Refine
Document Type
- Doctoral Thesis (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Boswelliasäuren (2)
- Entzündung (2)
- Lipoxygenase <5-> (2)
- 5-lipoxygenase (1)
- AKBA (1)
- Arachidonsäure (1)
- Arzneimittel (1)
- Blut (1)
- Celecoxib (1)
- Extrakt (1)
Institute
- Pharmazie (4)
- Biochemie und Chemie (2)
Extracts of Boswellia serrata, also known as Indian frankincense, have been used to treat inflammatory diseases in the Indian ayurvedic medicine or Chinese traditional medicine (TCM) for over 3000 years, but the molecular mechanisms of the anti-inflammatory effects are still not well understood. It is obvious that the boswellic acids, the major compounds in the extracts, are responsible for the efficacy. This work employed a protein fishing technique to identify putative targets of boswellic acids at different stages within the inflammatory cascade. For fishing experiments, boswellic acids were immobilized to sepharose and incubated with cell lysates. After washing and boiling, fished proteins were separated by SDS-PAGE and analysed by MALDI-TOF-MS. CatG, DNA-PK and the protein kinase Akt were identified by protein pulldowns with immobilised BAs and characterised as selective and important targets for BAs with an IC50 in the range of physiologically achievable plasma levels up to 5 microM. In addition, the influence on several signal transductions by BAs was tested. Calcium influx, arachidonic acid release, platelet aggregation and TNFalpha-release were assayed to reveal further pharmacological effects of BAs. Celecoxib is a well-known selective COX-2 inhibitor that is in clinical use. In this work, it is demonstrated that celecoxib is also a highly potent direct 5-LO inhibitor. Celecoxib is used in arthritis and its gastro-intestinal side effects are reduced compared to non-selective NSAIDs. In patients with a familiar disposition to polyp forming, celecoxib reduced polyps and the incidence of colon cancer. Because of lowered leukotriene levels in patients under celecoxib therapy it was plausible to test whether celecoxib interferes with 5-LO. Here it is shown that the activity of 5-LO is inhibited in PMNL and cell-free assays with IC50 of 8 microM in intact cells, 20 microM with supplemented arachidonic acid and 30 microM in cell-free systems. Thus, celecoxib is a dual inhibitor of COX-2 and 5-LO. Since 2006, celecoxib has been approved as an orphan drug for the treatment of familial adenomatous polyposis. Aside from this indication, it could be useful for treatment of asthma and other diseases where 5-LO is implicated.
Boswellia serrata gum resin extracts (frankincense) have been used for centuries in folk medicine in Asia and Africa. They have shown beneficial therapeutic effects, particularly in the treatment of chronic inflammatory diseases. Clinical studies on humans confirmed an anti-inflammatory and anti-cancer potential of Frankincense preparations. Boswellic acids (BAs) are the major ingredients, responsible for the pharmacological action of the extracts. Molecular and cellular studies with BAs revealed a number of targets including 5-lipoxygenase (LO), topoisomerases and the NF-κB pathway. Since there is little information on the modulation of cellular physiology by BAs, this work was designed to provide a detailed investigation of the cellular and molecular effects of BAs in several cell types related to inflammation. We report that 11-keto-BAs are potent activators of functional responses in human neutrophils, a type of leukocytes mediating acute inflammatory processes. Neutrophil activation by 11-keto-BAs is reflected by enhanced generation of oxygen radicals, release of arachidonic acid (AA) and the subsequent transformation of AA to pro-inflammatory eicosanoids. Investigation of the participating signalling pathways identified Ca2+, phosphoinositide-3 kinase, and members of the MAP kinase family (ERKs) as mediators. Second, we present a detailed study of the modulation of human platelet physiology and intracellular signalling events by BAs. Intriguingly, we discovered an inverse structure-activity relationship of BAs regarding platelet activation, with 11-methylene-BAs being superior over 11-keto-BAs. Thus, 11-methylene-BAs stimulated platelet Ca2+ mobilisation, MAP kinase and Akt activation, AA release, 12-LO and cyclooxygenase product formation, and thrombin generation. Novel Ca2+-independent activation pathways of platelet lipid metabolism were discovered. In contrast, 11-keto-BAs were inactive but found to inhibit platelet (p)12-LO directly. Interaction with p12-LO was confirmed in a pulldown assay using immobilised BAs as bait. Finally, BAs were shown to attenuate the activation of monocytes, a cell type responsible for the maintenance of chronic inflammatory states. Impairment of Ca2+ homeostasis is likely conferred by inhibition of Ca2+ influx channels. Taken together, our results shed light on the modulation of intracellular physiology of inflammatory cells by BAs, contributing to a better understanding of the anti-inflammatory effects exerted by frankincense preparations.
