Refine
Year of publication
Document Type
- Doctoral Thesis (64)
Has Fulltext
- yes (64)
Is part of the Bibliography
- no (64)
Keywords
- ABC-Transporter (5)
- MHC Klasse I (2)
- ABC transporter (1)
- ABC-transporter (1)
- ABCE1 (1)
- ATP-Binding Cassette Transporter (ABC) (1)
- ATPase (1)
- Adenosintriphosphatasen (1)
- Antigenprozessierung (1)
- Apoptose (1)
Institute
- Biochemie und Chemie (41)
- Biochemie, Chemie und Pharmazie (17)
- Biowissenschaften (3)
- Georg-Speyer-Haus (2)
- Pharmazie (2)
- Physik (1)
Das Ziel von Gentherapie ist die Behandlung bzw. Heilung einer Erkrankung durch das Einbringen eines oder mehrerer Gene. Dazu werden Gentransfervektoren benötigt, die effizient therapeutische Gene in die zu behandelnden Zellen einbringen. Für eine systemische Applikation müssen Gentransfervektoren die Eigenschaft besitzen, ausschließlich die erkrankten Zellen zu transduzieren. Der Tropismus retroviraler Vektoren wird durch das Envelopeprotein (Env) festgelegt. Maus Leukämie Virus (MLV) basierende Kapsidpartikel können mit dem Envelopeprotein des humanen Immundefizienzvirus Typ-1 (HIV-1) pseudotypisiert werden. Diese MLV/HIV-1 Pseudotypvektoren besitzen einen Tropismus für humane CD4 positive T-Helferzellen. Diese Vektoren sind geeigneten Kandidaten für die gen-therapeutische Behandlung der HIV-lnfektion und von kutanen T-Zell Lymphomen, einer lymphproliferativen Erkrankung von CD4 Zellen. Im ersten Teil dieser Arbeit wurden MLV/HIV Pseudotypvektoren exprimierende Verpackungszelllinien mit Hüllproteinen verschiedener Subtypen etabliert und charakterisiert. Die verwendeten Subtypen waren das T-trophe HIV-1 Isolat BH10, das T-trophe HIV-2 Isolat ISY und das dualotrophe SHIV Isolat 89.6P. Dabei zeigte sich eine Abhängigkeit der Vektortiter vom Subtyp. Die höchsten Titer wurden mit der MLV/HIV-1 Pseudotypvektoren exprimierenden Verpackungszelllinie FLY-HIV-87 erhalten und lagen in Abhängigkeit vom retroviralen Vektor zwischen 1 x 10 hoch 5 und 1 x 10 hoch 6 IU/ml. Die Transduktionsspezifität entsprach dem Korezeptorgebrauch des HIV-Subtyps. Da für die geplanten in vivo Experimente höhere Titer notwendig waren, wurden verschiedene Methoden zur Anreicherung MLV/HIV-1 pseudotypisierter Vektoren zunächst getestet, sowie die Beste dieser Methoden für die Konzentrierung der Partikel optimiert. Im zweiten Teil dieser Arbeit wurde an zwei Mausmodellen die in vivo Applikation MLV/HIV-1 pseudotypisierter Vektoren untersucht. An transgenen hCD4 Mäusen wurde der Gentransfer nach systemischer Applikation von MLV/HIV-1 LacZ Pseudotypvektoren untersucht. In den transduzierten Mäusen konnte Gentransfer in Lymphknoten und Thymus beobachtet werden. Durch subkutane Implantation der humanen kutanen T-Zell Lymphomzellen MyLa in Nacktmäuse wurde ein Tiermodell Modell für humane kutane T-Zell Lymphome etabliert. Die intratumorale Applikation von MLV/HIV-1 Partikeln, deren Vektorgenom für das grüne Fluoreszenzprotein (EGFP) kodiert ergab, daß es zum effektiven und spezifischen Gentransfer in die CD4 positiven MyLa Zellen kam. In dem anschließend durchgeführte Therapieversuch mit Herpes Simplex Virus Thymidinkinase kodierenden Vektoren und darauf folgender systemischer Ganciclovir Behandlung konnte eine Verlangsamung des Tumorwachstums erzielt werden Die Ergebnisse der vorliegenden Arbeit haben gezeigt, daß MLV/HIV-1 Pseudotypvektoren für den spezifischen und effizienten Transfer von Genen in primäre humane CD4 T-Helferzellen geeignet sind und daß sowohl die systemische als auch die intratumorale Applikation dieser Vektoren möglich ist.
