Refine
Year of publication
Document Type
- Doctoral Thesis (16)
- diplomthesis (3)
Has Fulltext
- yes (19)
Is part of the Bibliography
- no (19)
Keywords
- Dimere (2)
- Atom (1)
- Börse (1)
- Dotierter Halbleiter (1)
- Elektronenpaar (1)
- Geschäftsplan (1)
- Governance (1)
- Helium (1)
- Heliumatom (1)
- Heliumdimere (1)
Institute
- Physik (15)
- Biochemie und Chemie (2)
- Rechtswissenschaft (1)
- Wirtschaftswissenschaften (1)
Mit der vorliegenden Arbeit ist der eindeutige experimentelle Nachweis für die Existenz eines 1997 [Ced97] vorhergesagten, neuartigen Zerfallskanals für Van-der-Waals-gebundene Systeme erbracht worden. Die Untersuchungen wurden an einem Neondimer durchgeführt. Erzeugt man in einem Atom dieses Dimers durch Synchrotronstrahlung eine 2s-Vakanz, so wird diese durch ein 2p-Elektron aufgefüllt. Die hierbei freiwerdende Energie wird an das zweite Atom des Dimers in Form eines virtuellen Photons übertragen und löst dort ein Elektron aus einer äußeren Schale. Untersucht wurde dieser Zerfall namens „Interatomic Coulombic Decay” (ICD) durch Koinzidenzimpulsspektroskopie (COLTRIMS) [Doe00, Ull03, Jah04b]. Der Nachweis der Existenz des Effekts erfolgte dadurch, dass die Summe der Energien der Photofragmente - und im Speziellen des ICD-Elektrons und der beiden im Zerfall entstehenden Ne+-Ionen - eine Konstante ist. Durch die koinzidente Messung der Impulse, der im Zerfall entstehenden Teilchen, konnte hierdurch ICD eindeutig identifiziert werden. Die Übereinstimmung der gemessenen Energiespektren mit aktuellen theoretischen Vorhersagen [Sche04b, Jah04c] ist exzellent. Dadurch, dass das Dimer nach dem IC-Zerfall in einer Coulomb-Explosion fragmentiert, konnten des Weiteren Untersuchungen, wie sie in den letzten Jahren an einfachen Molekülen durchgeführt wurden [Web01, Lan02, Jah02, Web03b, Osi03b, Jah04a], auch am Neondimer erfolgen: Durch die Messung der Ausbreitungsrichtung der ionischen Fragmente des Dimers nach der Coulomb-Explosion wird die räumliche Ausrichtung des Dimers zum Zeitpunkt der Photoionisation bestimmt. Die gemessenen Impulse der emittierten Elektronen können dadurch im Bezug zur Dimerachse dargestellt werden. In dieser Arbeit wurden somit Messungen der Winkelverteilung der 2s-Photoelektronen und des ICD-Elektrons im laborfesten und auch dimerfesten Bezugssystem vorgestellt und mit vorhandenen theoretischen Vorhersagen verglichen. Die Winkelverteilung des Photoelektrons ähnelt stark der Verteilung, die man nach der Photoionisation eines einzelnen Neonatoms erhält und hat somit fast reinen Dipolcharakter. Die Präsenz des zweiten Atoms des Dimers verursacht nur leichte Modulationen, so dass auch die Änderung der Ausrichtung der Dimerachse im Bezug zur Polarisationsrichtung des linear polarisierten Lichtes nur geringe Auswirkungen hat. Durch die koinzidente Messung aller vier nach der Photoionisation entstehenden Teilchen konnte außerdem ein weiterer Doppelionisationsmechanismus des Dimers nachgewiesen werden: Ähnlich wie in einzelnen Atomen [Sam90] gibt es auch in Clustern den TS1-Prozess. Hierbei wird ein 2p-Elektron aus dem einen Atom des Dimers herausgelöst. Es streut dann an einem 2p-Elektron des anderen Atoms, das hierdurch ionisiert wird. Diese etwas andere Form des TS1 im Cluster ist also genau wie ICD ein interatomarer Vorgang. Die Summe der Energien der beiden, in diesem Prozess entstehenden Elektronen hat einen festen Wert von h... − 2 · IP(2p) − KER = 12 eV, so dass dieser Prozess hierdurch im Experiment gefunden werden konnte. Die gemessenen Zwischenwinkel zwischen den beiden Elektronen zeigen des Weiteren genau die für zwei sich abstoßende Teilchen typische Verteilung einer Gauss-Kurve mit einem Maximum bei 180 Grad. Da im Falle von interatomarem TS1 die Potentialkurve der Coulomb-Explosion direkt aus dem Grundzustand populiert wird, konnte im Rahmen der „Reflexion Approximation” die Wahrscheinlichkeitsverteilung der Abstände der beiden Dimeratome experimentell visualisiert werden. Das Betragsquadrat des Kernanteils der Dimergrundzustandswellenfunktion wurde somit direkt vermessen. Die Messungen wurden bei drei verschiedenen Photonenenergien durchgeführt, um die Ergebnisse weiter abzusichern und robuster gegen eventuelle systematische Fehler zu machen. Da kein isotopenreines Neongas im Experiment eingesetzt wurde, konnten genauso Ionisations- und ICD-Ereignisse von isotopischen Dimeren (20Ne22Ne) beobachtet und ausgewertet werden. Die gemessenen Spektren sind innerhalb der Messtoleranzen identisch zu denen für 20Ne2.
