Refine
Document Type
- Doctoral Thesis (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Truffle (1)
- aroma (1)
- fungi (1)
- genotype (1)
- microbiome (1)
Institute
Deciphering the ecological functions of fungal root endophytes based on their natural occurrence
(2017)
Plants are colonized by a large diversity of fungi, some residing on the surface and others penetrating the plant tissues, the latter referred to as fungal endophytes (endon Gr., within; phyton, plant; de Bary 1879). Despite the saprotrophic potential of fungal endophytes, they are not found to cause visible disease symptoms to the host. Plants are colonized simultaneously by various fungal species, which form rich and diverse endophytic assemblages. Although it is hypothesized that fungal endophytes contribute to the fitness of their hosts and to the functioning of ecosystems, the ecological function of fungal endophytic assemblages remains cryptic. The aims of this doctoral thesis are to gain insight to the ecological functions of root fungal endophytes, by deciphering their roles in ecosystems based on their natural occurrence and the structure of their assemblages. The thesis focuses on studying the diversity and structure of the endophytic mycobiome within roots of two annual and widespread plant hosts Microthlapsi perfoliatum and M. erraticum (Brassicaceae) in several locations across northern Mediterranean and central Europe. The thesis is composed by six Chapters, with a primary focus on Chapter 1, 2 and 3.
Chapter 1 (Glynou et al., 2016) aimed at characterizing the diversity of fungal endophytes in roots at a continental scale and at assessing the factors affecting the structure of endophytic assemblages with the use of cultivation-based methods. For that, root samples were collected from 52 plant populations, along with a collection of soil, bioclimatic, geographic and host data. Cultivation of surface-sterilized root samples on culture media and isolation of fungal colonies in pure culture generated 1,998 fungal colonies. Grouping of sequences into Operational Taxonomic Units (OTUs), based on the 97% similarity of the isolates’ rDNA Internal Transcribed Spacer (ITS) sequence, generated in total 296 OTUs, representing taxa mostly within the phylum Ascomycota with a minor representation of Basidiomycota. Endophytic assemblages were mostly correlated with variation in bioclimatic conditions. Interestingly, despite the large diversity revealed, the assemblages were dominated by only six OTUs related to the orders Hypocreales, Pleosporales and Helotiales, which had a widespread distribution across populations but with some following patterns of ecological preferences.
Chapter 2 aimed at characterizing the uncultivable fraction of the root fungal endophytic diversity, which was not possible to capture in Chapter 1. High-throughput sequencing via the
Illumina Miseq platform was implemented in 43 of the 52 original populations and mostly in the same root samples. In comparison with the cultivation-based approach, the HTS managed to cover the overall diversity within samples. It revealed a large non-cultivated endophytic diversity but the same cultivable fungi dominated assemblages. Moreover, the endophytic diversity was grouped mostly within fungal orders with demonstrated ability to grow in culture and taxonomically related groups were found to have divergent ecological preferences.
The genetic identity of the most abundant OTUs was further investigated in Chapter 3 (Glynou et al., 2017), aiming to unravel genotypic variability, which was possibly overlooked due to the use of lTS, as a universal genetic marker, and could explain their high abundance and widespread distribution. Multi-locus gene sequencing and AFLP profiling for the five most abundant OTUs suggested a low within-OTU genetic variability and show that these fungi have ubiquitous distribution and are not limited by environmental conditions within the ecological ranges of the study. A selection of endophytes frequently isolated in Chapter 1 was functionally characterized in Chapter 4 (Kia et al., 2017) based on the isolates’ traits and interactions with plants. In Chapter 5 (Cheikh-Ali et al., 2015) fungal cultures of Exophiala sp. with differential colony structure where investigated for their production of secondary metabolites. Moreover, Chapter 6 (Maciá-Vicente et al., 2016) comprises the description of the new species Exophiala radicis based on morphological and molecular characteristics.
Compilation of all results shows that the fungal endophytic diversity in roots of Microthlaspi spp. is high but few widespread OTUs dominate the assemblages, and have unlimited dispersal ability. These fungi seem also to have a wide niche breadth and are not affected by environmental filtering. The findings indicate that the local environment but also processes of competitive exclusion determine the structure of endophytic assemblages. In addition, the fungal endophytes associated with Microthlapsi spp. likely have saprotrophic activity however the interactions with plants are likely context-dependent. Further research is needed to assess the biotic interactions among endophytes and their effect on the structure of fungal endophytic assemblages. Ultimately, the findings of this thesis are useful to shed light on the processes underlying the structure of endophytic assemblages. They also upraise the need to describe diversity by combining genetic, metabolic and physiological data, in order to disentangle the elusive ecological roles of the endophytic mycobiome.