Zytotoxische T-Lymphozyten und natürliche Killer-Zellen sind hochspezialisierte Zellen des Immunsystems, die durch Sekretion der Serin-Protease Granzym B (GrB) und des membranolytischen Proteins Perforin Virusinfizierte, körperfremde oder auch Tumorzellen durch Induktion von apoptotischem Zelltod eliminieren. Während Perforin für die Aufnahme von Granzym B in Zielzellen verantwortlich ist, wirkt Granzym B im Zytosol als aktive Effektor-Caspase und spaltet Caspase-3 und andere zelluläre Caspasen sowie verschiedene zentrale Caspasen-Substrate. Granzym B aktiviert damit wie Caspase-3 Apoptose-Signalwege am unteren Effektorende und umgeht daher die meisten Kontrollmechanismen, die in Tumorzellen häufig dereguliert sind und zur Resistenz gegenüber klassischer Chemo- und Strahlentherapie führen. Beide Proteasen stellen damit vielversprechende Enzymaktivitäten für die Verwendung als Effektorfunktion in Tumorzell-spezifischen zytotoxischen Fusionsproteinen dar. In der vorliegenden Arbeit wurden rekombinante Formen von Granzym B und Caspase-3 hergestellt und daraufhin untersucht, ob beide Enzyme mit dem ErbB2-spezifischen "single chain" Antikörper scFv (FRP5) als Tumorzell-spezifischer Zellbindungsdomäne fusioniert werden können, ohne dadurch die Faltung der Proteasen zu verhindern, um eine gezielte Applikation in Tumorzellen und Eliminierung der Zellen durch Apoptose zu ermöglichen. Die Herstellung von Granzym B als rekombinantes Protein im präparativen Maßstab war bisher nicht in der Literatur beschrieben worden. In dieser Arbeit konnte humanes aktives Granzym B in der Hefe Pichia pastoris mit Ausbeuten von 1 bis 4 mg/l Kultur exprimiert werden. Zum Nachweis der enzymatischen Aktivität wurde ein in vitro Assays etabliert, bei dem rekombinante Procaspase-3 als Substrat für Granzym B eingesetzt wurde. Nach intrazellulärer Applikation mit einem synthetischen Transduktionsreagens induziert das gereinigte Protein Apoptose in HeLa Zellen. Wie für endogenes Granzym B in der Literatur beschrieben, wird rekombinantes Granzym B aus Pichia pastoris sehr schnell in HeLa Zellen aufgenommen, lokalisiert aber in vesikulären Strukturen, in denen die enzymatische Aktivität eingeschlossen ist. Aus verschiedenen Expressionskulturen wurden jedoch zwei unterschiedliche Proteine isoliert, die bei vergleichbarer molarer Masse und enzymatischer Aktivität in Zellen aufgenommen wurden bzw. nicht internalisierten, was darauf hinweist, daß eine posttranslationale Modifikation der Protease für die Bindung von Granzym B an Zielzellen verantwortlich ist. Während für die Freisetzung von Granzym B aus den Membranvesikeln und Induktion von Apoptose Perforin erforderlich ist, konnte in dieser Arbeit beobachtet werden, daß Kulturen verschiedener etablierter Tumorzellinien nach Behandlung mit Granzym B auch in Abwesenheit von Perforin-Aktivität auffallende morphologische Veränderungen zeigen, die mit dem partiellen Verlust des Kontakts zum Kultursubstrat verbunden sind. Dies deutet darauf hin, daß Granzym B auch extrazellulär auf Zellen einwirkt, indem es Komponenten der extrazellulären Matrix spaltet, und so indirekt Apoptose durch Anoikis induziert. Dieser Effekt ist jedoch für eine mögliche therapeutische Verwendung von Granzym B nicht von Bedeutung, da relativ hohe Proteinkonzentrationen erforderlich sind. Um Granzym B selektiv gegen Tumorzellen zu richten, wurden verschiedene Fusionen mit dem "single chain" Antikörper scFv(FRP5) sowie einer bakteriellen Translokationsdomäne von Exotoxin A oder Diphtherietoxin konstruiert und in E. coli oder Pichia pastoris exprimiert. Während verschiedene in E. coli hergestellte Fusionsproteine nicht enzymatisch aktiv waren, konnte im Überstand einer Pichia Expressionskultur volle-Länge GrB-scFv(FRP5) sowie Granzym B Aktivität nachgewiesen werden. Die Expressionsrate war allerdings so gering, daß eine präparative Isolierung nicht möglich war. Es konnte damit aber gezeigt werden, daß die Fusion heterologer Proteindomänen an den C-Terminus von Granzym B unter Erhalt der enzymatischen Aktivität prinzipiell möglich ist, während zusätzliche Peptidsequenzen am N-Terminus der Protease zumindest partiell zum Verlust der enzymatischen Aktivität führen. Aktive Caspase-3 besteht aus zwei Peptiden p12 und p17, die im aktiven Enzym ein Tetramer (p12 p17)2 bilden. Um Caspase-3 selektiv in Tumorzellen zu applizieren, wurden ebenfalls Möglichkeiten untersucht, eine der beiden Untereinheiten mit dem scFv(FRP5) als Tumorzell-spezifische Zellbindungsdomäne zu fusionieren. Während aus den beiden separat in E. coli exprimierten p12 und p17 Untereinheiten durch gemeinsame Rückfaltung enzymatisch aktive Caspase-3 rekonstituiert werden konnte, führte die Fusion heterologer Proteindomänen an den N- und C-Terminus der p12 Untereinheit sowie an den C-Terminus der p17 Untereinheit zum Verlust der enzymatischen Aktivität, wahrscheinlich aufgrund der Verhinderung der korrekten Faltung des Protease-Tetramers. Dagegen konnte an den N-Terminus der p17 Untereinheit eine bakterielle Translokationsdomäne unter Erhalt der enzymatischen Aktivität fusioniert werden; ein entsprechendes Konstrukt, das zusätzlich den "single chain" Antikörper scFv(FRP5) enthielt, wurde aber in E. coli vollständig degradiert. Nachdem die Idee, Granzym B oder aktive Caspase-3 zur selektiven Induktion von Apoptose in Tumorzellen für therapeutische Zwecke einzusetzen, bereits seit längerem diskutiert wird, es jedoch bisher praktisch nicht möglich war, entsprechende rekombinante Fusionsproteine in funktionaler Form herzustellen, liefern die Ergebnisse dieser Arbeit wichtige grundlegende Informationen, wie die weitere Entwicklung solcher Moleküle erfolgreich durchgeführt werden könnte.