Ziel dieser Arbeit war die Entwicklung eines Mess-Systems zur energie- und winkelaufgelösten Spektroskopie von koinzidenten Elektronenpaaren, die in Reaktionen an einer Oberfläche emittiert wurden. Das Hauptinteresse galt hierbei dem Zwei-Elektronen-Photoemissionsprozess an Oberflächen. Das Prinzip des Spektrometers stellt eine Erweiterung der existierenden COLTRIMS-Spektrometer (COld Target Recoil Ion Momentum Spectroscopy) für Gasphasen-Experimente auf den Themenkreis der Oberflächenphysik dar. Anders als bei den in der Photoelektronen-Spektroskopie häufig eingesetzten elektrostatischen Analysatoren, wird hier eine Flugzeittechnik verwendet. Die Elektronen, die in der Reaktion erzeugt wurden, werden h ierzu mit einem schwachen homogenen elektrostatischen Feld vom Target abgesaugt und in Richtung eines orts- und zeitauflösenden Detektors beschleunigt. Zusätzlich wird ein homogenes Magnetfeld überlagert, das einen Einschluss der Elektronen bis zu einem maximalen Transversal-Impuls gewährleistet. Durch Messung der Flugzeiten und Auftrefforte auf dem Detektor können - unter Kenntnis d er elektrischen und magnetischen Feldstärken - die Startimpulse der Elektronen rekonstruiert werden. Auf diese Weise konnten Elektronen von 0 eV bis zu 50 eV mit einem Raumwinkel von nahezu 2p gleichzeitig abgebildet werden. Durch diesen sehr großen Aktzeptanzbereich, konnte eine wesentliche Erhöhung der Koinzidenzeffizienz der Anordnung gegenüber anderen Systemen erreicht werden (> 10 hoch 2 - 10 hoch 6 je nach Mess-System). Wesentlich hierfür ist des weiteren die Fähigkeit des Detektors mehrere Treffer mit verschwindender Totzeit zu verarbeiten. Mit dem beschriebenen System wurde die Zwei-Elektronen-Photoemission an Oberflächen untersucht. Die Experimente hierzu wurden im wesentlichen am Hamburger Synchrotron Strahlungslabor (HASYLAB) durchgeführt. Als Target wurde die (111)-Oberfläche eines einkristallines Kupfer-Targets verwendet. Mehrere Messreihen mit Photonenenergien im Bereich h? = 40 eV bis h? = 100 eV wurden aufgezeichnet. Durch die vollständige Vermessung des gesamten Impulsraumes der beiden Elektronen, stellt dies die erste kinematisch vollständige Untersuchung (bis auf die Spin-Freiheitsgrade) der Zwei-Elektronen-Photoemission an Oberflächen dar. Im Anschluss an vorangegangene Experimente [HER98], konnte auch hier in den Zwei-Elektronen-Energieverteilungen (innerhalb der experimentellen Auflösung) als Maximal-Energie des Paares der Wert E1 + E2 = h? - 2W0 festgestellt werden, der auf eine Selbst-Faltung der Bänder für die Zwei-Elektronen-Photoemission hindeutet. Die Form der Spektren wird wesentlich durch das Transmissionsverhalten der Elektronen beim Durchgang durch die Oberfläche bestimmt. Die auftretende energieabhängige Brechung der Trajektorie führt dabei zu einer starken Unterdrückung niederenergetischer Elektronen. In der Betrachtung der Kinematik der Emission konnten deutliche Analogien des Effektes zum analogen Prozess der Doppel-Photoionisation an freien Atomen bzw. Molekülen gefunden werden. Die Bewegung des Schwerpunktsimpulses des Paares ist daher durch die Richtung des Polarisationsvektor des Lichtes bestimmt. Im Gegensatz zur Emission am freien System, tritt hier allerdings - je nach Orientierung des Polarisationsvektors - ein Symmetriebruch auf, da Elektronen entweder auf die Oberfläche zu oder von ihr weg emittiert werden. Ein Bruchteil der in den Festkörper emittierten Intensität kann schließlich wieder am Gitter reflektiert werden und die Oberflächenbarriere noch überwinden. Die Energie- und Winkelverteilungen der Elektronen zeigen, dass, je nach Energieaufteilung des Paares, zwischen den Beiträgen durch einen "shake-off"-Mechanismus und einem "knock-out"-Mechanismus unterschieden werden kann. Auch hierin zeigt sich eine Ähnlichkeit des Zwei-Elektronen-Photoemissionsprozesses an Oberflächen mit der Doppel-Ionisation von Helium-Atomen. Während bei der Doppel-Ionisation von Helium diese Unterscheidung allerdings erst bei höheren Photonenenergien (> 100 eV) möglich ist, kann hier schon bei ca. 60 eV zwischen beiden Prozessen getrennt werden. Der Grund hierfür liegt sehr wahrscheinlich in der Abschirmung der Elektronen im Festkörper begründet, die die direkte Coulomb-Wechselwirkung der Elektronen im Endzustand reduziert. Insbesondere der starke Beitrag des "shake-off"-artigen Prozesses ist ein deutlicher Hinweis darauf, dass die gegenwärtigen theoretischen Modelle zur Beschreibung der Zwei-Elektronen-Photoemission nicht ausreichend sein können, da nur die Wechselwirkung im End-Zustand berücksichtigt wird. Vielmehr ist die Einbeziehung von Grundzustandswellenfunktionen jenseits des Bildes unabhängiger Teilchen nötig.