On the molecular basis of novel anti-inflammatory compounds and functional leukocyte responses
(2006)
Inflammation is a complex pathophysiological event that can be triggered by activation of a number of distinct activation pathways eventually leading to the release of pro-inflammatory molecules and enzymes. Among all cells involved in inflammatory processes, neutrophils, monocytes and platelets are of major relevance. Activation of leukocytes occurs via binding of agonists to distinct GPCRs leading to activation of G proteins and proximate signaling cascades. In short, GPCR activation by pro-inflammatory agonists such as fMLP, PAF or LTB4 leads to activation of G proteins that are associated with the receptor at the cytosolic side of the plasma membrane. G proteins consist of a Gα- and a Gβγ-subunit which are associated in the inactive state. In this state, G proteins bind GDP. Upon activation, GDP is replaced by GTP that results in the dissociation of the Gα- from the Gβγ-subunit. Both subunits are capable of activating distinct PLC-β isoenzymes that catalyze the turnover of PtdIns(4,5)P2 into the second messengers Ins(1,4,5)P3 and DAG. Every GPCR holds a distinct pattern of associated G proteins which preferentially activate distinct PLC-β isoenzymes. Ca2+ channels within the SR/ER-membrane function as specific receptors for Ins(1,4,5)P3. Ligation of Ins(1,4,5)P3 to this receptor causes a release of Ca2+ from intracellular stores into the cytosol that is subsequently followed by the influx of Ca2+ e through channels in the plasma membrane. Ca2+ represents an important signaling molecule, involved in the regulation of cellular processes and enzymes that mediate inflammatory events such as ROS formation and the release of degradative enzymes. 5-LO and COXs are involved in the biosynthesis of pro-inflammatory eicosanoids and catalyze the turnover of AA into LTs and PGs, respectively. Both enzymes play pivotal roles in the initiation and maintenance of allergic diseases and inflammatory processes. LTB4 is regarded as a potent chemotactic and chemokinetic substance, whereas the cysteinyl-LTs cause smooth muscle contraction and increased vascular permeability. Therefore, 5-LO inhibitors are assumed to possess therapeutic potential for the treatment of diseases related to inflammation. Besides the intervention with 5-LO activity, inhibition of COX-activity is an effective way to suppress inflammatory reactions. The two COX isoenzymes, namely COX-1 and COX-2 show different patterns in terms of tissue expression and sensitivity towards inhibitors. COX-1 is supposed to be constantly expressed whereas COX-2 expression is upregulated at sites of inflammation. The extract of H. perforatum is commonly used for the treatment of mild to moderate depressive disorders, accompanied by a moderate profile of side effects. The extract´s efficacy as an antidepressant can be traced back to the content of the phloroglucinol hyperforin which represents the most abundant lipophilic constituent. However, in folk medicine hypericum extracts are additionally used for the treatment of inflammatory disorders such as rheumatoid arthritis or inflammatory skin diseases. In fact, it was shown that hypericum extracts and hyperforin possess anti-inflammatory potential. Hyperforin was described as a dual inhibitor of 5-LO and COX-1. The phloroglucinols MC and S-MC from M. communis significantly differ from the molecular structure of