MHC Klasse I Moleküle liegen im Endoplasmatischen Reticulum (ER) als Dimer bestehend aus einer schweren Kette mit Transmembrandomäne und einem 12 kDa-Protein, dem ß2-Mikroglobulin vor. Nach der Beladung des MHC-Klasse I-Moleküls mit einem antigenen Peptid, welche vorwiegend im Cytosol durch proteasomalen Abbau generiert und durch den Transportkomplex TAP ins ER transloziert werden, findet der Transport des MHC-Peptid-Komplexes zur Zelloberfläche statt. Dort wird das Antigen cytotoxischen T-Zellen präsentiert. An der Assemblierung und Reifung von MHC-Klasse I-Molekülen sind verschiedene Chaperone beteiligt. Eine wichtige Rolle beim Peptidbeladungsprozess von MHC-Klasse I-Molekülen spielt Tapasin. Dabei handelt es sich um ein 48 kDa, MHC-codiertes Typ I Transmembran-Glycoprotein aus der Immunglobulinsuperfamilie. Es verbrückt den TAP-Komplex mit MHC-Klasse I-Molekülen, hält unbeladene MHC-Klasse I-Moleküle im ER zurück und führt eine Qualitätskontrolle des gebundenen Peptids durch. Bei dieser Peptideditierung werden Peptide wieder selektiv aus der MHC-Bindungstasche entfernt, wenn sie mit einer niedrigen Affinität gebunden sind. Dadurch wird sichergestellt, dass keine leeren oder suboptimal beladenen MHC-Peptid-Komplexe an die Zelloberfläche gelangen. In der vorliegenden Arbeit wurde ein System etabliert, mit dem der Einfluss von Tapasin auf die Peptidbeladung von MHC-Klasse I-Molekülen in vitro untersucht werden kann. Dazu wurde ein Verfahren zur heterologen Expression und Reinigung von funktionalem, löslichem Tapasin aus E. coli-Zellen aufgestellt. Weiterhin wurden ß2m und die schwere Kette von HLA-B*2705 heterolog in E. coli-Zellen exprimiert, isoliert und zusammen mit einem Reporterpeptid zum funktionalen HLA-B*2705 renaturiert. Bei Untersuchungen der Wechselwirkung zwischen Tapasin und HLA-B*2705-Molekülen konnte mittels der Oberflächen-Plasmonen-Resonanz-Spektroskopie eine direkte Interaktion zwischen Tapasin und unbeladenem HLA-B*2705 gezeigt werden. Detailliertere Untersuchungen zur Rolle von Tapasin bei der Peptidbeladung wurden mittels einer Gelfiltration gekoppelt mit der Fluoreszenzdetektion des Reporterpeptids durchgeführt. Dabei konnte festgestellt werden, dass unbeladene MHC-Klasse I-Moleküle in Anwesenheit von Tapasin stabilisiert werden und in einer Konformation gehalten werden, die eine Assoziation mit Peptid fördert. Weiterhin wurde gezeigt, dass durch Tapasin die Assoziationsrate für die Peptidbindung erhöht ist. Somit kann in Anwesenheit von Tapasin eine größere Anzahl an Peptiden auf eine stabile und hochaffine Bindung an MHC-Klasse I-Moleküle überprüft werden. In Experimenten mit bereits beladenen MHC-Klasse I-Molekülen konnte gezeigt werden, dass der neugebildetete Komplex auch nach erfolgter Peptidassoziation durch Tapasin stabilisiert wird. Dies ist vermutlich auf eine Erniedrigung der Dissoziationsrate für das Peptid zurückzuführen. Mit dem in dieser Arbeit etablierten Untersuchungssystem ist die Grundlage zu detaillierten Studien der Rolle von Tapasin bei der Peptidbeladung von MHC-Klasse I-Molekülen geschaffen.
