Refine
Year of publication
Document Type
- Doctoral Thesis (59)
Has Fulltext
- yes (59)
Is part of the Bibliography
- no (59)
Keywords
- ABC-Transporter (5)
- MHC Klasse I (2)
- ABC transporter (1)
- ABC-transporter (1)
- ABCE1 (1)
- ATP-Binding Cassette Transporter (ABC) (1)
- ATPase (1)
- Adenosintriphosphatasen (1)
- Antigenprozessierung (1)
- Apoptose (1)
Institute
- Biochemie und Chemie (40)
- Biochemie, Chemie und Pharmazie (15)
- Biowissenschaften (2)
- Pharmazie (2)
- Georg-Speyer-Haus (1)
Das Ziel von Gentherapie ist die Behandlung bzw. Heilung einer Erkrankung durch das Einbringen eines oder mehrerer Gene. Dazu werden Gentransfervektoren benötigt, die effizient therapeutische Gene in die zu behandelnden Zellen einbringen. Für eine systemische Applikation müssen Gentransfervektoren die Eigenschaft besitzen, ausschließlich die erkrankten Zellen zu transduzieren. Der Tropismus retroviraler Vektoren wird durch das Envelopeprotein (Env) festgelegt. Maus Leukämie Virus (MLV) basierende Kapsidpartikel können mit dem Envelopeprotein des humanen Immundefizienzvirus Typ-1 (HIV-1) pseudotypisiert werden. Diese MLV/HIV-1 Pseudotypvektoren besitzen einen Tropismus für humane CD4 positive T-Helferzellen. Diese Vektoren sind geeigneten Kandidaten für die gen-therapeutische Behandlung der HIV-lnfektion und von kutanen T-Zell Lymphomen, einer lymphproliferativen Erkrankung von CD4 Zellen. Im ersten Teil dieser Arbeit wurden MLV/HIV Pseudotypvektoren exprimierende Verpackungszelllinien mit Hüllproteinen verschiedener Subtypen etabliert und charakterisiert. Die verwendeten Subtypen waren das T-trophe HIV-1 Isolat BH10, das T-trophe HIV-2 Isolat ISY und das dualotrophe SHIV Isolat 89.6P. Dabei zeigte sich eine Abhängigkeit der Vektortiter vom Subtyp. Die höchsten Titer wurden mit der MLV/HIV-1 Pseudotypvektoren exprimierenden Verpackungszelllinie FLY-HIV-87 erhalten und lagen in Abhängigkeit vom retroviralen Vektor zwischen 1 x 10 hoch 5 und 1 x 10 hoch 6 IU/ml. Die Transduktionsspezifität entsprach dem Korezeptorgebrauch des HIV-Subtyps. Da für die geplanten in vivo Experimente höhere Titer notwendig waren, wurden verschiedene Methoden zur Anreicherung MLV/HIV-1 pseudotypisierter Vektoren zunächst getestet, sowie die Beste dieser Methoden für die Konzentrierung der Partikel optimiert. Im zweiten Teil dieser Arbeit wurde an zwei Mausmodellen die in vivo Applikation MLV/HIV-1 pseudotypisierter Vektoren untersucht. An transgenen hCD4 Mäusen wurde der Gentransfer nach systemischer Applikation von MLV/HIV-1 LacZ Pseudotypvektoren untersucht. In den transduzierten Mäusen konnte Gentransfer in Lymphknoten und Thymus beobachtet werden. Durch subkutane Implantation der humanen kutanen T-Zell Lymphomzellen MyLa in Nacktmäuse wurde ein Tiermodell Modell für humane kutane T-Zell Lymphome etabliert. Die intratumorale Applikation von MLV/HIV-1 Partikeln, deren Vektorgenom für das grüne Fluoreszenzprotein (EGFP) kodiert ergab, daß es zum effektiven und spezifischen Gentransfer in die CD4 positiven MyLa Zellen kam. In dem anschließend durchgeführte Therapieversuch mit Herpes Simplex Virus Thymidinkinase kodierenden Vektoren und darauf folgender systemischer Ganciclovir Behandlung konnte eine Verlangsamung des Tumorwachstums erzielt werden Die Ergebnisse der vorliegenden Arbeit haben gezeigt, daß MLV/HIV-1 Pseudotypvektoren für den spezifischen und effizienten Transfer von Genen in primäre humane CD4 T-Helferzellen geeignet sind und daß sowohl die systemische als auch die intratumorale Applikation dieser Vektoren möglich ist.