Rückblick Die Motivation für diese Arbeit ergibt sich aus den immer neuen Fragestellungen der modernen Wissenschaft. Deren Beantwortung hängt wesentlich von den geeigneten Messapparaturen ab, die Einblicke in physikalische Prozesse erlauben. Durch effektivere und höher auflösende Detektoren werden präzisere, schnellere und schonendere Messungen möglich. Die Zielsetzung dieser Arbeit über den Hochdruck-Gas-Szintillations-Proportionalzähler ist es, einen Detektor zu entwickeln, mit dem hochenergetische Photonen praktisch vollständig vermessen werden können. Dazu gehören: - die Photonenenergie im Bereich von 5 bis 500 keV, - die Richtung der einfallenden Strahlung (bzw. der Auftreffort auf dem Detektor), - der Absorptionszeitpunkt und - die Diskriminierung von Gamma-induziertem Untergrund. Potenzielle Einsatzgebiete des Detektors sind im wesentlichen medizinische, atom- und astrophysikalische Anwendungen. Die vielversprechenden Eigenschaften dieses Detektorkonzeptes, gegenüber herkömmlichen Gasdetektoren, ergeben sich aus den Mechanismen der primären und der sekundären Gasszintillation. Daraus folgen der überlegene Verstärkungsprozess und das schnelle Zeitsignal. Als Grundlage für die in dieser Arbeit diskutierten Ergebnisse dienen die zuvor von Dangendorf und Bräuning entwickelten Konzepte und die von ihnen gebauten Prototypen. Sie sind geeignet für kleine und mittlere Photonenenergien und liefern eine gute Energie- und Zeitauflösung. Die Tests der Ortsauslese mit abbildenden, optischen Systemen zeigten erste Resultate. Ausgehend von diesen bestehenden Entwicklungen war die Motivation der Arbeit, den Aufbau an die gewünschten Anforderungen anzupassen. Für die höheren Photonenenergien werden ein dichterer Absorber, also ein höherer Gasdruck und damit verbunden neue Auslesekonzepte benötigt. Problem Ein zentrales Problem, das aufgrund dieser neuen Anforderungen auftritt, ist der Druckunterschied zwischen dem Hochdruck-Szintillator und der bei Niederdruck oder im Vakuum betriebenen UV-Auslese. Die dadurch bedingten Kräfte machen entweder besondere Stützstrukturen oder stabile - und dadurch dicke - Fenster erforderlich. In beiden Fällen geht ein Teil des Signals verloren und die Detektorauflösung nimmt ab. Es handelt sich dabei jedoch nicht um prinzipielle Probleme. Die Schwierigkeiten sind rein technischer Natur. Deshalb wurde intensiv weiter nach neuen Konzepten und Lösungsansätzen gesucht, die die Vorteile dieser überlegenen physikalischen Prozesse ausnutzen können. Lösungsansatz Das konkrete Ziel - bzw. die Aufgabenstellung - dieser Arbeit war, mit neuen Technologien, und dabei vor allem mit einem neuen Mikrostruktur-Elektroden-System, bislang bestehende technische Hürden zu überwinden (Kapitel 3). Durch die Möglichkeit, einen in das Hochdruckvolumen integrierten Photonendetektor zu bauen, werden viele der Stabilitätsprobleme gelöst. Mit der großflächigen Auslese des Szintillationslichts direkt dort, wo es entsteht, werden die Transmissionsverluste in Fenstern vermieden. Es gibt damit nur kleine raumwinkelabhängige Effekte und es wird nur ein Gasvolumen und damit kein zusätzliches System zum Evakuieren, Zirkulieren und Reinigen benötigt. Durch die Trennung der Energie- und der Ortsinformation und deren separate Auslese wird zwar die Komplexität des Detektors erhöht, die Teilsysteme können jedoch unabhängig für die jeweiligen Anforderungen optimiert werden. Grundlagen Im Rahmen dieser Arbeit wurden bereits existierende Erfahrungen aufgegriffen und in deren logischer Fortsetzung, ein, in das Szintillatorvolumen integrierter, UV-Photonendetektor entwickelt. Zunächst musste mit einer umfangreichen Recherche ermittelt werden, welche Anforderungen an einen integrierten Photonendetektor bestehen und wie ein solches System in den Aufbau eingebunden werden kann. Mit dem GEM, der sich schon in diversen anderen Gasdetektoranwendungen als universell einsetzbarer Verstärker bewährt hatte, war ein potenzielles Mikrostuktur-Elektroden-System für unsere Anwendung gefunden. Um die Einsatztauglichkeit dieser Mikrostrukturen für die neuen Applikationen zu analysieren, wurden sie im Standard-Design, unter vielen verschiedenen Betriebsparametern getestet. Dabei wurden wertvolle Erfahrungen im Umgang mit den Mikrostrukturen gesammelt. Die GEMs wurden in den typischen Detektorgasen, bei verschieden Drücken, elektrischen Spannungen und Feld-stärken studiert. Dabei wurden die Chancen, aber auch - vor allem aufgrund elektrischer Überschläge und Instabilitäten - die Grenzen des damit Erreichbaren, aufgezeigt. Mit der Herstellung der speziell für diese Anwendung entwickelten GEMs wurde die Grundlage für den stabilen Betrieb des Detektors geschaffen. Simulationsrechnungen In Kooperation mit einer italienischen Gruppe vom INFN in Cagliari haben wir, mit dem Detektor-Simulations-Programm Garfield, Berechnungen durchgeführt (Kapitel 4). Damit konnte schon vor der technischen Realisierung ein Überblick über die Betriebsbedingungen eines mehrstufigen und komplexen Systems gewonnen werden. Dazu zählen die messtechnisch erfassbaren Größen, wie z.B. die mittlere Gasverstärkung und Diffusion. Daneben konnten aber auch die Prozesse im Kleinen studiert werden. Von besonderem Interesse für die Funktion des Detektors ist dabei der Verlauf der Feldstärke in den Poren der Mikrostrukturen und den umliegenden Regionen. Dessen räumlicher Verlauf in Kombination mit den jeweiligen Gasdaten bestimmen die Elektronentransportparameter, die Gasverstärkung, die Diffusion und die Effizienz. In den Xenon-Szintillator integrierter UV-Photonen-Detektor Der UV-Photonendetektor konnte in zwei Varianten erfolgreich in ein Volumen mit dem Xenon-Gas-Szintillator integriert werden. Die Verbindung der CsI-Photokathode mit dem Elektronenverstärker wurde dabei zum einen als semitransparente dünne Schicht auf einer Quarzglasplatte vor der GEM-Folie und zum anderen als opake Variante auf der Frontseite des GEM realisiert. Bei der Auslese des Xenon-Szintillationslichts mit einer in reinem Xenon und bei hohem Druck betriebenen CsI-Photokathode, wurde Neuland betreten. Es