Die gezielte Modifikation von Proteinen für die Erforschung des Proteoms stellt eine entscheidende Herausforderung dar. Sie wird meistens dann zwingend notwendig, wenn das intrinsische Signal zum Auslesen ungeeignet ist. So ist es z.B. für die größte Anzahl von fluoreszenzbasierenden Methoden unerlässlich, das zu untersuchende Protein spezifisch und einheitlich mit einem Fluorophor zu markieren. Eine weitere Schwierigkeit ist die gerichtete Immobilisierung von Proteinen für deren Charakterisierung an Oberflächen. Im Rahmen dieser Arbeit wurde die spezifische Markierung, Manipulation und strukturierte Immobilisierung von rekombinanten Proteinen analysiert. Dafür wurde mit dem hauptsächlich aus der Proteinreinigung bekannten NTA/Oligohistidin-System gearbeitet. Verwendet wurden multivalte NTA-Chelatorköpfen mit zwei (bisNTA), drei (trisNTA) oder vier (tetrakisNTA) NTA-Gruppen pro Molekül. Durch die Multivalenz können hervoragende Bindungsaffinitäten im nanomolaren Bereich erzielt werden, die die stabile, stöchiometrische, nicht kovalente und damit reversible Modifikation His-getaggter Proteine in Lösung und an Grenzflächen erlaubt. Fluoreszente trisNTAs wurden vielfach erfolgreich für die Markierung His-getaggter Proteine eingesetzt. Dabei wurde die Beobachtung gemacht, dass die Ni2+-Ionen im trisNTA die Emission des benachbarten Fluorophors stark quenchen und dadurch die Einsatzmöglichkeiten der Verbindung reduzieren. Durch die räumliche Trennung der beiden Gruppen mit starren, biokompatiblen Polyprolin-Helices konnte erstmals systematisch demonstriert werden, dass das Ausmaß der Fluoreszenzlöschung abstandsabhängig ist. Bei der Verwendung von 12 Prolinen (3.6 nm lange Helix) wurde mit einem ATTO565-Derivat eine Intensitätserhöhung um etwa 70%, und bei einem OregonGreen488-Derivat um etwa 40% erreicht. Bei den Verbindungen können der Abstand der beiden Gruppen voneinander und der Fluorophor nahezu frei gewählt werden, so dass eine Optimierung in Hinblick auf die jeweilige Fragestellung ohne Probleme möglich ist. In Kooperationen untersucht wurden z.B. die ATP-Hydrolyse von MDL1 und die ATP-Bindung von TAP. Die deutlich verbesserte Quantenausbeute, die stabile Bindung an einen His-Tag und die geringe Größe machen die Verbindungen zu idealen Reportersonden für die Einzelmolekül-Fluoreszenz-Analyse. Die gezielte Manipulation eines makromolekularen Proteinkomplexes mit einem kleinen Molekül wurde in einem weiteren Projekt untersucht. Das tetrakisNTA wurde verwendet, um die His-getaggten Eingänge des alphaN-His6 Proteasoms von Thermoplasma acidophilum gezielt zu blockieren. Durch den Abbau von Fluoreszein-markiertem Casein konnte die Aktivität der Proteasomkomplexe in Echtzeit verfolgt werden. Unter Zugabe von tetrakisNTA fand kein Abbau statt, während dieser ohne oder nach Entfernen der tetrakisNTAs von den Eingängen im gleichen Maße detektierbar war. Die Aktivität der Peptidase-Schnittstellen im blockierten Zustand konnte durch die Überschichtung eines nativen Gels mit einem Peptidsubstrat demonstriert werden. Die Ergebnisse belegen, dass die His-Tags an den Eingängen des Proteasomkomplexes so umstrukturiert werden, dass der Eintritt von Proteinen reversibel blockiert wird. Neben der gezielten Manipulation des Proteasoms wurde außerdem erstmals die spezifische Fluoreszenzmarkierung His-getaggter Proteine in kompletten E. coli Zelllysaten mittels nativer PAGE nachgewiesen. Um neue Anwendungsgebiete für das trisNTA zu erschließen, sollte dieses mit einem 1.4 nm großen Goldcluster modifiziert werden. Damit könnte die Position von His-Tags in Proteinkomplexen mittels Elektronenmikroskopie visualisiert werden. Mittels Gelfiltration mit MBP-H6 wurde nachgewiesen, dass die entwickelten Goldcluster teilweise mehr als eine trisNTA-Gruppe auf der Oberfläche hatten, wobei eine Trennung der Partikel nach der Anzahl der NTA-Gruppen nicht möglich war. Die Partikel wurden erfolgreich für die spezifische Markierung des alphaN-His6 Proteasoms verwendet. In der Einzelpartikelanalyse deutlich erkennbar waren der markierte Proteasomkomplex und die Lage des trisNTA-Goldclusters. Die Verwendung solcher Goldpartikel in der EM bringt entscheidende Vorteile im Hinblick auf die Strukturaufklärung von Proteinen mit sich. Orthogonale NTA/His-Tag Bindungspaare, bei denen ein bestimmtes, multivalentes NTA-Molekül einen definierten His-Tag bindet, würden einen großen Nutzen für die spezifische Markierung oder Immobilisierung verschiedener His-getaggter Proteine bringen. Durch die Verwendung teilweise rigider His-Tags und möglichst starrer bisNTAs sollten solche Bindungspaare realisiert werden. Die Synthese rigider bisNTAs mit unterschiedlichen Abständen zwischen den NTA-Gruppen konnte erfolgreich etabliert werden. Allerdings zeigten Fluoreszenztitrationen mit verschieden Fluoreszeinmarkierten His-Peptiden nicht die erhofften Unterschiede in den Affinitäten. Im letzten Teil der Arbeit wurden durch intramolekulare His-Tags inaktive trisNTAs synthetisiert. Diese können durch Licht gespalten und damit aktiviert werden (photoaktivierbare trisNTAs, PAtrisNTAs). Die Verbindungen mit unterschiedlicher Anzahl an Histidinen im intramolekularen Tag wurden systematisch in Lösung und an Oberflächen charakterisiert. Dazu wurden HPLC-Studien, Gelfiltrationen und SPR-Experimente durchgeführt. Die strukturierte Organisation von Proteinen auf solchen lichtaktivierbaren Oberflächen wurde mittels Fluoreszenzmikroskopie demonstriert. Außerdem konnten durch die Laserlithographie gezielt verschiedene His-getaggte Proteine in situ in definierten Bereichen immobilisiert werden. Die Biokompatibilität der Oberflächen wurde erfolgreich durch die strukturierte Organisation aktiver, Virusbindender Rezeptor-Partikel gezeigt. Im Prinzip sollte das Konzept die lichtinduzierte Aufkonzentrierung von His-getaggten Rezeptoren in lebenden Zellen ermöglichen. Durch das Clustern ausgelöste Vorgänge könnten so gezielt herbeigeführt und analysiert werden.