Nucleotide-binding domains (NBDs), roughly 27 kDa in size, are conservative components of the large family of ABC (ATP-binding cassette) transporters, which includes importers, exporters, and receptors. NBDs or ABC-ATPases supply energy for the translocation of a vast variety of substrates across biological membranes. Despite their hydrophilic sequence, many NBDs tend to aggregate and precipitate in solution upon isolation from the complete transporter. The conditions stabilizing an extremely labile NBD component of the E.coli HlyA transporter, HlyB-NBD, were developed. As a result, the pure highly concentrated enzyme was protected from precipitation for months that allowed screening of the unlimited crystallization conditions in the presence of different substrates and performance of the reproducible functional assays. HlyB-NBD was characterized in regard to its uncoupled ATPase activity, oligomeric state, and stability in solution. Comparative analysis of protein stability and ATPase activity in various buffers suggested an inverse relationship between the two. Kinetic analysis of ATPase activity revealed ATP-induced protein dimerization. Gel-filtration experiments with the wild type protein and H662A-mutant of HlyB-NBD provided further evidence of protein dimerization in the presence of ATP. The crystal structures in post- and pre-hydrolysis nucleotide-bound states of HlyB-NBD were determined at 1.6Å and 2.5Å resolution, respectively. While the hydrolytically deficient H662A mutant of HlyB-NBD was crystallized as a stable dimer in the presence of ATP or ATP-Mg2+, with two nucleotide molecules sandwiched between the two monomers, the same protein was shown to be a monomer in the ADP-loaded state. The wild type protein failed to develop crystals with bound ATP, yet formed ADP-bound crystals identical to those of the H662A-mutant. The X-ray structures of HlyB-NBD in various states of the hydrolytic cycle and the functional studies of the enzyme have provided an opportunity to characterize enzyme-substrate complexes and protein-protein interactions between the NBD subunits in great detail. Comparison of the nucleotide-free, the ADP-, and the ATP-loaded states revealed oligomeric and conformational changes of the protein upon substrate binding and resulted in a molecular picture of the catalytic cycle. The correlated results of the structural and functional investigations of HlyB-NBD are discussed with relation to the mechanism of action of ABC transporters.
Die Dissertation liefert einen Beitrag zur Identifizierung und Charakterisierung der an der Komplementresistenz von Borrelien beteiligten CRASP-Proteine aus Isolaten der Genospezies B. burgdorferi s.s. und B. afzelii. Im Rahmen der Arbeit gelang es mittels Identifizierung und immunologischer Charakterisierung die Zugehörigkeit der spezifisch Faktor H-bindenden BbCRASP-Proteine BbCRASP-3, BbCRASP-4 und BbCRASP-5 zur Erp-Proteinfamilie zu beweisen. Weiterhin konnten die Faktor H- und FHL-1-bindenden BbCRASP-Proteine BbCRASP-1 und BbCRASP-2 von B. burgdorferi s.s. identifiziert werden. Mit dem BbCRASP-2-Protein wurde ein bis dahin unbekanntes Faktor H- und FHL-1-bindendes CRASP-Protein aus den äußeren Membranen des B. burgdorferi s.s.-Isolates B31 isoliert und charakterisiert. BbCRASP-2 stellt innerhalb der CRASP-Proteinfamilie ein neues eigenständiges Lipoprotein dar und unterscheidet sich deutlich von den Sequenzen der anderen CRASP-Proteine. Es ist weder ein Mitglied der gbb54- oder der Erp-Proteinfamilie, noch gehört es zu einer anderen bekannten Proteinfamilie von B. burgdorferi s.s. In Ligandenaffinitätsblot-Analysen konnte mit Hilfe von rekombinantem FHL-1 sowie Deletionsmutanten von Faktor H und FHL-1 gezeigt werden, dass die Bindung von Faktor H und FHL-1 an das BbCRASP-2-Protein ausschließlich über die SCR 7-Domäne vermittelt wird. Die Analysen C terminaler Deletionsmutanten von BbCRASP-2 unterstrichen die Bedeutung der letzten 16 Aminosäuren des BbCRASP-2-Proteins für die Interaktion mit Faktor H und FHL-1.