hyperforin. Hyperforin represents a monomeric prenylated derivative whereas MS and S-MC are non-prenylated oligomeric compounds. To date, the anti-inflammatory potential of SM and S-MC has not been investigated in detail. So far, solely antioxidant activity was attributed to MC and S-MC that indeed might qualify them as anti-inflammatory drugs. The phloroglucinols MC, S-MC and hyperforin are potent inhibitors of ROS formation and HLE release. However, any inhibitory potential of these compounds was only observed when cells were activated by GPCR agonists such as fMLP or PAF. In contrast, when cells were stimulated under circumvention of G protein-associated signaling cascades, the abovementioned inhibitors were not effective at all. In leukocytes, [Ca2+]i plays a pivotal role in signal transduction and regulation of the indicated pro-inflammatory cellular functions. We were able to show that MC, S-MC and hyperforin inhibited GPCR-mediated Ca2+ mobilization with approximately the same potency as the above-mentioned leukocyte responses. However, all of the indicated phloroglucinols were ineffective when cells were stimulated with ionomycin. Since ionomycin as well as GPCR agonists exert their effects by mobilizing Ca2+ i, it seems conceivable that MC, S-MC and hyperforin somehow interfere with G protein-associated signaling pathways. In order to investigate PLC as a potential target of hyperforin, the effects of hyperforin were compared to those of the broad spectrum PLC inhibitor U-73122. We found that both inhibitors acted in a comparable manner in terms of agonist-induced Ca2+ mobilization and in regard of the manipulation of basal Ca2+ levels in unstimulated cells. In this respect, significant differences between hyperforin and U-73122 were obvious for inhibition of total PLC activity in vitro. Thus, U-73122 blocked PLC activity whereas hyperforin was ineffective in this respect. This might indicate that only certain PLC isoenzymes are affected by hyperforin. Alternatively, other components within G protein-associated signaling pathways such as G proteins itself or the Ins(1,4,5)P3 receptor must be taken into account as putative targets of hyperforin. We were able to introduce MC and S-MC as novel dual inhibitors of 5-LO and COX-1. Interestingly, such a pattern was also described for hyperforin. MC and S-MC turned out to be direct inhibitors of 5-LO, based on the fact that they inhibit 5-LO not only in intact cells but also as purified enzyme in vitro. For MC and S-MC, great discrepancies were observed between the IC50 values concerning 5-LO inhibition and the concentrations that exert the antioxidative effects. It seems probable that 5-LO inhibition is not related to reduction of the active site iron as a result of the antioxidant activity of MC and S-MC but rather to direct interference with the 5-LO enzyme. The capability of MC and S-MC to suppress COX-1 activity seems not to be a unique effect of these phloroglucinols because for COX-1, the IBPC, present in both MC and S-MC, turned out to be the most active compound. ....
Drug target 5-lipoxygenase : a link between cellular enzyme regulation and molecular pharmacology
(2005)