The power to dissociate : molecular function of the twin-ATPase ABCE1 in archaeal ribosome recycling
(2010)
Der Transport von antigenen Peptiden in das Lumen des endoplasmatischen Retikulums ist ein zentraler Vorgang bei der Antigenprozessierung und ihrer MHC-Klasse-I-vermittelten Präsentation auf der Zelloberfläche. Intrazelluläre Translokation über die ER-Membran erfolgt mit Hilfe von TAP, eines ATP-abhängigen ABC-Transporters. Einer ATP-unabhängigen Substratbindung folgt der eigentliche Transportschritt, dessen Energetisierung einer ATP-Spaltung bedarf. In der vorliegenden Dissertation wurde die ATPase-Aktivität des TAP-Komplexes aufgeklärt und detailliert charakterisiert. Es wurde eine schnelle und schonende Isolierungs- und Rekonstitutionsmethode entwickelt, die es erlaubt, den partiell aufgereinigten TAP-Komplex in Liposomen einzubauen und Funktionsstudien in vitro durchzuführen. Zum ersten Mal war es damit möglich, die Peptid-stimulierte TAP-spezifische ATP-Hydrolyse direkt zu beobachten und deren kinetische Parameter zu bestimmen. Eine direkte Korrelation zwischen Bindungsaffinität des Peptides zu TAP (Bindungskonstante KD) und der halbmaximalen Stimulation der ATPase-Aktivität von TAP (Km,pep) wurde festgestellt. Die Versuche mit den verzweigten Peptiden zeigten, dass Peptide, die nicht transportiert werden können, keine Stimulation der ATPase-Aktivität hervorrufen. Somit wurde die allosterische Interaktion zwischen Peptidbindung, ATP-Hydrolyse und Peptidtransport nachgewiesen. Nach der Entfernung des peptidexportierenden Sec61-Komplexes aus den Proteoliposomen konnte die vorläufige Stöchiometrie des Transportschrittes bestimmt werden. Eine weitere Anwendung fand die Rekonstitutionsmethode bei der Aufklärung des molekularen Wirkungsmechanismus des TAP-Inhibitors US6, indem der TAP-Komplex zusammen mit der aktiven ER-luminalen Domäne von US6 in die Proteoliposomen rekonstituiert wurde. Die Bindung von US6(delta147-183) an die ER-luminalen Bereiche von TAP blockiert die ATP-Bindung an die zytoplasmatischen NBD des Transporters. Die Peptid-induzierte ATP-Hydrolyse wird durch die Inhibition der ATP-Bindung unterbunden, wohingegen die Peptid- und ADP-Bindung von TAP nicht beeinflusst sind.