Das “Protein Associated with Myc” spielt in den verschiedenen physiologischen Vorgängen eine Rolle. Dazu zählen Prozesse der Synaptogenese und Schmerzverarbeitung ebenso wie eine Regulation des Pteridin- und cAMP-Stoffwechsels. Auf welche Weise PAM die unterschiedlichen Effekte vermittelt, ist bislang nur in Ansätzen verstanden. Um die Wirkmechanismen von PAM aufzuklären, wurden in dieser Arbeit seine biochemischen Funktionen untersucht. Die These, dass PAM als E3 Ubiquitinligase aktiv ist, konnte in vitro mittels biochemischer Versuche zweifelsfrei bestätigt werden. Sowohl das nativ aufgereinigte, humane PAM, als auch der heterolog expremierte C-Terminale Bereich (C-PAM), der die katalytisch aktive RING Finger Domäne enthält, wiesen die Fähigkeit zur Ubiquitinkettenbildung und Autoubiquitinierung auf. Bei der Identifikation eines möglichen Zielproteins rückte das Protein TSC2 und der damit verbundene TSC2 / mTOR Signalweg in den Fokus. Für das gewählte Modell-System HeLa Zellen ließ sich eine Interaktion von PAM und TSC2 durch Ko-Immunopräzipitationen und Immunzytochemie nachweisen. Es konnte erstmalig gezeigt werden, dass das vollständige, native PAM, nicht aber die isolierte RING Finger Domäne, TSC2 polyubiquitinieren und zum proteasomalen Abbau markieren kann. TSC2 ist ein negativer Regulator der mTOR Kinaseaktivität, in dem es den stimulatorischen Einfluss von Rheb auf mTOR inhibiert. PAM wird in HeLa Zellen durch das Phospholipid Sphingosin-1-Phosphat (S1P) aktiviert. Nach S1P Behandlung der Zellen war eine Phosphorylierung der Proteinkinase mTOR nachweisbar. Diese ging mit einer Aktivierung der Kinaseaktivität einher, wie die rapamycinsensitive Phosphorylierung der mTOR Zielproteine p70S6K und 4E-BP1 zeigte. Durch Gabe von Rezeptor-Agonisten/-Antagonisten konnte eine Beteiligung des S1P1 und S1P2 Rezeptors ausgeschlossen werden. Der zunächst vermutete Mechanismus eines S1P induzierten, PAM-abhängigen Abbaus von TSC2 konnte trotz vielfältiger Herangehensweisen nicht nachgewiesen werden. Eine Phosphorylierung als Indikation einer Inaktivierung war ebenfalls nicht detektierbar. Auch die GAP Aktivität von TSC2 auf Rheb, wird in in vitro Versuchen durch die Interaktion mit PAM nicht vermindert. Durch eine Verminderung der TSC2 Expression mittels spezifischer siRNA zeigte sich, dass TSC2 nicht in die S1P-abhängige mTOR Aktivierung involviert ist. Auch regulatorische Proteinkinasen wie AKT, ERK oder PI3K, die durch S1P aktiviert werden können, sind an dem Signalweg nicht beteiligt, wie die Hemmung dieser Enzyme mit spezifischen Inhibitoren zeigte. Dagegen konnte eine Beteiligung von PAM und Rheb zum einen mittels Proteintransfektion bestätigt werden, zum anderen ließen sich die S1P Effekte durch Hemmstoffe verhindern, die für eine Aktivierung von PAM, respektive Rheb, nötig sind. Durch Nukleotidbindungsstudien war ein Einfluss von PAM auf den GTP-Beladungszustand von Rheb nachweisbar. Sowohl in einem GTPS Bindungsversuch als auch in einem GDP Dissoziationsexperiment erhöhte PAM konzentrationsabhängig die GTP Bindung bzw. den GDP/GTP Austausch an Rheb. In dieser Arbeit wird damit erstmalig eine duale Funktion eines Proteins als Ubiquitinligase und GEF beschrieben. So konnte die postulierte Aktivität von PAM als Ubiquitinligase bestätigt und TSC2 als Zielprotein identifiziert werden. Gleichzeitig wurde ein TSC2 unabhängiger Weg der mTOR Aktivierung aufgeklärt, an dem PAM und Rheb beteiligt sind. Als möglicher Mechanismus kommt eine Aktivität von PAM als Guanin-Nukleotid Austausch Faktor (GEF) auf Rheb in Frage. Durch Beschreibung von PAM als negativem Regulator von TSC2 und Aktivator von Rheb trägt diese Arbeit einen wichtigen Beitrag zur TSC2 / mTOR Forschung bei. Umgekehrt ermöglicht sie eine neue Sichtweise auf partiell PAM-abhängige Vorgänge wie Synaptogenese und Nozizeption, indem sie TSC2 / mTOR in diese Prozesse integriert.
Zytotoxische T-Lymphozyten und natürliche Killer-Zellen sind hochspezialisierte Zellen des Immunsystems, die durch Sekretion der Serin-Protease Granzym B (GrB) und des membranolytischen Proteins Perforin Virusinfizierte, körperfremde oder auch Tumorzellen durch Induktion von apoptotischem Zelltod eliminieren. Während Perforin für die Aufnahme von Granzym B in Zielzellen verantwortlich ist, wirkt Granzym B im Zytosol als aktive Effektor-Caspase und spaltet Caspase-3 und andere zelluläre Caspasen sowie verschiedene zentrale Caspasen-Substrate. Granzym B aktiviert damit wie Caspase-3 Apoptose-Signalwege am unteren Effektorende und umgeht daher die meisten Kontrollmechanismen, die in Tumorzellen häufig dereguliert sind und zur Resistenz gegenüber klassischer Chemo- und Strahlentherapie führen. Beide Proteasen stellen damit vielversprechende Enzymaktivitäten für die Verwendung als Effektorfunktion in Tumorzell-spezifischen zytotoxischen Fusionsproteinen dar. In der vorliegenden Arbeit wurden rekombinante Formen von Granzym B und Caspase-3 hergestellt und daraufhin untersucht, ob beide Enzyme mit dem ErbB2-spezifischen "single chain" Antikörper scFv (FRP5) als