Leukotriene (LT) sind bioaktive Lipidmediatoren, die in einer Vielzahl von Entzündungskrankheiten wie z.B. Asthma, Psoriasis, Arthritis oder allergische Rhinitis involviert sind. Des Weiteren spielen LT in der Pathogenese von Erkrankungen wie Krebs, Osteoarthritis oder Atherosklerose eine Rolle. Die 5-Lipoxygenase (5-LO) ist das Enzym, das für die Bildung von LT verantwortlich ist. Aufgrund der physiologischen Eigenschaften der LT, ist die Entwicklung von potentiellen Arzneistoffen, welche die 5-LO als Zielstruktur besitzen, von erheblichem Interesse. Die Aktivität der 5-LO wird in vitro durch Ca2+, ATP, Phosphatidylcholin und Lipidhydroperoxide (LOOH) und durch die p38-abhängige MK-2/3 5-LO bestimmt. Inhibitorstudien weisen darauf hin, dass der MEK1/2-Signalweg ebenfalls in vivo an der 5-LO Aktivierung beteiligt ist. Hauptziel dieser Arbeit war es zu untersuchen, welche Rolle der MEK1/2-Signalweg bei der Aktivierung der 5-LO besitzt und welchen Einfluss der 5-LO Aktivierungsweg auf die Wirksamkeit potentieller Inhibitoren hat. „In gel kinase“ und „In vitro kinase“ Untersuchungen zeigten, dass die 5-LO ein Substrat für die Extracellular signal-regulated kinase (ERK) und MK-2/3 darstellt. Der Zusatz von mehrfach ungesättigten Fettsäuren (UFA), wie AA oder Ölsäure, verstärkte den Phosphorylierungsgrad der 5-LO sowohl durch ERK1/2 als auch durch MK-2/3. Die genannten Kinasen sind demnach auch für die 5-LO Aktivierung durch natürliche Stimuli verantwortlich, die den zellulären Ca2+-Spiegel kaum beeinflussen. Daraus ist ersichtlich, dass die Phosphorylierung der 5-LO durch ERK1/2 und/oder MK-2/3 einen alternativen Aktivierungsmechanismus neben Ca2+ darstellt. Ursprünglich wurden Nonredox-5-LO-Inhibitoren als kompetitive Wirkstoffe entwickelt, die mit AA um die Bindung an die katalytische Domäne der 5-LO konkurrieren. Vertreter dieser Inhibitoren, wie ZM230487 und L-739,010, zeigen eine potente Hemmung der LT-Biosynthese in verschiedenen Testsystemen. Sie scheiterten jedoch in klinischen Studien. In dieser Arbeit konnten wir zeigen, dass die Wirksamkeit dieser Inhibitoren vom Aktivierungsweg der 5-LO abhängig ist. Verglichen mit 5-LO Aktivität, die durch den unphysiologischen Stimulus Ca2+-Ionophor induziert wird, erfordert die Hemmung zellstress-induzierter Aktivität eine 10- bis 100-fach höhere Konzentration der Nonredox-5-LO-Inhibitoren. Die nicht-phosphorylierbare 5-LO Mutante (Ser271Ala/Ser663Ala) war wesentlich sensitiver gegenüber Nonredox-Inhibitoren als der Wildtyp, wenn das Enzym durch 5-LO Kinasen aktiviert wurde. Somit zeigen diese Ergebnisse, dass, im Gegensatz zu Ca2+, die 5-LO Aktivierung mittels Phosphorylierung die Wirksamkeit der Nonredox-Inhibitoren deutlich verringert. Des Weiteren wurde das pharmakologische Profil des neuen 5-LO Inhibitors CJ-13,610 mittels verschiedener in vitro-Testsysteme charakterisiert. In intakten PMNL, die durch Ca2+-Ionophor stimuliert wurden, hemmte die Substanz die 5-LO Produktbildung mit einem IC50 von 70 nM. Durch Zugabe von exogener AA, wird die Wirkung vermindert und der IC50 des Inhibitors steigt an. Dies deutet auf eine kompetitive Wirkweise hin. Wie die bekannten Nonredox-Inhibitoren, verliert auch CJ-13,610 seine Wirkung bei erhöhtem zellulärem Peroxidspiegel. Der Inhibitor CJ-13,610 zeigt jedoch keine Abhängigkeit vom Aktivierungsweg der 5-LO. Grundsätzlich ist es also von fundamentaler Bedeutung bei der Entwicklung von neuen Arzneistoffen, die zellulären Zusammenhänge, insbesondere die Regulierung der Aktivität von Enzymen, zu kennen. Wie in dieser Arbeit gezeigt, hat die Phosphorylierung der 5-LO einen starken Einfluss auf die Regulation der 5-LO Aktivität und eine elementare Wirkung auf die Hemmung des Enzyms durch verschiedene Wirkstoffe.