Na+/H+ antiporters are ubiquitous membrane proteins involved in ion homeostasis and pH sensing. The amino acid sequence of one such antiporter, MjNhaP1, from Methanococcus jannaschii, shows a significant homology to eukaryotic sodium proton exchangers like NHE1 from Homo sapiens and SOS1 of Arabidopsis thaliana than to the well-characterized Escherichia coli NhaA or NhaB. MjNhaP1 shows activity at acidic pH unlike NhaA, which is active at basic pH. 13 transmembrane helices have been predicted to be present in NhaP1. A projection map, calculated by Cryo-EM of 2D crystals of MjNhaP1 grown at pH 4, showed it to be a dimer containing elongated densities in the centre of the dimer and a cluster of density peaks on either side of the dimer core (Vinothkumar et al., 2005). Incubation of 2D crystals at pH 8 on the EM grid resulted in well-defined conformational changes, clearly evident in a difference map as a major change in density distribution within the helix bundle (Vinothkumar et al., 2005). The aim of this dissertation is to understand the working mechanism of MjNhaP1 by determining its three-dimensional structure. The aim was initially approached by structure determination by X-ray crystallography. The limitation for this method was the low expression yield, which was 0.5–0.7mg/ml (Vinothkumar et al., 2005). After various optimization trials, the expression yield of the recombinant protein could be elevated to 2-2.5mg of pure protein per litre of culture by the method of autoinduction (Studier et al., 2005). To obtain well diffracting 3D crystals, purification conditions (Vinothkumar et al., 2005) were modified. 3D crystals were obtained under various conditions, which has so far not diffracted X-Ray beyond 8Å. Parallely, optimization of parameters (Vinothkumar et al., 2005) for 2D crystals formation was carried out. A combination of 1% DDM used for lipid solubilization, and 1% OG in the buffer of the purified protein produced 1-2 μm wide tubular 2D crystals of NhaP1. This batch of crystal proved to be the optimal for data collection at higher tilt angle with the electron microscope. A 3D map showed p22121 symmetry and revealed a tight dimer with an oval shape. The region in the central part of the dimer is composed of several tilted helices forming an interface between both monomers. On either side of the dimer interface, a group of six tightly packed helices form a bundle. This bundle contains three straight helices in the centre of the monomer and three helices in the periphery. Comparison of the structures of E.coli NhaA and M. jannaschii NhaP1 show substantial differences in length and slope of corresponding helices between both antiporters. A 3D model of NhaP1 based on the 3D map revealed 13 helices, which has been named as A-M to distinguish it from the NhaA helices. Overlaying the X-ray structure onto the 3D map revealed that the disrupted helices IV and XI of NhaA superimpose two central helices at similar position in the 3D map of NhaP1. The disrupted helices IV and XI in the X-ray structure of NhaA have been proposed as the putative ion-binding and translocation site (Hunte C et al, 2005; Arkin IT et al, 2007; Screpanti & Hunte (2007). This motif appears to be present also in NhaP1, as suggested by the close fit of NhaA helices IV and XI on the putative helices E and L of the NhaP1 model. These two putative helices E and L in NhaP1 contain the highly conserved TDP and GPRVVP motif, which are crucial for antiporter activity (Hellmer et al., 2002, Hellmer et al., 2003). In the overlay, helix V of NhaA containing the two essential, conserved aspartates D163 and D164 fits the density of the putative helix F of NhaP1, which contains the conserved motif FNDP. The homologous D161 in the FNDP motif of NhaP1 is essential for transport activity as show by mutagenesis (Hellmer at al., 2003). Significant differences are visible in the region of the dimer interface of the 3D map of NhaP1 occupied by helices VI, VII, and VIII in NhaA. This region shows an extra helical density (A) in the 3D map of NhaP1. By alignment of MjNhaP1 sequence with the amino acid sequences of several Na+/H+ exchangers, it was evident that the additional helix (A) is located in the N terminus of NhaP1. In our sequence alignment, a putative hydrophobic segment corresponding to this additional helix A is present in other archaeal and eukaryotic antiporters but not in any of the bacterial ones. The N-terminus of the human Na+/H+ exchanger NHE1 has been predicted to contain a highly hydrophobic signal peptide. This indicates the probability of the N-terminal helix A of NhaP1 to be an uncleaved signal peptide. Besides being a signal sequence targeting NhaP1 to the membrane, the map suggests that this helix might be involved in the formation of dimer contacts between both monomers. A gene duplication event is evident in the 3D map of NhaP1, as not only the helices D, E, F and K, L, M are related by an inverted repeat but also the helices B, C and I, J are related. We present here the three-dimensional architecture of a Na+/H+ antiporter from archaea. The presence of the 13th helix suggests the location of the N-terminus to be located in the cytosol and the C-terminus in the periplasm. This would orient NhaP1 in an inverted manner in the membrane in comparison to NhaA. Further structural information at higher resolution and biochemical and biophysical investigations are required to confirm the topology.