Tumorzell-spezifischer Zellbindungsdomäne fusioniert werden können, ohne dadurch die Faltung der Proteasen zu verhindern, um eine gezielte Applikation in Tumorzellen und Eliminierung der Zellen durch Apoptose zu ermöglichen. Die Herstellung von Granzym B als rekombinantes Protein im präparativen Maßstab war bisher nicht in der Literatur beschrieben worden. In dieser Arbeit konnte humanes aktives Granzym B in der Hefe Pichia pastoris mit Ausbeuten von 1 bis 4 mg/l Kultur exprimiert werden. Zum Nachweis der enzymatischen Aktivität wurde ein in vitro Assays etabliert, bei dem rekombinante Procaspase-3 als Substrat für Granzym B eingesetzt wurde. Nach intrazellulärer Applikation mit einem synthetischen Transduktionsreagens induziert das gereinigte Protein Apoptose in HeLa Zellen. Wie für endogenes Granzym B in der Literatur beschrieben, wird rekombinantes Granzym B aus Pichia pastoris sehr schnell in HeLa Zellen aufgenommen, lokalisiert aber in vesikulären Strukturen, in denen die enzymatische Aktivität eingeschlossen ist. Aus verschiedenen Expressionskulturen wurden jedoch zwei unterschiedliche Proteine isoliert, die bei vergleichbarer molarer Masse und enzymatischer Aktivität in Zellen aufgenommen wurden bzw. nicht internalisierten, was darauf hinweist, daß eine posttranslationale Modifikation der Protease für die Bindung von Granzym B an Zielzellen verantwortlich ist. Während für die Freisetzung von Granzym B aus den Membranvesikeln und Induktion von Apoptose Perforin erforderlich ist, konnte in dieser Arbeit beobachtet werden, daß Kulturen verschiedener etablierter Tumorzellinien nach Behandlung mit Granzym B auch in Abwesenheit von Perforin-Aktivität auffallende morphologische Veränderungen zeigen, die mit dem partiellen Verlust des Kontakts zum Kultursubstrat verbunden sind. Dies deutet darauf hin, daß Granzym B auch extrazellulär auf Zellen einwirkt, indem es Komponenten der extrazellulären Matrix spaltet, und so indirekt Apoptose durch Anoikis induziert. Dieser Effekt ist jedoch für eine mögliche therapeutische Verwendung von Granzym B nicht von Bedeutung, da relativ hohe Proteinkonzentrationen erforderlich sind. Um Granzym B selektiv gegen Tumorzellen zu richten, wurden verschiedene Fusionen mit dem "single chain" Antikörper scFv(FRP5) sowie einer bakteriellen Translokationsdomäne von Exotoxin A oder Diphtherietoxin konstruiert und in E. coli oder Pichia pastoris exprimiert. Während verschiedene in E. coli hergestellte Fusionsproteine nicht enzymatisch aktiv waren, konnte im Überstand einer Pichia Expressionskultur volle-Länge GrB-scFv(FRP5) sowie Granzym B Aktivität nachgewiesen werden. Die Expressionsrate war allerdings so gering, daß eine präparative Isolierung nicht möglich war. Es konnte damit aber gezeigt werden, daß die Fusion heterologer Proteindomänen an den C-Terminus von Granzym B unter Erhalt der enzymatischen Aktivität prinzipiell möglich ist, während zusätzliche Peptidsequenzen am N-Terminus der Protease zumindest partiell zum Verlust der enzymatischen Aktivität führen. Aktive Caspase-3 besteht aus zwei Peptiden p12 und p17, die im aktiven Enzym ein Tetramer (p12 p17)2 bilden. Um Caspase-3 selektiv in Tumorzellen zu applizieren, wurden ebenfalls Möglichkeiten untersucht, eine der beiden Untereinheiten mit dem scFv(FRP5) als Tumorzell-spezifische Zellbindungsdomäne zu fusionieren. Während aus den beiden separat in E. coli exprimierten p12 und p17 Untereinheiten durch gemeinsame Rückfaltung enzymatisch aktive Caspase-3 rekonstituiert werden konnte, führte die Fusion heterologer Proteindomänen an den N- und C-Terminus der p12 Untereinheit sowie an den C-Terminus der p17 Untereinheit zum Verlust der enzymatischen Aktivität, wahrscheinlich aufgrund der Verhinderung der korrekten Faltung des Protease-Tetramers. Dagegen konnte an den N-Terminus der p17 Untereinheit eine bakterielle Translokationsdomäne unter Erhalt der enzymatischen Aktivität fusioniert werden; ein entsprechendes Konstrukt, das zusätzlich den "single chain" Antikörper scFv(FRP5) enthielt, wurde aber in E. coli vollständig degradiert. Nachdem die Idee, Granzym B oder aktive Caspase-3 zur selektiven Induktion von Apoptose in Tumorzellen für therapeutische Zwecke einzusetzen, bereits seit längerem diskutiert wird, es jedoch bisher praktisch nicht möglich war, entsprechende rekombinante Fusionsproteine in funktionaler Form herzustellen, liefern die Ergebnisse dieser Arbeit wichtige grundlegende Informationen, wie die weitere Entwicklung solcher Moleküle erfolgreich durchgeführt werden könnte.