The fungal interaction with plants is a 400 million years old phenomenon, which presumably assisted in the plants’ establishment on land. In a natural ecosystem, all plant-ranging from large trees to sea-grasses-are colonized by fungal endophytes, which can be detected inter- and intracellularly within the tissues of apparently healthy plants, without causing obvious negative effects on their host. These ubiquitous and diverse microorganisms are likely playing important roles in plant fitness and development. However, the knowledge on the ecological functions of fungal root endophytes is scarce. Among possible functions of endophytes, they are implicated in mutualisms with plants, which may increase plant resistance to biotic stressors like herbivores and pathogens, and/or to abiotic factors like soil salinity and drought. Also, endophytes are fascinating microorganisms in regard to their high potential to produce a great spectrum of secondary metabolites with expected ecological functions. However, evidences suggest that the interactions between host plants and endophytes are not static and endophytes express different symbiotic lifestyles ranging from mutualism to parasitism, which makes difficult to predict the ecological roles of these cryptic microorganisms. To reveal the ecological function of fungal root endophytes, this doctoral thesis aims at assessing fungal root endophytes interactions with different plants and their effects on plant fitness, based on their phylogeny, traits, and competition potential in settings encompassing different abiotic contexts. To understand the cryptic implication of nonmycorrhizal endophytes in ecosystem processes, we isolated a diverse spectrum of fungal endophytes from roots of several plant species growing in different natural contexts and tested their effects on different model plants under axenic laboratory conditions. Additionally,we aimed at investigating the effect of abiotic and biotic variables on the outcome of interactions between fungal root endophytes and plants.
In summary, the morphological and physiological traits of 128 fungal endophyte strains within ten fungal orders were studied and artificial experimental systems were used to reproduce their interactions with three plant species under laboratory conditions. Under defined axenic conditions, most endophytes behaved as weak parasites, but their performance varied across plant species and fungal taxa. The variation in the interactions was partly explained by convergent fungal traits that separate groups of endophytes with potentially different niche preferences. According to my findings, I predict that the functional complementarity of strains is essential in structuring natural root endophytic communities. Additionally, the responses of plant-endophyte interactions to different abiotic factors, namely nutrient availability, light intensity, and substrate’s pH, indicate that the outcome of plant-fungus relationships may be robust to changes in the abiotic environment. The assessment of the responses of plant endophyte interactions to biotic context, as combinations of selected dominant root fungal endophytes with different degrees of trait similarity and shared evolutionary history, indicates that frequently coexisting root-colonizing fungi may avoid competition in inter-specific interactions by occupying specific niches, and that their interactions likely define the structure of root-associated fungal communities and influence the microbiome impacts on plant fitness.
In conclusion, my findings suggest that dominant fungal lineages display different ecological preferences and complementary sets of functional traits, with different niche preferences within root tissues to avoid competition. Also, their diverse effects on plant fitness is likely host-isolate dependent and robust to changes in the abiotic environment when these encompass the tolerance range of either symbiont.
Investigating the influence of truffle´s microbiome and genotype on the aroma of truffle fungi
(2019)
Truffles (Tuber spp.) are belowground forming fungi that develop in association with roots of various host trees and shrubs. Their fruiting bodies are renowned for their enticing aromas which vary considerably, even within truffles of the same species. This aroma variability might be attributed to factors such as geographical origin, degree of fruiting body maturation, truffle genotype and microbiome (microbial communities that colonise truffle fruiting bodies) which often co-vary. Although the influence of specific factors is highlighted by several studies, discerning the contribution of each factor remains a challenge since it requires an appropriate experimental design. The primary purpose of this thesis was to gain insight into the influence of truffle’s genotype and microbiome on truffle aroma.