During the last years, chemopreventive activity of NSAIDs against a great variety of tumors was highly investigated. COX-2 seemingly plays a major part in tumorigensis and tumor development, underlined by several studies in animals and humans. At first, NSAIDs were thought to accomplish chemoprevention by inhibition of COX-2 as their so far known mode of action comprises unselective inhbition of COX-enzymes. However, further studies revealed COX-independent mechanisms. Sulindac is known as a well established drug used to treat inflammation and pain exerting the most prominent chemopreventive action, mainly in colorectal cancer or FAP and can be classified into the group of NSAIDs inhibting both COX-isoformes. As interference with the AA metabolism is evident, it was speculated whether Ssi has targets other than COX-enzymes providing evidence and explanation of its beneficial side effect profile and its ability to reduce tumor growth. 5-LO is another master enzyme in the AA cascade which produces inflammatory lipid mediators (LTs) upon stimulation in inflamed tissues. The present work should answer the question if Ssi targets the 5-LO pathway and should examine the molecular mechanisms behind Ssi-mediated 5-LO inhibiton. As COX-2 is upregulated during carcinogenesis and is inhibited by Ssi, further investigations should show regulatory effects of Ssi on 5-LO gene expression in MM6-cells and whether Sp1 as a common transcriptional factor is involved in such a regulation. As the use of NO-NSAIDs seem to be a promising strategy concerning their chemopreventive and gastroprotective effects compared to the parent NSAIDs, a possible interaction with the 5-LO pathway as a second, potent target should additionally be elucidated. In the first section it was demonstrated that the pharmacologically active metabolite of sulindac, Ssi, targets 5-LO. Ssi inhibited 5-LO in ionophore A23187- and LPS/fMLP-stimulated human PMNL (IC50 ≈ 8 -10 μM). Importantly, Ssi efficiently suppressed 5-LO in human whole blood at clinically relevant plasma levels (IC50 = 18.7 μM). Ssi was 5-LO-selective as no inhibition of related lipoxygenases (12-LO, 15-LO) was observed. The sulindac prodrug and the other metabolite, sulindac sulfone, failed to inhibit 5-LO. Mechanistic analysis demonstrated that Ssi directly suppresses 5-LO with an IC50 of 20 μM. Together, these findings may provide a novel molecular basis to explain the COX-independent pharmacological effects of sulindac under therapy. In the second part of the work dealing with the analysis of Ssi’s inhibitory mechanism on 5-LO it was presented that Ssi shows a lack of potency in cellular systems where membrane constituents are existent. The addition of microsomal fractions of PMNLto crude 5-LO enzyme were able to recover enzyme activity to ~ 100 %. Selectively 5-LO activity stimulating lipids like PC, participating in 5-LO membrane interactions within the regulatory C2-like domain of 5-LO, counteracted the Ssimediated inhibition on 5-LO-wt in a concentration-dependent manner. Lastly, a protein mutant lacking three trp resudies essential for linking the enzyme to nuclear membranes and deploying catalytic activity was not influenced by Ssi and shows enzyme activity in a cell-free assay. Ssi displays the first 5-LO inhibitor on the market interacting with the C2-like domain of the enzyme and therfore can stand for a novel lead structure of 5-LO inhibitors. An influence on 5-LO gene expression by Ssi could be detected in differentiated MM6-cells, described in the results chapter 3 (4.3). Ssi downregulated the 5-LO mRNA level after 72 hrs of incubation in differentiated MM6-cells to ~ 20 % of output control at concentrations of 10 μM. Concomitantly, mRNA levels of Sp1 were suppressed. Reporter gene studies revealed Sp1 most probably as a regulating agent involved in the Ssi-mediated 5-LO mRNA downregulation as co-transfection of increasing amounts of Sp1 could abrogate the effect. A ChIP assay could identify Sp1 as a critical transcriptional factor as Sp1 binding to the 5-LO promoter decreased in presence of Ssi. Lastly, three NO-NSADIs (NO-sulindac, NOnaproxen, NO-aspirin) were tested for the ability of 5-LO product inhibition. In intact PMNL, all compounds showed effective inhibition of 5-LO activity and NO-sulindac was most potent with an IC50 value of ~ 3 μM. NO-ASA inhibited 5-LO with IC50 values of ~ 30 μM and showed a non-competitive mode of action in cell-based assays. On human recombinant 5-LO all compounds again showed inhibitory potency whereas NO-sulindac again suppressed LT biosynthesis with an IC50 vaue comparable to intact cellular systems. Unfortunately, all inhibitors showed a loss of potency when tested for inhibition of 5-LO product synthesis in human whole blood as higher concentrations up to 100 μM were needed to reach at least 55 % enzyme inhibition. However, this strategy of 5-LO inhibition seems promising and needs further experimental approaches to gain more insight into the mechanism of 5-LO inhibition by NONSAIDs.