Presentation of intracellular processed antigens by major histocompatibility (MHC) class I molecules to CD8+ cytotoxic T lymphocytes is mediated by the macromolecular peptide loading complex (PLC). In particular accessory proteins, including the transporter associated with antigen processing (TAP) and tapasin, play a pivotal role in the MHC class I mediated antigen presentation pathway. TAP belongs to the ATP-binding cassette (ABC) superfamily and consists of TAP1 (ABCB2) and TAP2 (ABCB3), each of which possesses a transmembrane and a nucleotide-binding domain (NBD). The ER-resident glycoprotein tapasin promotes the optimal folding and assembly of MHC-peptide complexes, and independently stabilizes the steady state expression level of TAP. In the present thesis recombinant Fv, scFv and Fab antibody fragments to human TAP from a hybridoma cell line expressing the TAP1-specific monoclonal antibody mAb148.3, were generated. The epitope of the mAb148.3 was mapped to the very last five C-terminal amino acid residues of TAP1 on solid-supported peptide arrays. The recombinant antibody fragments were heterologously expressed in E. coli and insect cells, and purified to homogeneity by affinity chromatography. The monoclonal and recombinant antibodies display nanomolar affinity to the last five C-terminal amino acid residues of TAP1 as demonstrated by enzyme linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR). Surprisingly, the recombinant antibody fragments confer thermal stability to the heterodimeric TAP complex in insect cells when incubated at elevated temperature. At the same time, TAP is arrested in a peptide transport incompetent conformation, although ATP and peptide binding to TAP are not affected. Furthermore, the recombinant antibodies were successfully used in the purification of the PLC from a human B-lymphoblastoid cell line and a novel factor, protein disulfide isomerase (PDI), was identified by matrix assisted laser desorption/ionisation-mass spectrometry (MALDI-MS). In the second part of this thesis the tapasin-MHC class I interaction was investigated. It is for this reason, that an in vitro assay had been established for direct measuring tapasin-MHC class I interactions. First, soluble single chain MHC class I molecules were engineered, choosing two MHC class I alleles: HLA-B4402 representing a highly tapasin-dependent allele and with HLA-B4405, a tapasin-independent allele was chosen. Tapasin as well as the two single chain MHC class I constructs, scB4402-b2m and scB4405-b2m, were expressed in insect cells and purified from insect cell supernatants by affinity chromatography. In contrast to the HLA-B4405 allele, which was expressed and secreted at moderate yield, the HLA-B4402 allele was expressed and trapped inside the insect cells instead of secreted into the medium. Peptide-binding and anisotropy measurements with fluorescein-labeled peptides verified the functionality of the scB4405-b2m. For further investigation of the tapasin-MHC class I interaction an in vitro assay was established using surface plasmon resonance spectroscopy. Due to the transient nature of the interaction including the decreased affinity of both interaction partners, kinetic data acquisition was difficult to evaluate. Furthermore, interaction of the scB4405-b2m with the sensor surface itself contributed to the measured interaction. Additionally, to investigate tapasin editing function, tapasin as well as the scB4405-b2m-peptide complex were tethered on fluid chelator lipid bilayers and monitored by reflectance interference (RIf) and total internal reflection fluorescence spectroscopy (TIRFS). Stable immobilization of scB4405-b2m-peptide complex as well as of tapasin was observed, unfortunately no changes in peptide dissociation kinetics monitored in the TIRFS channel were detected. Presumably, the tapasin-independent HLA-B4405 already loaded with a high affinity peptide is not influenced by the peptide-editing function of tapasin. Here, for the first time an in vitro assay was established for direct probing interactions within the various proteins of the PLC.
T-cell development is a highly dynamic and stepwise process comprimising T lineage commitment, T-cell receptor (TCR) gene rearrangements and subsequent selection. From a quantitative point of view, only a few hundred progenitor cells migrate from the bone marrow into the thymus. Developing thymocytes (termed double negative (DN), CD4-CD8-) can be further divided into DN1-4 cells based on the expression of CD25 and CD44. These developmental events are interspersed by proliferative bursts which ultimately lead to the generation of millions of double positive (DP, CD4+CD8+) thymocytes that then undergo selection. As a consequence, a proportion of naïve T-cells evolves to ensure adaptive, but not autoreactive immunity.
Previous studies of our lab focused on the quantification of thymus colonization and identified thymus entry to be dependent on expression of the chemokine receptors CCR7 and CCR9 (Krueger et al., 2010; Ziętara et al., 2015). CCR7/9 double knockout (DKO) mice are almost completely devoid of the most immature thymocyte populations (DN1 and DN2), but show near normal DN3 cellularity. Interestingly, a similar defect during early development but a virtually complete recovery of later stages and total thymocyte numbers was also observed in thymi of miR-17~92 deficient mice. Here, a failure of prethymic IL-7 signaling dampens early T-cell development (Regelin et al., 2015). For this reason, we hypothesized a tight regulation of thymocyte population size through alterations in the underlying cell cycle kinetics.
In this thesis, we employed in vivo single- and dual-nucleoside pulse labeling combined with determination of DNA replication over time in different WT thymocyte subsets at steady-state. Based on this, we assessed alterations in cell cycle kinetics of CCR7/9 and miR-17~92 defcicient mice and identified compensatory mechanisms of thymocytes on the level of cell cycle phase distribution and cell cycle speed. In addition, single-cell RNA sequencing helped to obtain information on cell cycle dynamics of early thymocyte subsets, exemplarily shown for WT and CCR7/9 DKO mice. Lastly, we performed cell cycle analyses in a model of endogenous thymic repair upon sublethal total body irradiation which provided insight into intrathymic cell cycle regulation as an adjustable system to re-establish normal thymus cellularity.
In the second part of the thesis, we addressed the role of miR-21 in the thymus. In various studies, we and others identified miRNAs as key posttranscriptional regulators of the immune system and especially for T-cell development (Regelin et al. 2015; Mildner et al. 2017; Li et al. 2007; Ebert et al. 2009; Ziętara et al. 2013; Schaffert et al. 2015). The dynamic expression of miR-21 during T-cell development (Neilson et al. 2007; Kirigin et al. 2012; Kuchen et al. 2010) prompted us to hypothesize that miR-21 has a regulatory function in the thymus. A miR 21-knockout mouse model allowed us to study the role of this miRNA for the development of T-cells in the thymus and the maintenance of T-cells in the periphery. In addition, we performed competitive bone marrow chimera experiments in the context of miR-21 deficiency and overexpression. Further insights were provided by exploring the function of miR-21 in negative selection in vivo as well as in T-cell differentiation in coculture experiments in vitro. To unravel implications of miR-21 to regulate cellular stress responses, we assessed the contribution of miR-21 in a model of endogenous regeneration of the thymus after sublethal irradiation. We could not provide evidence for a prominent role for miR-21 during T-cell development. Together, our experiments revealed that miR-21 is largely dispensable for physiologic T-cell development despite high and dynamic expression in the thymus (Kunze Schumacher et al., 2018). The apparent discrepancy between dynamic expression but lack of a regulatory function in the thymus led us to conclude that miR-21 is rather fine tuning T-cell responses than controlling a developmental event.