wurde erfolgreich gezeigt, dass der integrierte Photonendetektor auf GEM Basis für die hier diskutierten Einsatzbereiche und Anforderungen funktioniert. Die Ankopplung der Photokathode an die Verstärkerstruktur und dabei vor allem der Elektronentransport von der CsI-Schicht in die Verstärkungszone, wurden im Detail untersucht. Dass die Gasverstärkung in reinem Xenon bei den beschriebe-nen Betriebsparameter überhaupt funktioniert, liegt zum einen daran, dass die optische Rückkopplung mit diesem neuen Design effektiv unterdrückt werden kann. Zum anderen konnten die Einflussparameter auf die Gasverstärkung, für den mehrstufigen GEM-Verstärkungsprozess in reinem Xenon, im Detail untersucht werden. Die gekoppelten Gas-Verstärker-Elemente wurden mit einer eigens für diese Anwendung entwickelten Versorgungsspannungsquelle betrieben, die die Folgen von elektrischen Überschlägen minimiert (Kapitel 5.1.3). Gegenüber den herkömmlichen Gasdetektoren ist es mit diesem neuartigen Aufbau möglich, den UV-Photonen-Detektor bei diesen Betriebsparametern stabil zu betreiben. Abbildende Optiken - optische und mechanische Eigenschaften Parallel zur Entwicklung dieses großflächigen Detektors zur Messung des Energiesignals und der Registrierung des primären Lichts, wurde das Konzept zur Ortsauslese via abbildender Optik weiterverfolgt. Die optischen Abbildungseigenschaften der Linsen wurde im Wellenlängenbereich des Xenon-Szintillationslichtes untersucht. In ersten Tests konnte bei kleinen Gasdrücken und somit geringen mechanischen Beanspruchungen die Ebene der Sekundär-lichterzeugung auf einen gekapselten Mikro-Kanal-Platten-Detektor abgebildet werden. Die Festigkeit der Quarzglaslinse für die Druckbeanspruchungen im hier diskutierten Detektor konnte in Zusammenarbeit mit der Fachhochschule Heilbronn - mittels Finite-Elemente-Berechnung - als ausreichend verifiziert werden. Ausblick Die beiden getrennten Systeme für Orts- und Energiemessung funktionieren unabhängig voneinander. Die Vorraussetzungen für die Kombination der Komponenten in einem gemeinsamen Aufbau sind damit geschaffen. Damit ist der Weg für die folgenden Schritte in diesem Projekt aufgezeigt. Als logische Fortsetzung dieser Arbeiten ist geplant, den integrierten Photonendetektor mit der Photokathode auf der GEM-Frontseite, zusammen mit der Ortsauslese gemeinsam aufzubauen. Von dieser Kombination profitiert das Auflösungsvermögen beider Messungen. Die Korrektur der ortsabhängigen Schwankungen in der Effizienz der Photokathode verbessert die Energieauflösung signifikant. Auf der anderen Seite kann durch das geschickte Setzen von geeigneten Bedingungen auf das Energiesignal die Ortsmessung optimiert werden. Als weiterer naheliegender Schritt auf dem Weg zum effizienten Nachweis der hochenergetischen Photonen, bietet sich der Einbau einer zusätzlichen Verstärkungsstufe zum Aufbau eines dreifach-GEM-Detektors an. Damit kann bei höheren Gasdrücken, trotz kleiner werdender maximaler Verstärkung pro GEM, eine ausreichende Gesamtverstärkung erreicht werden. Der Einsatz des Detektors in einem größeren Experiment, in Kombination mit anderen Messapparaturen, rückt somit in greifbare Nähe.
Die vorliegende Arbeit bietet zunächst einen weiteren Beweis für die Existenz des neutralen Heliumdimers. Darüber hinaus konnten zwei verschiedene Prozesse identifiziert werden, über die die Absorbtion eines Photons zur Ionisation beider Atome des Dimers über sehr große Abstände führen kann. Oberhalb einer Photonenenergie von 65,4 eV konnte ein ICD Prozess beobachtet werden, der über Photoionisation mit gleichzeitiger Anregung von einem der beiden Atome realisiert wird. Bei 77,86 eV konnte ICD über elektronisch angeregte Zustände bis n=6 nachgewiesen werden. In der KER-Verteilung konnten zudem Strukturen gefunden werden, die auf Vibrationsanregungen im Zwischenzustand des Dimer-Ions schließen lassen. Eine vollständig quantenmechanische Rechnung von Sisourat et al. konnte dies schließlich hervorragend bestätigen. Es konnte also ein direkter Blick auf die Vibrationswellenfunktionen des Systems erlangt werden. In anderen Systemen ist dies in der Regel nicht möglich, da sich alle Zustände üblicherweise zu einer strukturlosen Verteilung überlagern. Weiterhin konnte gezeigt werden, dass sich die Winkelverteilungen von ICD- und Photoelektronen in verschiedenen Bereichen des KER mitunter stark voneinander unterscheiden. Dies konnte auf die unterschiedliche Besetzung von verschiedenen Potentialkurven zurückgeführt werden. Unterhalb der Photonenenergieschwelle zur Anregung und Ionisation eines Heliumatoms konnte ein weiterer, zweistufiger Ionisationsmechanismus gefunden werden. Hier wird zunächst durch Photoionisation ein Elektron aus einem der beiden Atome im Dimer freigesetzt. Dieses Photoelektron kann nun am neutralen Atom gestreut werden und dabei ausreichend viel Energie übertragen, um dieses ebenfalls zu ionisieren. Es konnte gezeigt werden, dass der Prozess einer Abhängigkeit von der Polarisation der Synchrotronstrahlung unterliegt, die man für Photoionisation erwarten würde. Die Energie- und Winkelverteilungen der Elektronen konnten daher mit vorangegangenen Elektronenstoß-Experimenten verglichen werden. Die gute Übereinstimmung mit diesen Daten rechtfertigt eine anschauliche Sichtweise des Prozesses als Analogon zum klassischen Billiard-Stoß. Der Two-Step-Prozess wurde bisher zwar schon in vielen Systemen als theoretisches Modell zur Doppelionisation beschrieben, allerdings konnten die einzelnen Unterprozesse bisher nicht gesondert gemessen werden. Die großen Abstände im Heliumdimer ermöglichen erstmals eine deutliche Trennung in Photoionisation an einem Atom und Elektronenstoß (e,2e) am Nachbaratom. Der Two-Step-Prozess konnte außerdem dazu verwendet werden, die ungewöhnliche Grundzustandswellenfunktion des Heliumdimers zu experimentell zu bestätigen. Eine Analyse des gemessenen KER konnte dabei deutliche Abweichungen zu einer klassischen Theorie aufzeigen. Erst eine vollständig quantenmechanische Rechnung des Übergangs von Sisourat et al. konnte die Messdaten beschreiben.