Diese Arbeit beschäftigt sich mit der Synthese und Charakterisierung von Inhibitoren der 5-Lipoxygenase (5-LO) und der mikrosomalen Prostaglandin E2 Synthase-1 (mPGES-1) als neue potentielle antientzündliche Wirkstoffe. Beide Enzyme befinden sich innerhalb der Arachidonsäurekaskade und sind einerseits an der Prostaglandin E2 (PGE2) Biosynthese und andererseits an der Biosynthese der Leukotriene (LTs) beteiligt (siehe Abb. 1). Die mPGES-1 ist ein membranständiges
Enzym, das downstream lokalisiert ist, hauptsächlich unterhalb der induzierbaren COX-2, und katalysiert die Reaktion von PGH2 zu PGE2. PGE2 gilt innerhalb der Prostaglandine als prominentester Vertreter bezüglich Entzündungen, Schmerzen und Fieber. Die Leukotriene gehören ebenso wie die Prostaglandine zu den proinflammatorisch wirkenden Lipid-Mediatoren und sind unter anderem beteiligt an der Bronchokonstriktion oder erhöhen auch die vaskuläre Permeabilität. Während dieser Arbeit wurden die Struktur-Wirkungsbeziehungen zweier verschiedener Substanzklassen untersucht. Leitstruktur I entstammt einem Pirinixinsäure-Derivat (siehe Abb. 2). Die Pirinixinsäure (Verbindung 1) selbst ist sowohl an der mPGES-1 als auch an der 5-LO inaktiv. Initiale Arbeiten haben gezeigt, dass eine Einführung eines n-Hexyl Restes in α-Position zu der Carbonsäure zu einer dualen Inhibition der 5-LO und mPGES-1 geführt hat (Verb. 2). Unter Beibehaltung dieses Restes sollte der lipophile Rückraum durch Austausch des 2,3-Xylidin-Gerüsts optimiert werden und hier hat sich insbesondere das 4-(4-Chlorphenyl)-1,3-thiazol-2-amin Gerüst als potent erwiesen (Verb. 3). Mit dieser Erkenntnis sollten verschiedene 2-Aminothiazolhaltige Pirinixinsäurederivate synthetisiert werden, und ihre Struktur-Wirkungsbeziehung als
duale 5-LO/ mPGES-1 Inhibitoren untersucht werden. Leitstruktur II entstammt einem virtuellen Screening Ansatz, in dem neue acidische mPGES-1 Inhibitoren identifiziert werden sollten. Das Benzensulfonamid Derivat FR4 (Verb. 4) stellt dabei eine neuartige Leitstruktur für mPGES-1 Inhibitoren dar, die nicht nur in der Lage sind die humane mPGES-1 zu hemmen, sondern ebenso die murine mPGES-1. Viele in der Literatur beschriebene mPGES-1 Inhibitoren sind zwar in der Lage, die humane mPGES-1 sehr potent zu inhibieren, haben allerdings keinen Effekt gezeigt in ersten präklinischen Versuchen, weil der Spezies Unterschied zwischen der murinen und humanen mPGES-1 zu groß ist. Dementsprechend liefern die Benzensulfonamide einen interessanten Ansatzpunkt für die Entwicklung neuartiger mPGES-1 Inhibitoren, um die Hürde der präklinischen Entwicklung zu überwinden.