The transporter associated with antigen processing (TAP) plays a pivotal role in the adaptive immune response against virus-infected or malignantly transformed cells. As member of the ABC transporter family, TAP hydrolyzes ATP to energize the transport of antigenic peptides from the cytosol into the lumen of the endoplasmic reticulum. TAP forms a heterodimeric complex composed of TAP1 and TAP2 (ABCB2/3). Both subunits contain a hydrophobic transmembrane domain and a hydrophilic nucleotide-binding domain. The aim of this work was to study the ATP hydrolysis event of the TAP complex and gain further insights into the mechanism of peptide transport process. To analyze ATP hydrolysis of each subunit I developed a method of trapping 8- azido-nucleotides to TAP in the presence of phosphate transition state analogs followed by photocross-linking, immunoprecipitation, and high-resolution SDS-PAGE. Strikingly, trapping of both TAP subunits by beryllium fluoride is peptide-specific. The peptide concentration required for half-maximal trapping is identical for TAP1 and TAP2 and directly correlates with the peptide-binding affinity. Only background levels of trapping were observed for low affinity peptides or in the presence of the herpes simplex viral protein ICP47, which specifically blocks peptide binding to TAP. Importantly, the peptideinduced trapped state is reached after ATP hydrolysis and not in a backward reaction of ADP binding and trapping. In the trapped state, TAP can neither bind nor exchange nucleotides, whereas peptide binding is not affected. In summary, these data support the model that peptide binding induces a conformation that triggers ATP hydrolysis in both subunits of the TAP complex within the catalytic cycle. The role of the ABC signature motif (C-loop) on the functional non-equivalence of the NBDs was investigated. The C-loops of TAP transporter contain a canonical C-loop (LSGGQ) for TAP1 and a degenerated ABC signature motif (LAAGQ) for TAP2. Mutation of the leucine or glycine (LSGGQ) in TAP1 fully abolished peptide transport. TAP complexes with equivalent mutations in TAP2 showed however still residual peptide transport activity. To elucidate the origin of the asymmetry of the NBDs of TAP, we further examined TAP complexes with exchanged C-loops. Strikingly, the chimera with two canonical C-loops showed the highest transport rate whereas the chimera with two degenerated C-loops had the lowest transport rate, demonstrating that the ABC signature motifs control the peptide transport efficiency. All single-site mutants and chimeras showed similar activities in peptide or ATP binding, implying that these mutations affect the ATPase activity of TAP. In addition, these results prove that the serine of the C-loop is not essential for TAP function, but rather coordinates, together with other residues of the C-loop, the ATP hydrolysis in both nucleotide-binding sites. To study the coupling between the ATP binding/hydrolysis and the peptide binding, the putative catalytic bases of the TAP complex were mutated to generate the so-called EQ mutants. The mutations did not influence the peptide-binding ability. Dimerization of the NBDs of EQ mutants upon ATP binding does not alter the peptide binding property. At 27°C, both ATP and ADP could induce the loss of peptide-binding ability (Bmax) only in the variants bearing a mutated TAP2. Further studies are required to deduce at which stage in the catalytic cycle the peptide-binding site is affected. In addition, mutation of the putative catalytic base of both subunits showed a magnesium-dependent peptide transport activity, demonstrating these mutants did not abolish the ATP hydrolysis. Thus, the function of this acidic residue as the catalytic base is not likely to be universe for all ABC transporters.
The detailed mechanism of the 20 S proteasome from Thermoplasma acidophilum is unknown. Substrates are degraded processively to small fragments without the release of intermediates, but the basis for this unique degradation mode remains obscure. The proteasome is a molecular machine, but how the different nanocompartments interplay and whether more than one substrate can be treated simultaneously has not been elucidated yet. To address these questions we had to disable the functionality of one aperture in order to dissect whether the other pore can compensate for the loss. As it is challenging to introduce mutations solely around one pore aperture of the highly symmetrical construct, we chose a novel approach by unique orientation of the proteasome at interfaces. For this purpose we purified recombinant 20 S proteasomes, where hexahistidine tags were fused either around the entrances or at the sides. According to electron microscopic studies we immobilized these constructs uniformly either end-on or side-on at metal-chelating interfaces (lipid vesicles, lipid monolayers and self-assembled thiol monolayers). Degradation of small fluorogenic peptides and large proteins like casein was analyzed. Small substrates were degraded with comparable activity by free and immobilized proteasomes, irrespective of their orientation. Thus it can be assumed that peptides can pass the sealed entrance of the 'dead-end' proteasome. However, larger substrates like fluorescently labeled casein were processed near the temperature optimum by side-on immobilized and soluble proteasomes with threefold activity compared to end-on immobilized proteasomes. Hence it can be concluded that one pore is sufficient for substrate entry and product release. In other words, the pore and antechamber can fulfil a triple function in the import and unwinding of substrates and the egress of products. With means of surface plasmon resonance the exact substrate/proteasome stoichiometry could be determined to ~1 for 'dead-end' proteasomes and ~2 for side-on immobilized (active and inactive) proteasomes. Most importantly, a fit with the Hill equation