Die Börsenindustrie hat in den vergangenen zwei Jahrzehnten einen signifikanten Wandel durchlaufen - und das nicht nur in Deutschland. Börsen haben schon längst nicht mehr den Charakter vergangener Tage, in denen ihre Mitglieder auf dem Parkett um Aktienpakete und -kurse von inländischen Unternehmen feilschten und an den genossenschaftlich organisierten Handelsplätzen eher eine vertrauliche Clubatmosphäre herrschte. Eine Vielzahl der Börsen hat den Parketthandel abgeschafft, ist selbst an einer Börse gelistet und orientiert sich primär am Shareholder Value und somit an den Interessen einer internationalen Aktionärsbasis. Mittlerweile existieren Börsenplätze, die mehrere Länder umspannen. Der französisch dominierten Euronext kommt hier eine Vorreiterrolle zu. Aber auch andere Börsen, wie die Deutsche Börse und die Schweizer Börse, haben länderübergreifend ihre Derivatehandelsplattformen vereinigt und mit ihrem Jointventure Eurex die umsatzstärkste Derivatebörse der Welt geschaffen. In jüngster Zeit werden nun auch transatlantische Allianzen zwischen amerikanischen und europäischen Börsen angedacht. Sowohl die Strategie der Nasdaq, die bisher eine Sperrminorität von über 25% an der Londoner Börse hält, als auch die der New York Stock Exchange, die eine Fusion mit der Euronext anstrebt, belegen dies. Zudem stehen Börsen mittlerweile in direktem Wettbewerb mit ihren Kunden und ehemaligen Eigentümern, den Finanzintermediären wie Banken und Wertpapierhäuser. Sie konkurrieren um Wertpapieraufträge von Investoren, da Banken nicht mehr jede Order automatisch an sie weiterleiten. Stattdessen versuchen manche Finanzintermediäre, die erhaltenen Investorenaufträge im eigenen Haus mit einer entsprechenden reziproken Order zusammenzuführen, um somit die Geld-Brief Spanne des Wertpapiers als Gewinn einzubehalten. Diese Internalisierung von Auftragsausführungen ist seit einigen Jahren insbesondere in England und Deutschland eine bedeutende Einkommensquelle für Wertpapierhäuser geworden. Gleichzeitig stoßen Börsen immer stärker in Geschäftsbereiche vor, die bislang die Domäne ihrer Kunden repräsentierten. Hier sei der Handel von bestimmten Kreditderivateprodukten genannt, die bisher außerbörslich zwischen großen Wertpapierhäusern gehandelt wurden. Sowohl die Chicago Mercantile Exchange als auch die Eurex planen den Handel dieser Titel auf ihren eigenen Plattformen. Ein weiteres Beispiel ist die vertikale Integration von Wertpapierabwicklungs- und Wertpapierverwahrungsgeschäften. Große internationale Banken wie BNP Paribas, Citigroup und State Street kämpfen hier gegen Börsen um Marktanteile. Wie kam es zu dem hier beschriebenen Wandel? Der entscheidende Katalysator ist der gestiegene Wettbewerbsdruck auf traditionelle Börsen, welcher in vielen Fällen zu einer Umstrukturierung ihrer Organisationsform und Eigentümerstruktur führte. Diese neu ausgerichteten Börsen verstanden sich nun als reguläre, gewinnorientierte Firmen, die nicht mehr in erster Linie ihren Kunden, sondern ihren neuen Eigentümern, den Aktionären, verpflichtet waren. ...
In der vorliegenden Diplomarbeit wird die Auger-Ionisation des Kohlenstoffmonooxidmoleküls CO in linear und zirkular polarisierter Röntgenstrahlung untersucht. Die Strahlung liegt im Bereich des Vakuumultraviolett (VUV) bei 305eV und wird durch ein Elektronensynchrotron, die Advanced Light Source des Lawrence Berkeley National Laboratory, erzeugt. Die Energie eines Photons führt zur Photoionisation eines Elektrons aus dem 1s-Orbital des Kohlenstoffs. Das im darauf folgenden Augerzerfall ausgesandte Elektron und die jeweils einfach positiv geladenen Fragmente aus der Coulombexplosion des CO++-Molekülions werden hinsichtlich ihrer Impulse vermessen. Zur Impulsmessung wurde die in unserer Arbeitsgruppe laufend weiter entwickelte Methode COLTRIMS (COld Target Recoil Ion Momentum Spectroscopy) eingesetzt. Der experimentelle Aufbau gestattet prinzipiell die Messung aller bei der Ionisation freigesetzten geladenen Teilchen. Um die hochenergetischen Auger-Elektronen mit hinreichender Auflösung zu erfassen, wurde erstmals bei einer solchen Apparatur ein Abbremsfeld eingebaut. Dadurch werden allerdings die niederenergetischen Photoelektronen unterdrückt. Die Meßmethode erlaubt eine Rekonstruktion der Impulse der Fragmente zum Zeitpunkt der Ionisation und läßt Rückschlüsse auf die Dynamik der Ionisation zu. Die Winkelverteilung der Augerelektronen wird in Abhängigkeit von der Polarisation beobachtet. Die Verteilungen sowohl des Polar- als auch des Azimutwinkels zur rekonstruierten Molekülachse zeigen keine ausgeprägte Abhängigkeit von der Polarisation. Dies rehabilitiert das von Guillemin et al. in Frage gestellte Zweistufenmodell des Augerzerfalls. Durch Selektion der kinetischen Energie der Augerelektronen und der bei der Coulombexplosion freigesetzten kinetischen Energie (KER) gelingt es, kurzlebige Molekülionen nach Drehimpulszuständen zu trennen und deutlich anisotrope Emissionsmuster zu beobachten. Die Muster lassen sich qualitativ erklären. Langlebigere Molekülionen zeigen ein scharfe Vibrationlinien im KER-Spektrum. Das Vibrationsspektrum wird analysiert und in Bezug zu vorangehenden Messungen gesetzt. Durch die koinzidente Meßmethode ist es möglich, bislang nicht beobachtbare Vibrationslinien zu identifizieren.
A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail.
