHRz (Nelson et al. 2005). Thus, the much stronger Mn2+ binding and higher cleavage activity were attributed to the interaction between the two external loops of the tsHHRz which reduces the RNA dynamics and traps the Mn2+ in the tightly folded conformation. Intriguingly, according to the EPR studies the binding constants for Mn2+ ions are several orders higher than the concentration of Mn2+ ions required for the catalytic activity (mHHRz: KD = 4.4 ± 0.5 μM and the Mn2+ concentration required to achieve half of the maximum cleavage rate [Mn2+]1/2 = 4.1 ± 0.6 mM respectively). Therefore, strongly bound Mn2+ ions seem to be needed for the folding of the HHRz, whereas weakly bound metal(II) ions are required to achieve full catalytic activity, and may be directly involved in catalysis. A comparison between the Electron Spin Echo Envelope Modulation (ESEEM) and Hyperfine Sublevel Correlation (HYSCORE) spectra of m- and tsHHRz demonstrates that both binding sites in HHRzs are structurally very similar. This suggests that the Mn2+ is located in both ribozymes between the bases A9 and G10.1 of the sheared G•A tandem basepair, as shown previously and in detail for the mHHRz (Vogt and DeRose 1998, Schiemann et al. 2003). However, the hyperfine spectra of the tsHHRz with 15N labeled G10.1 revealed no difference in comparison with the ones with 14N. This leads to an interpretation that the Mn2+ binding sites in both ribozymes are not identical. In addition, aminoglycoside antibiotic neomycin B inhibits the cleavage activity of both despite of the fact that it displaces the high-affinity Mn2+ ion only from the mHHRz. Hence, binding of neomycin B to the m- and the tsHHRzs probably occurs at different sites and neomycin B displaces only loosely bound Me2+ ions from the tsHHRs, whereas in the mHHRz both the high-affinity ion and the weakly bound ions are replaced. Therefore, it cannot be excluded that weakly bound Mg2+/Mn2+ ions, together with looploop interactions, induce a structural rearrangement which brings the high-affinity ion closer to the cleavage site. In the case of the Diels-Alder ribozyme it possesses five Mn2+ binding sites with KD = 0.6 ± 0.2 μM in solution under conditions where it is catalytically active. The competition experiment with Cd2+ allows to distinguish three different types of Mn2+ binding sites in the Diels-Alder ribozyme including inner-sphere monomeric Mn2+, monomeric Mn2+ bound through water-mediated contacts and electronically coupled dimeric Mn2+. Three Mn2+ ions are more strongly bound to the ribozyme via inner-sphere contacts, whereas two other Mn2+ ions form water-mediated outer-sphere contacts with the nucleotides of the ribozyme. The inner-sphere Mn2+ with the highest affinity and the fourth Mn2+ ions added to the ribozyme form a dimer with a Mn2+-Mn2+ distance of ~6 Å (as arises from simulations). Moreover, an addition of the product analog inhibitor (AMDA) to the [Diels-Alder ribozymes/ Mn2+] complex shows no conformational changes in the Mn2+ binding pockets. This is in good agreement with the recent studies which suggest that the Diels-Alder ribozyme is preorganized (Keiper et al. 2004). Some considerations on the evolution of the project (Outlook) There may be several venues of continuation of this project, which exploit on unique combination of EPR experiments and biochemical studies on RNA. This combination may allow us to significantly contribute to understanding of metal role in HHRz catalysis. Since the tsHHRz possesses the high affinity Mn2+ binding site (Kd < 10 nM) it creates a possibility to find conditions where the structural site is occupied by Mn2+, while catalytic sites are occupied by Mg2+ ions. If these conditions will be established by EPR titration, a set of standard biochemical experiments may be designed to look at the kinetic of cleavage and differentiate the “structural” and catalytic effects. The other experiment would be to look at the Mn2+ binding site in the tsHHRz in comparison with P1 and P1/P2 complexes and compare the results with the ones for the mHHRz. No matter the answer, P1 can be used as a simpler model to study the effect of tertiary structure on Mn2+ binding. A set of the tsHHRz mutants can be created to observe the mutations affect on Mn2+ binding sites, Mn2+ affinity and correlate the data with the kinetic analysis. FRET-based kinetic assay with fluorophore pairs on P1 and P2 can be designed for the kinetic experiments. Having this system one will be able to perform kinetic measurements 100-fold faster comparing to standard gel procedures (everything will be done in 96-wells). By manipulating the lengths and the sequence of P2 we most likely will be able to use FRET assay for the chemical step analysis (provided Kd > k2), and measure it using stop-flow system with time resolution of microseconds. And finally, one will be able to quantitatively measure the effect of neomycin B on the tsHHRz. Another interesting possibility would be to look at the state of metal(II) in the tsHHRz – enzyme alone (dissociated product) and in the enzyme-product complex and compare with the full-length tsHHRz. It will provide the information about the local rearrangements upon catalysis and the role of metal(II) ions. Furthermore, additional pulse-EPR experiments using 15N labeling have to be performed in order to reveal the location of the high-affinity Mn2+ binding site in the tsHHRz. Additionally, paramagnetic Mn2+ ions can be localized within the global fold of HHRzs using PELDOR and site-directed spin labeling. Further characterization of the high-affinity binding site in the tsHHRz can be performed using high-field ENDOR measurements in order to obtain the 14N and 31P tensors.