revealed positive cooperativity for side-on immobilized (Hill coefficient ~2) in contrast to end-on immobilized proteasomes (Hill coefficient ~1). Thus in case of soluble proteasomes two substrates bind presumably in opposite antechambers with positive cooperativity. The off-rate of casein as substrate is twofold for the active side-on immobilized proteasome in comparison to the end-on immobilized proteasome. The exact 2:1 stoichiometry of the off-rates equals the ratio of exit pathways amenable in case of side-on orientated versus 'dead-end' immobilized proteasomes. Thus crevices along the cylindrical body of the 20 S proteasome seem not to participate in the egress of small products. An inactive proteasome mutant displays a concentration-dependent off-kinetic against casein. Accordingly, the off-rate of the bisubstrate:proteasome complex can be attributed around half the value of the monosubstrate:proteasome complex. Consequently, substrates exit the inactive proteasome via the route of access due to obstruction of the trans side with an entering substrate. Hence the active proteasomes have to chop substrates down to small fragments prior to release through both pores. Thus the processive degradation mode might result from positive binding cooperativity. The on-rate constants for casein suggested that substrate association represents a two-step process comprising a rate-limiting translocation step and a fast binding step. As fluorescence cross-correlation revealed that two substrates can be co-localized in the proteasome and bind successively with increasing affinity (KD,1 = 8 µM versus KD,2 = 700 nM), an allosteric transition in the proteasome can be assumed. Combining our results with the data from other research groups led to a mechanistic model for the 20 S proteasome. Accordingly, the first substrate undergoes a slow translocation step, binds in the antechamber and diffuses subsequently to the catalytic centers, where it is degraded. By switching on the catalytic activity, the pores at both termini are dilated via conformational changes. Hence entry of the second substrate into the proteasome is facilitated due to omission of the rate-determining translocation step. The second substrate is either accommodated in the antechamber before it is processed (alternating degradation) or, most probably, is directly threaded into the central cavity (simultaneous degradation). As effusing peptides compete with entering proteins for binding in the antechamber, the pores are kept in an open state. After finishing digestion the pores are closed and a new degradation cycle can be reinitiated. In summary, substrate association with the proteasome underlies an ordered alternating binding mechanism in contrast to the random mode of degradation. Thus the two-stroke engine offers the advantage of speeding up degradation without enhancing complexity.
Der CD95 Ligand (CD95L, FasL) ist ein Mitglied der Tumor-Nekrose-Faktor(TNF)- Superfamilie und ist in der Lage, Apoptose oder -unter bestimmten Bedingungen- Proliferation in CD95 Rezeptor-positiven Zellen auszulösen. Zusätzlich überträgt der CD95 Ligand aber auch als Rezeptor Signale in die ligandentragende Zelle, ein Phänomen, das auch bei anderen TNF-Familienmitgliedern beobachtet und als "reverse signalling" bezeichnet wird. Diese reverse Signalübertragung bewirkt in T-Zellen ein costimulatorisches Signal, welches zur vollständigen Aktivierung nach Antigen-Erkennung durch den T-Zellrezeptor (TZR) benötigt wird und über bisher unbekannte Adaptorproteine stattfindet, die vermutlich an den intrazellulären Anteil des CD95L binden. Die zytoplasmatische CD95L-Domäne ist auf Primärsequenzebene stark konserviert und besitzt eine prolinreiche Proteininteraktionsdomäne sowie eine Casein Kinase I Phosphorylierungsstelle, welche sich auch im intrazellulären Bereich des membrangebundenen TNFalpha findet und bei diesem Protein für die reverse Signalübertragung essentiell ist. Eine weitere Funktion des CD95L ist der Transport des Liganden zu einem speziellen Typ von Lysosomen in NK- und zytotoxischen T-Zellen. Hierfür ist die prolinreiche Region in der CD95L-intrazellulären Domäne wichtig. In diesen sekretorischen Lysosomen wird der CD95L gespeichert, bis er nach einem TZR-vermittelten Signal an die Zelloberfläche transportiert wird und dort mit dem CD95 Rezeptor der Ziel- Zellen interagieren kann. In der vorliegenden Arbeit wurde zur Aufklärung der oben beschriebenen Funktionen des CD95 Liganden ein Hefe-2-Hybrid Screen mit der intrazellulären CD95L-Domäne als Köder durchgeführt. Mit dieser Methode war es möglich, mehrere potentielle Interaktionspartner zu identifizieren. Eines dieser Proteine, FBP11, wurde schon zuvor als "human fas ligand associated factor" in der Datenbank veröffentlicht. Der HMG-Box-Transkriptionsfaktor Lef- 1, das Formin-bindende Protein FBP11, das thymozytenspezifische Protein TARPP und das Adaptorprotein PSTPIP ("proline serine threonin phosphatase interacting protein")/ CD2BP1 ("CD2 binding protein") interagierten in vitro in einem GST-Pulldown-Experiment mit der intrazellulären Domäne des CD95 Liganden. Mit Hilfe von Co- Immunpräzipitationsstudien und Co-Lokalisierungsexperimenten konnte die Interaktion von überexprimiertem CD95L und PSTPIP auch in vivo bestätigt werden. Des Weiteren wurde in dieser Arbeit gezeigt, dass diese Interaktion über eine nicht näher eingegrenzte Aminosäuresequenz in der prolinreichen Region des CD95L mit der SH3-Domäne des PSTPIP-Proteins realisiert wird. Die Phosphatase PTP-PEST bindet an einen Bereich der PSTPIP-Coiled-coil-Domäne, und es besteht die Möglichkeit, dass CD95L, PSTPIP und PTPPEST in der Zelle als ternärer Komplex vorliegen, in welchem der Phosphorylierungsstatus von PSTPIP und CD95L durch PTP-PEST reguliert wird. Wie die gleichzeitige Expression von PSTPIP die Oberflächenexpression von CD95L beeinflusst, war ein weiterer Untersuchungsgegenstand dieser Arbeit. Es konnte