In der hier vorliegenden Arbeit wurden Fragen der atomaren Korrelation sowie Verschränkung untersucht und ein Beobachtungsfenster geöffnet, durch welches es möglich ist, Einblick in die Grundzustandswellenfunktion von Helium zu erhalten. Der Elektronentransfer (Pq++He->P(q-1)++He+) in schnellen Ion-Atom-Stößen findet im Bereich des Überlapps der Wellenfunktionen des gebundenen Anfangs- und Endzustandes statt [JOpp28a, MMcD70]. Daher kann diese Reaktion besonders selektiv an der Grundzustandswellenfunktion angreifen. Die bei der Transferionisation (Pq++He->P(q-1)++He2++e-) zusätzlich stattfindende Ionisation involviert auch das zweite Elektron. Dadurch ist es möglich die komplexe Vielteilchendynamik zu untersuchen und wie später in dieser Arbeit gezeigt wird, unter bestimmten Bedingungen auch sensitiv auf die Anfangszustandskorrelation zu sein! Die Messungen wurden mit H+-, He+- und He2+-Projektilen bei Einschussenergien von 40 - 630 keV/u (1,25 < vP < 5,02 a. u.) durchgeführt. Durch den Elektronentransferprozess wird auch die Vermessung des Endzustandes, den Impulsen, aller drei Teilchen (Projektil, Elektron und He2+-Rückstoßion) erleichtert. Durch das umgeladene, dann neutrale, Projektil werden zusätzlich die Post-Collision-Effekte minimiert. Zur experimentellen Untersuchung kommt die seit Jahren etablierte Technologie des Reaktionsmikroskops (COLTRIMS, COLd Target Recoil Ion Momentum Spectroscopy) zum Einsatz [HSch89, RDoe00a, JUll03], die sich durch eine 4¼-Impulsakzeptanz für alle emittierten Teilchen auszeichnet. Nach Kreuzung der Projektilionen mit einem kalten und wohl lokalisierten Gasstrahl werden die umgeladenen Projektile detektiert. Die im Überlappbereich entstehenden Elektronen und Ionen werden mittels elektrischer und magnetischer Felder ebenfalls auf orts- und zeitauflösenden Detektoren projiziert. Anhand des Auftreffortes und der Flugzeit können die dreidimensionalen Impulsvektoren eindeutig rekonstruiert werden. Je nach Energie Projektile dominieren unterschiedliche atomare Reaktionsmechanismen. Entsprechend sind es zwei Fragenkomplexe, denen sich diese Arbeit hauptsächlich widmet: - Was ist die Reaktionsdynamik? Welche Mechanismen tragen zur Reaktion bei und wie hängen diese von Projektilladung und -energie ab? - Lässt sich die Grundzustandswellenfkt. mit dieser Technik abbilden? Die erzielten Ergebnisse sehen wie folgt aus: - Im Bereich langsamer Stöße (vP <= vB;e) wird der Stoßprozess in einem quasimolekularen Bild beschrieben (Sattelpunktionisation). Hier konnten im Wesentlichen die experimentellen Ergebnisse von Schmidt zum symmetrischen Stoßsystems He2+/He [LSch00] bestätigt und zu höheren Projektilgeschwindigkeiten fortgeschrieben werden (60 keV/u). Für die Stoßsysteme He+/He und H+/He wurden sehr ähnliche Emissionsstrukturen im Impulsraum gefunden. - Bei allen untersuchten Projektilenergien und Stoßsystemen wurde eine vom Elektroneneinfang unabhängige Stoßionisation durch Wechselwirkung mit dem Projektil (Binary Encounter, BE) gefunden. Die Erwartung, dass der Targetkern nur Beobachter der Ionisation ist, wurden eindeutig widerlegt und die Abweichungen als Folge von Korrelationseffekten gedeutet. - Speziell für das Stoßsystem He+/He bei 60 keV/u wurden sehr viele im Geschwindigkeitsraum um vP verteilte Elektronen beobachtet und einem Dreistufenprozess zugeschrieben: Zuerst erfolgt die Ionisation des Projektils und anschließend ein resonanter Zweielektroneneinfang. - Wird ein Elektron sehr schnell entfernt, wie durch den Elektroneneinfang bei hohen Projektilgeschwindigkeiten (vP ¸ 3 a. u.) findet die Ionisation sehr häufig durch Shake-off [TAbe67] statt. Die Elektronen wurden entgegen der Strahlrichtung emittiert, zu negativen Longitudinalimpulsen. Darüberhinaus wurde kein Unterschied zwischen den verschiedenen Projektilen beobachtet. Da für den Shake-off-Prozess unter den hier realisierten Bedingungen das Projektil nicht mit dem emittierten Elektron wechselwirkte, spiegelt die Elektronenimpulsverteilung direkt den, durch den Elektroneneinfang präparierten Anteil, der Grundzustandswellenfunktion wider [AGod04, MSch05]. Theoretische Rechnungen bestätigen, dass die rückwärtige Elektronenemission nur durch die stark korrelierten nicht-s2-Anteile im Heliumgrundzustand zu erklären ist. Diese Beimischungen höherer Drehimpulse von weniger als 2 % konnten entgegen der verbreiteten Lehrmeinung zum ersten Mal experimentell nachgewiesen und vermessen werden.