This doctoral thesis is comprised of four chapters. Chapter1 (Vahdatzadeh et al., 2018) aimed to exclusively elucidate the influence of truffle genotype on truffle aroma by investigating the aroma of nine mycelial strains of the white truffle Tuber borchii. We also assessed whether strain selection could be employed to improve the human- perceived truffle aroma. Quantitative differences in aroma profiles among strains could be observed upon feeding of amino acids. Considerable aroma variabilities among strains were attributed to important truffle volatiles, many of which might be derived from amino acid catabolism through the Ehrlich pathway. 13 C-labelling experiments confirmed the existence of the Ehrlich pathway in truffles for leucine, isoleucine, methionine, and phenylalanine. Sensory analyses further demonstrated that the human nose can differentiate among strains. Our results illustrated the influence of truffle genotype on truffle aroma and showed how strain selection could be used to improve the human-perceived truffle aroma.
In chapter 2 the existing knowledge on the composition of bacterial community of four truffle species was compiled using meta-analysis approach (Vahdatzadeh et al., 2015). We highlighted the endemic microbiome of truffle as well as similarities and differences in the composition of microbial community within species at various phases of their life cycle. Furthermore, the potential contribution of truffle microbiome in the formation of truffle odorants was studied. Our findings showed that truffle fruiting bodies harbour complex microbial community composed of bacteria, yeasts, filamentous fungi, and viruses with bacteria being the dominant group. Regardless of truffle species, the composition of endemic microbiome of fruiting bodies appeared very similar and was dominated by α-Proteobacteria class. However, striking differences were observed in the bacterial community composition at various stages of the life cycle of truffle.Our analyses further suggested that odorants common to many truffle species might be produced by both truffle fungi and microbes, whereas specific truffle odorants might be derived from microbes only. Nevertheless, disentangling the origin of truffle odorants is very challenging, since acquiring microbe-free fruiting bodies are currently not possible.
Chapter 3 (Splivallo et al., 2019) further characterises truffle-associated bacterial communities of fruiting bodies of the black truffle T. aestivum from two different orchards. It aimed at defining the native microbiome in this truffle species, evaluating the variability of their microbiome across orchards, and assessing factors that shape assemblages of the bacterial communities. The dominant bacterial communities in T. aestivum revealed to be similar in both orchards: although a large portion of fruiting bodies were dominated by the α-Proteobacteria class (Bradyrhizobium genus) similar to other so far-assessed truffle species, in few cases β-Proteobacteria (Polaromonas genus), or Sphingobacteria (Pedobacter genus) were found to be predominant classes. Moreover, factors shaping bacterial communities influenced the two orchards differently, with spatial location within the orchard being the main driver in Swiss orchard and collection season in the French one. Surprisingly, in contrast to other fungi, truffle genotype and the degree of fruiting body maturity seemed not to contribute in shaping the assembly of truffle microbiome. Altogether, our data highlighted the existence of heterogeneous bacterial communities in T. aestivum fruiting bodies which are dominated by either of the three bacterial classes and mainly by the α-Proteobacteria class, irrespective of geographical origin. They further illustrated that determinants driving the assembly of various bacterial communities within truffle fruiting bodies are site-specific. Truffles are highly perishable delicacies with a short shelf life (1-2 weeks), and their aroma changes profoundly upon storage. Since truffle aroma might be at least partially produced by the truffle microbiome, chapter 4 (Vahdatzadeh et al., 2019) focuses on assessing the influence of the truffle microbiome on aroma deterioration of T.aestivum during post harvest storage. Specifically, volatile profile and bacterial communities of fruiting bodies collected from four different regions (three in France and one in Switzerland) were studied over nine days of storage. Our findings demonstrated the gradual replacement of dominant bacterial classes in fresh truffles (α-Proteobacteria, β-Proteobacteria, and Sphingobacteria) by food spoilage bacteria (members of γ- Proteobacteria and Bacilli classes), regardless of the initial diversity of the bacterial classes. This shift in the bacterial community also correlated with changes in volatile profiles, and markers for truffle freshness and spoilage could be identified. Ultimately, network analysis illustrated possible links among those volatile markers and specific bacterial classes. Our data showed that storage deeply influenced the composition of bacterial community as well as aroma of truffle fruiting bodies. They also illustrated the correlation between the shift in truffle microbiome, from commensal to detrimental, and the change of aroma profile, possibly leading to the loss of fresh truffle aroma. Overall, the work undertaken in this thesis demonstrated that truffle genotype and microbiome had a stronger influence on truffle aroma than previously believed.