festgestellt werden, dass bei Überexpression von PSTPIP weniger CD95L auf der Oberfläche nachgewiesen wird. Interessanterweise wurde auch weniger Apoptose durch den CD95L ausgelöst, sobald PSTPIP überexprimiert wurde. Neben den Untersuchungen zur Interaktion von CD95L und PSTPIP (sowie PTP-PEST) wurden auch funktionelle Studien zur reversen Signalübertragung des CD95L durchgeführt. Sowohl in CD4- als auch in CD8-einzelpositiven frisch isolierten Maus-T-Zellen wurde ein co-stimulatorisches Signal nach suboptimaler TZR-Stimulation über CD95L beobachtet, was sich in verstärkter Proliferation und erhöhter Expression von Aktivierungsmarkern wie CD25 äußerte. Außerdem führt die Stimulation des CD95 Liganden zu einer transienten p42/p44-MAPK-Phosphorylierung, die durch Co-Expression von PSTPIP jedoch nicht beeinflusst wird. Die MAPK-Signalkaskade führt zur Zellproliferation und könnte daher eine wichtige Rolle in der CD95L-vermittelten Co- Stimulation spielen. Im Rahmen dieser Arbeit konnte auch zum ersten Mal gezeigt werden, dass die Lokalisation des CD95L in Lipid Rafts (Mikrodomänen der Zellmembran) wichtig für dessen apoptoseauslösendes Potential ist, da die Behandlung CD95L-positiver Zellen mit Substanzen, die Cholesterol entfernen und so Rafts zerstören, zur Inhibition der Apoptoseinduktion führt. Die Lokalisation sowohl des CD95 Rezeptors als auch des CD95 Liganden in unterschiedlichen Kompartimenten der Zellmembran könnte beide Moleküle voneinander abschirmen und so autokrine Apoptosemechanismen verhindern. Dadurch wird eine weitere Möglichkeit der Regulation der durch CD95L induzierten Apoptose realisiert.
Two distinct mechanisms contribute to the development of blood vessels: vasculogenesis, which is the de novo formation of vascular structures from progenitor cells, and angiogenesis, the formation of new blood vessels from pre-existing ones.
Angiogenesis is a highly ordered and carefully regulated multi-step process, during which the precise spatio-temporal interaction between endothelial and mural cells, i.e. smooth muscle cells and pericytes, is prerequisite for the formation of a functional blood vessel. The crosstalk between these two latter cell ty pes is mediated indirectly by various
secreted growth factors, and directly through cell-cell and cell-matrix interactions. The secretory epidermal growth factor-like protein 7 (EGFL7) has been implicated to
play an important role in the regulation of smooth muscle and endothelial cell recruitment and vascular tube formation. However, in-depth investigation of the underlying molecular mechanism has so far been hampered by the lack of functional recombinant EGFL7. In this study for the first time full length EGFL7 was successfully expressed as a His 6- tagged fusion protein from insect cells using the Baculovirus expression vector system. Recombinant EGFL7 was purified in a two-step protocol involving ion metal affinity chromatography and gel filtration. Furthermore, recombinant EGFL7 was
purified from human embryonic kidney EBN A 293 cells using a similar approach, allowing the production of high amounts of recombinant EGFL7 protein in its native state, with proper post-translational processing and full biological activity. Detailed analysis of the post-translational processing of recombinant EGFL7 and EGFL7-mutants revealed extensive proteolytic processing by protein convertases both at the N- and the C-terminus, the latter being prerequisite for EGFL7 secretion. Furthermore, secreted EGFL7 protein was shown to bind to the extracellular matrix and the responsible heparin-binding domain of EGFL7 was mapped to its N-terminal
portion. Purified recombinant EGFL7 protein was tested for its functionality using cell migration assays, cell proliferation studies and in vivo matrigel studies in mice. In the
modified Boyden chamber migration assay, recombinant EGFL7 proteins inhibited PDGF-BB-induced smooth muscle cell migration. Moreover, recombinant EGLF7 proteins strongly inhibited PDGF-BB-induced proliferation of smooth muscle cells, while it did not affect VEGF induced proliferation of endothelial cells. When applied in the in vivo matrigel plug assay, EGFL7 proteins induced a strong pro-angiogenic response, comparable with that of VEGF on an equimolar basis. Moreover, EGFL7 expression was strongly induced in endothelial cells in response to VEGF stimulation. These novel findings demonstrate the important function of EGFL7 in angiogenesis and are well in line with previous results. They demonstrate a cell specific action of EGFL7 on the different cell types involved in vessel formation, which is a prerequisite for a regulatory function in cell-to-cell crosstalk. Based on the results described here, the following model can be proposed: VEGF, a known strong initiator of angiogenesis, induces endothelial cell proliferation and migration, allowing the
escape from the comparatively rigid structure of a functional vessel to form an angiogenic sprout. At the same time VEGF induces the expression of EGFL7 in endothelial cells. EGFL7 is expressed, proc essed and secreted from these cells. While EGFL7 has no known effect on endothelial cells, it inhibits smooth muscle cell proliferation and migration, providing a mechanism to prevent pre-mature stabilization of the forming vessel. The availability of purified recombinant EGFL7 will be helpful in the detailed characterization of the underlying molecular mechanism of EGFL7 action, including the identification of the putative EGFL7 receptor, and will allow - together with knock-out experiments in mice - the exploration of the additional biological functions of EGFL7. Moreover, considering the strong pro-angiogenic effect of EGFL7 in vivo, it would be also of a great therapeutic interest to investigate its role in the development of tumor vasculature. The insights into these molecular mechanisms might provide a novel approach for the development of anti tumor therapies.