Im Rahmen dieser Arbeit ist es gelungen, eine weltweit einmalige Messapparatur zu entwickeln, mit der Wasserstoffmolekülionen mittels kurzer Laserpulse ionisiert und die Reaktionsprodukte kinematisch vollständig vermessen werden können. Es wird dazu eine an die Coltrims-Technik angelehnte Detektionsmethode genutzt, bei der sowohl Protonen als auch Elektronen über den vollen Raumwinkel nachgewiesen werden können. Die H2+ -Ionen stammen aus einer Hochfrequenz-Ionenquelle und werden auf 400keV beschleunigt. Die Besetzungshäufigkeit der Vibrationsniveaus entspricht daher der Franck-Condon-Verteilung für den Übergang aus dem Grundzustand des neutralen Wasserstoffmoleküls in den elektronischen Grundzustand des Molekülions: H2 (xPg, ν = 0) → H2+ (1sσg, ν′) Dieser Ionenstrahl wird mit einem 780 nm Laserpuls der Pulslänge 40 fs überlappt. Nach der Reaktion fragmentiert das Molekülion entweder über den Dissoziationskanal H2+ + nhν ⇒ H + H+ oder über eine Ionisation gefolgt von einer Coulomb-Explosion: H2+ + nhν ⇒ H+ + H+ + e−. Die Projektile werden nach einer Driftstrecke von etwa 3 m auf einem Ionendetektor nachgewiesen. Für den Nachweis der Elektronen wurde ein spezielles Spektrometer konzipiert, das eine Unterdrückung ungewollter Elektronen erlaubt und so die Messung der Elektronen ermöglicht. Um Elektronen auszublenden, die vom Laser aus dem Restgas ionisiert werden, ist der Elektronendetektor in Flugrichtung der Ionen versetzt angebracht. Durch die unkonventionelle Ausrichtung des Lasers in einem Winkel von 20◦ relativ zur Flugrichtung der Ionen können vom Laser erzeugte Elektronen nur dann den Elektronendetektor erreichen, wenn sie aus dem bewegten Bezugsystem der Projektile stammen. Diese Unterdrückung macht die Messung der Elektronen erst möglich, hat aber auch eine nachteilige Geometrie der Verteilungen gegenüber den Detektorebenen zur Folge. Durch die Ausnutzung der Projektilgeschwindigkeit ist überdies die Benutzung eines B-Feldes zur Verbesserung der Flugzeitauflösung der Elektronen nicht möglich. Um eine Überlappung des Ionenstrahls mit dem Laserfokus zu erreichen, wurde im Bereich der Reaktionszone ein System zur Visualisierung der Strahlpositionen integriert. Dieses kann überdies für eine Intensitätseichung bei linear polarisiertem Licht verwendet werden. Bei der Reaktion kommt es durch die vergleichsweise lange Pulsdauer schon bei relativ niedrigen Intensitäten zu Dissoziationsprozessen. Das dissoziierende Molekül erreicht noch während der ansteigenden Flanke des Laserpulses auf diese Weise Abstände, bei denen der Prozess der Charge-Resonance-Enhanced-Ionization (CREI) stattfinden kann. Auch die in einem sehr engen Winkelbereich um die Polarisationsrichtung des Lasers liegende Winkelverteilung der gemessenen Protonen deutet darauf hin, dass CREI der dominante Ionisationsprozess ist. Durch die vorausgehende Dissoziation nimmt das Molekül schon vor der Ionisation eine kinetische Energie auf, so dass die gemessene KER-Verteilung einer Summe aus KERDissoziation und KERIonisation darstellt. Ein Vergleich mit den KER-Spektren des Dissoziationsprozesses zeigt, dass die aufgenommene Energie durch Dissoziation zu einem überwiegenden Anteil in einem Bereich von 0, 6 ± 0, 35 eV besitzt, während die Gesamt-KER-Verteilung deutlich höhere Werte bis zu 6 eV aufweist. Dies ermöglicht, aus der gemessenen KER-Verteilung den internuklearen Abstand zum Ionisationszeitpunkt näherungsweise zu bestimmen. Die gemessenen Elektronen weisen, ebenso wie die Protonen, eine scharfe Ausrichtung entlang der Laserpolarisation auf, was durch den Einfluss des Lasers auf dieser Achse nicht verwunderlich ist. Bei zirkularer Polarisation dagegen findet eine Netto-Beschleunigung der Elektronen senkrecht zur Richtung des elektrischen Feldes zum Ionisationszeitpunkt statt, sodass die Messung der Elektronenimpulse eine geeignete Messgröße zur Untersuchung des Ionisationsprozesses darstellt. Auf diese Art konnten Winkelverteilungen der Elektronen bezüglich der internuklearen Achse innerhalb der Polarisationsebene gemessen werden. Abhängig von KER und Elektronenergie konnte dabei eine Verdrehung der Verteilung gegenüber den klassisch erwarteten 90◦ relativ zur internuklearen Achse festgestellt werden. Die Winkelverteilung rotiert dabei mit steigendem KER entgegen des Drehsinns. Dies widerspricht der gängigen Vorstellung einer Tunnelionisation, bei der nur die Beschleunigung des Elektrons im Laserfeld eine Rolle spielt und der Einfluss des Coulomb-Potentials vernachlässigt wird. Für höhere Elektronenergien zeigt sich eine zweite konkurrierende Struktur, die für die höchsten Energien die sonst vorherrschende erste Struktur sogar dominiert. Da sich in den Protonenspektren für linear polarisiertes Licht kein Einfluss einer Ionisationsenkrecht zur Polarisationsrichtung findet, erscheint dies als Grund für die zweite Struktur in den Elektron-Winkelverteilungen als unwahrscheinlich. Eine stichhaltige und gestützte Erklärung gibt es bisher weder für die Rotation der ersten Struktur noch für die Herkunft der zweiten. Dies zeigt deutlich, dass es auch für dieses einfachste Molekülsystem noch einen erheblich Handlungsbedarf sowohl auf theoretischer als auch von experimenteller Seite gibt. Da dieses Experiment den ersten experimentellen Zugang für die direkte Untersuchung der Elektronimpulse bei der Ionisation von H2+ -Ionen in kurzen Laserpulsen darstellt, bietet sich hier die bisher einzige Möglichkeit, dieses Verhalten experimentell zu untersuchen.