By adopting a variety of shapes, proteins can perform a wide number of functions in the cell, from being structural elements or enabling communication with the environment to performing complex enzymatic reactions needed to sustain metabolism. The number of proteins in the cell is limited by the number of genes encoding them. However, several mechanisms exist to increase the overall number of protein functions. One of them are post-translational modifications, i.e. covalent attachment of various molecules onto proteins. Ubiquitin was the first protein to be found to modify other proteins, and, faithful to its evocative name, it is involved in nearly all the activities of a cell. Ubiquitylation of proteins was believed for a long time only to be responsible for proteasomal degradation of modified proteins. However, with the discovery of various types of ubiquitylation, such as mono-, multiple- or poly-ubiquitylation, new functions of this post-translational modification emerged. Mono-ubiquitylation has been implicated in endocytosis, chromatin remodelling and DNA repair, while poly-ubiquitylation influences the half-life of proteins or modulates signal transduction pathways. DNA damage repair and tolerance are example of pathways extensively regulated by ubiquitylation. PCNA, a protein involved in nearly all types of DNA transaction, can undergo both mono- and poly-ubiquitylation. These modifications are believed to change the spectrum of proteins that interact with PCNA. Monoubiquitylation of PCNA is induced by stalling of replication forks when replicative polymerases (pols) encounter an obstacle, such as DNA damage or tight DNA-protein complexes. It is believed that monoubiquitylation of PCNA stimulates the exchange between replicative pols to one of polymerases that can synthesize DNA across various lesions, a mechanism of damage tolerance known as translesion synthesis (TLS). Our work has helped to understand why monoubiqutylation of PCNA favours this polymerase switch. We have identified two novel domains with the ability to bind Ub non-covalently. These domains are present in all the members of Y polymerases performing TLS, and were named Ub-binding zinc finger (UBZ) (in polη and polκ) and Ub-binding motif (UBM) (in polι and Rev1). We have shown that these domains enable Y polymerases to preferentially gain access to PCNA upon stalling of replication, when the action of translesion polymerases is required. While the region of direct interaction between Y pols and PCNA had been known (BRCT domain in Rev1 and PIP box motif (PIP) in three others members), we propose that Ub-binding domains (UBDs) in translesion Y pols enhance the PIP- or BRCT-domain-mediated interaction between these polymerases and PCNA by binding to the Ub moiety attached onto PCNA. Following these initial studies, we have also discovered that Y polymerases themselves undergo monoubiquitylation and that their UBDs mediate this modification. This auto-ubiquitylation is believed to lead to an intramolecular interaction between UBD and Ub attached in cis onto the UBD-containing protein. We have mapped monoubiquitylation sites in polη in the C-terminal portion of the protein containing the nuclear localization signal (NLS) and the PIP box. Beside PIP, the NLS motif is also involved in direct interaction of polη with PCNA. Based on these findings, we propose that monoubiquitylation of either NLS or PIP masks them from potential interaction with PCNA. Lastly, using several functional assays, we have demonstrated the importance of all these three motifs in the C-terminus of polη (UBZ, NLS and PIP) for efficient TLS. We have also constructed a mimic of monoubiquitylated polη by genetically fusing polη with Ub. Interestingly, this chimera is deficient in TLS as compared to the wild-type protein. Altogether, these studies demonstrate that the C-terminus of polη constitutes a regulatory module involved in multiple-site interaction with monoubiquitylated PCNA, and that monoubiquitylation of this region inhibits the interaction between polη and PCNA. Our work has also revealed that the UBDs of Y pols as well as of other proteins implicated in DNA damage repair and tolerance, such as the Werner helicase-interacting protein 1 (Wrnip1), are required for their proper sub-nuclear localization. All these proteins localize to discrete focal structures inside the nucleus and mutation of their UBDs results in inability to accumulate in these foci. Interestingly, by exchanging UBDs between different proteins we have learned that each UBD seems to have a distinct functional role, surprisingly not limited to Ubbinding ability. In fact, swapping the UBZ of Wrnip1 with the UBM of polι abolished the localization of Wrnip1 to foci despite preserving the Ub-binding ability of the chimeric protein. In summary, this work provides an overview of how post-translation modification of proteins by Ub can regulate several DNA transactions. Firstly, key regulators (e.g. PCNA) can be differentially modified by Ub. Secondly, specialized UBDs (e.g. UBM, UBZ) embedded only in a subset of proteins act as modules able to recognize these modifications. Thirdly, by means of mediating auto-ubiquitylation, UBDs can modulate the behaviour of host proteins by allowing for either in cis or in trans Ub-UBD interactions.