MHC Klasse I Moleküle liegen im Endoplasmatischen Reticulum (ER) als Dimer bestehend aus einer schweren Kette mit Transmembrandomäne und einem 12 kDa-Protein, dem ß2-Mikroglobulin vor. Nach der Beladung des MHC-Klasse I-Moleküls mit einem antigenen Peptid, welche vorwiegend im Cytosol durch proteasomalen Abbau generiert und durch den Transportkomplex TAP ins ER transloziert werden, findet der Transport des MHC-Peptid-Komplexes zur Zelloberfläche statt. Dort wird das Antigen cytotoxischen T-Zellen präsentiert. An der Assemblierung und Reifung von MHC-Klasse I-Molekülen sind verschiedene Chaperone beteiligt. Eine wichtige Rolle beim Peptidbeladungsprozess von MHC-Klasse I-Molekülen spielt Tapasin. Dabei handelt es sich um ein 48 kDa, MHC-codiertes Typ I Transmembran-Glycoprotein aus der Immunglobulinsuperfamilie. Es verbrückt den TAP-Komplex mit MHC-Klasse I-Molekülen, hält unbeladene MHC-Klasse I-Moleküle im ER zurück und führt eine Qualitätskontrolle des gebundenen Peptids durch. Bei dieser Peptideditierung werden Peptide wieder selektiv aus der MHC-Bindungstasche entfernt, wenn sie mit einer niedrigen Affinität gebunden sind. Dadurch wird sichergestellt, dass keine leeren oder suboptimal beladenen MHC-Peptid-Komplexe an die Zelloberfläche gelangen. In der vorliegenden Arbeit wurde ein System etabliert, mit dem der Einfluss von Tapasin auf die Peptidbeladung von MHC-Klasse I-Molekülen in vitro untersucht werden kann. Dazu wurde ein Verfahren zur heterologen Expression und Reinigung von funktionalem, löslichem Tapasin aus E. coli-Zellen aufgestellt. Weiterhin wurden ß2m und die schwere Kette von HLA-B*2705 heterolog in E. coli-Zellen exprimiert, isoliert und zusammen mit einem Reporterpeptid zum funktionalen HLA-B*2705 renaturiert. Bei Untersuchungen der Wechselwirkung zwischen Tapasin und HLA-B*2705-Molekülen konnte mittels der Oberflächen-Plasmonen-Resonanz-Spektroskopie eine direkte Interaktion zwischen Tapasin und unbeladenem HLA-B*2705 gezeigt werden. Detailliertere Untersuchungen zur Rolle von Tapasin bei der Peptidbeladung wurden mittels einer Gelfiltration gekoppelt mit der Fluoreszenzdetektion des Reporterpeptids durchgeführt. Dabei konnte festgestellt werden, dass unbeladene MHC-Klasse I-Moleküle in Anwesenheit von Tapasin stabilisiert werden und in einer Konformation gehalten werden, die eine Assoziation mit Peptid fördert. Weiterhin wurde gezeigt, dass durch Tapasin die Assoziationsrate für die Peptidbindung erhöht ist. Somit kann in Anwesenheit von Tapasin eine größere Anzahl an Peptiden auf eine stabile und hochaffine Bindung an MHC-Klasse I-Moleküle überprüft werden. In Experimenten mit bereits beladenen MHC-Klasse I-Molekülen konnte gezeigt werden, dass der neugebildetete Komplex auch nach erfolgter Peptidassoziation durch Tapasin stabilisiert wird. Dies ist vermutlich auf eine Erniedrigung der Dissoziationsrate für das Peptid zurückzuführen. Mit dem in dieser Arbeit etablierten Untersuchungssystem ist die Grundlage zu detaillierten Studien der Rolle von Tapasin bei der Peptidbeladung von MHC-Klasse I-Molekülen geschaffen.