In der vorliegenden Arbeit wurde der Einfluß der Variation des Oxidationspotentials und der Elektronenkonfiguration ( * gegen n *) auf die zur Löschung von angeregten Triplettzuständen durch O2 führenden Prozesse untersucht. Bei ausreichender Triplettenergie werden neben dem Grundzustand des ursprünglich angeregten Sensibilisators in Konkurrenz O2(1 g ) und O2(1 g) Singulettsauerstoff sowie O2(3 g -) Grundzustandssauerstoff gebildet. Frühere Untersuchungen in diesem Arbeitskreis hatten gezeigt, daß es für * Triplettzustände zwei Desaktivierungskanäle gibt, die beide zu O2(1 g ), O2(1 g) und O2(3 g -) führen. Der eine geht von den bei der Löschung zunächst gebildeten 1,3(T1 3 ) Encounter Komplexen ohne Charge Transfer Stabilisierung aus (nCT). Diese befinden sich in einem vollständig eingestellten spinstatistischen Gleichgewicht, aus dem durch innere Konversion in niedrigere Komplexzustände die Desaktivierung erfolgt. Ein gemeinsames Energielückengesetzt f( E) und damit letztlich die Triplettenergie des Sensibilisators bestimmt die Größe der Geschwindigkeitskonstanten der zu O2(1 g ), O2(1 g) und O2(3 g -) führenden Prozesse in diesem nCT Kanal. Für Sensibilisatoren mit hohem Oxidationspotential und vernachlässigbaren Charge Transfer Wechselwirkungen ist dies der einzige Desaktivierungsprozeß. Mit zunehmender Charge Transfer Wechselwirkung, also mit abnehmendem Oxidationspotential und/oder zunehmender Triplettenergie, wird ein zweiter Desaktivierungskanal geöffnet, der über 1,3(T1 3 ) Komplexe mit Charge Transfer Stabilisierung (pCT) also über Exciplexe führt. Die Exciplexbildung ist der geschwindigkeitsbestimmende Schritt im pCT Kanal. Zur Verbreitung der Datenbasis den T1( *) Sensibilisatoren wurde in dieser Arbeit eine Reihe von mit elektronenziehenden bzw. elektronenschiebenden Gruppen substituierten Fluorenen studiert, bei denen im wesentlichen nur das Oxidationspotential variiert, während die Triplettenergien weitgehend konstant bleiben. Die mit den Fluorenen erhaltener Ergebnisse bestätigen das bisher erarbeitet Zweikanal-Desaktivierungsmodell. Insbesondere wird auch das spinstatistische Gewicht von 1:3 für die Bildung von Singulett zu Triplettsauerstoff im Exciplex Kanal gefunden, das nur mit einem relativ langsamen 1(T1 3 ) 3(T1 3 ) isc Gleichgewicht konsistent ist. Dieses Ergebnis widerspricht der früheren Annahme, wonach ein effizientes isc Gleichgewicht nur zwischen 1,3(T1 3 ) Exciplexen, nicht aber zwischen 1,3(T1 3 ) Encounter Komplexen existieren soll. In der vorliegenden Arbeit wird ein Modell für die 1(T1 3 ) 3(T1 3 ) angeregten Komplexe vorgeschlagen, das in einfacher Weise erklärt, warum das isc zwischen Encounter Komplexen von Sensibilisator und O2 schneller ist, als das zwischen den entsprechenden Exciplexen. Die weitere Analyse der Fluoren Daten zeigt, daß neben dem Oxidationspotential und der Triplettenergie des Sensibilisators auch dessen Struktur die Geschwindigkeitskonstanten beeinflussen kann, allerdings weitaus schwächer als die beiden ersten Einflußgrößen. Mit den Messungen der Geschwindigkeitskonstanten kT 1 , kT 1 und für kT 3 der zu O2(1 g ), O2(1 g) und O2(3 g -) führenden Prozesse für die unterschiedlich substituierten Benzophenonderivate wurde erstmals eine quantitative Untersuchung der Löschung von n * angeregten Triplettzuständen durch O2 durchgeführt. Obwohl für die Benzophenone eine stärkere Variation des Oxidationspotentials bei nahezu konstanter Triplettenergie erreicht werden konnte, wurde im Vergleich zu den * Triplettsensibilisatoren eine wesentlich schwächere Variation von kT 1 , kT 1 und für kT 3 beobachtet. Gleichzeitig liegen die Werte von kT 1 , kT 1 und für kT 3 der Benzophenone mit vernachlässigbarer Charge Transfer Wechselwirkung weit von der für * Triplettsensibilisatoren gefundenen Energielückenbeziehung f( E). Offenbar gilt für n * Triplettsensibilisatoren eine andere Energielückenbeziehung f( E), die viel schwächer von E abhängt. Es konnte gezeigt werden, daß die schwächere Überschußenergieabhängigkeit mit der unterschiedlichen Struktur der 1,3(T1.3 ) Komplexe zusammenhängt. Für 1,3(T1(n *) 3 ) ist eine Vierzentren Struktur, bei der die beiden Sauerstoffatome des O2 Moleküls parallel und benachbart zu den beiden Atomen der angeregten Carbonyl Gruppe liegen, sehr wahrscheinlich. Bei der Desaktivierung der Carbonyleinheit ändern sich die Bindungslängen der Vierzentrenstruktur stark, was einem Übergang zwischen versetzten Potentialkurven mit schwacher Energieabhängigkeit der Franck-Condon Faktoren entspricht. Für 1,3(T1( *) 3 ) Komplexe ist eine supra-supra Struktur anzunehmen, bei der die beiden Sauerstoffatome des O2 Moleküls mit gegenüberliegenden Kohlenstoffatomen eines angeregten aromatischen Rings wechselwirken. Bei der Desaktivierung des aromatischen Rings ändern sich die Bindungslängen nur wenig, so daß man von einem Übergang zwischen übereinander liegenden Potentialkurven mit stärkerer Energieabhängigkeit der Franck-Condon Faktoren sprechen kann. Dies ist der eigentliche Grund für die verschiedenen Energielückenbeziehungen f( E) und f( E) bei der Löschung von * und n * Triplettsensibilsatoren durch O2. Die Variation des Oxidationspotentials und damit der Stärke der Charge Transfer Wechselwirkungen in den 1,3(T1 3 ) Komplexen wird durch unterschiedliche Substitution von aromatischen Ringen mit elektronenziehenden oder elektronenschiebenden Gruppen bewirkt. Da die aromatischen Ringe bei den n * Triplettsensibilisatoren im Gegensatz zu den * Triplettsensibilisatoren nicht Bestandteil des elektronisch angeregten Zentrum sind, fallen die Charge Transfer Effekte bei den n * Triplettsensibilisatoren deutlich schwächer aus als bei den * Triplettsensibilisatoren. Damit konnte in der vorliegende Arbeit erstmals eine konsistente Begründung für das unterschiedliche Verhalten von n * und * Triplettsensibilisatoren bei der Löschung durch O2 gegeben werden.