Refine
Document Type
- Doctoral Thesis (2)
Language
- German (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
- Biowissenschaften (1)
- Pharmazie (1)
Krebs stellt die zweithäufigste Todesursache in Europa dar. Obwohl sich Diagnose und Heilungschancen über die letzten Jahre verbessert haben, besteht bei bestimmten neoplastischen Erkrankungen eine unverändert schlechte Prognose. Grundlage für eine langfristige Verbesserung des Behandlungserfolges ist ein molekulares Verständnis der Mechanismen, welche zur Krankheitsentstehung, Progression und Therapieresistenz beitragen. Nur so ist es möglich, nach neuen pharmakologischen und oder/genetischen Inhibitoren zu suchen, welche spezifische Eigenschaften dieser Faktoren blockieren und somit die Entwicklung neuer Therapiestrategien erlauben („from bench to bedside“). In diesem Zusammenhang spielen Proteasen nicht nur eine wichtige Rolle in pathobiologischen Prozessen, sondern stellen auch klinisch anerkannte Zielstrukturen derzeitiger Behandlungsstrategien dar. So wurde auch die Threonin-Protease Taspase1 als potenzielles Therapieziel der von Mixed Lineage Leukemia (MLL)-Translokationen verursachten Leukämien postuliert. Die Taspase1-induzierte Spaltung des MLL Proteins spielt eine wichtige physiologische Rolle in Entwicklungs- und Differenzierungsprozessen. Darüber hinaus scheint Taspase1 durch die Prozessierung von MLL-Translokationsprodukten, im speziellen des Produkts der t(4;11), maßgeblich zur Leukämieentstehung beizutragen. Zusätzlich gibt es, wie auch in dieser Arbeit gezeigt, erste Hinweise, dass Taspase1 auch für solide Tumore bedeutsam sein könnte. Jedoch sind unsere Kenntnisse über die molekularen Mechanismen, welche für die (patho)biologischen Funktionen von Taspase1 verantwortlich sind, bislang noch lückenhaft. Obwohl neben MLL-Proteinen einige wenige Taspase1-Zielproteine postuliert wurden, fehlt derzeit eine Übersicht über das „Taspase1-Degradom“. Die Kenntnis aller humanen Taspase1-Zielproteine stellt eine wichtige Voraussetzung dar, um die biologischen Funktionen dieser Typ2-Asparaginase gezielter erforschen und verstehen zu können. Zudem stehen im Gegensatz zu anderen Proteasen für Taspase1 bislang keine wirksamen Inhibitoren zur Verfügung, welche nicht nur als potenzielle Wirkstoffe, sondern vor allem als „chemische Werkzeuge“ der Funktionsaufklärung dienen könnten. Daher wurde im Rahmen der vorliegenden Arbeit das erste effiziente zellbasierte Taspase1- Testsystem entwickelt. Das Translokations-Testsystem basiert auf einem autofluoreszierenden Indikatorprotein, welches eine Taspase1-Spaltstelle enthält und durch die Wahl geeigneter Transportsignale zwischen Kern und Zytoplasma wandert. Nach Koexpression aktiver Taspase1, nicht aber inaktiver Taspase1-Mutanten bzw. anderer Proteasen, wird dieser Biosensor gezielt gespalten und dessen Akkumulation im Zellkern induziert. Die Spezifität des Testsystems mit seinem hohen Signal-zu-Hintergrund-Verhältnis erlaubte dessen Anpassung an eine Mikroskopie-basierte Hochdurchsatz-Plattform (Knauer et al., PloS ONE eingereicht). Durch gerichtete Mutagenese der Taspase1-Spaltstelle im Biosensor-Kontext konnte eine optimierte Konsensus-Erkennungssequenz für Taspase1 (Aminosäuren Q3[F,I,L,V]2D1¯G1’X2’D3’D4’) definiert werden, welche erstmalig eine zuverlässige bioinformatische Vorhersage des humanen Taspase1-Degradoms erlaubte. Die biologische Relevanz dieser Analyse wurde durch Validierung einzelner Zielproteine unterstrichen, wobei bisher noch nicht beschriebene Taspase1-Zielproteine wie beispielsweise Myosin1F und der Upstream Stimulating Factor 2 identifiziert wurden. Obwohl für beide Proteine bereits eine tumor-assoziierte Funktion beschrieben ist, bleibt die kausale Rolle von Taspase1 für deren (patho)physiologische Funktionen noch zu klären (Bier et al., JBC). Die Tatsache, dass Taspase1 als nukleäres/nukleoläres Protein identifiziert werden konnte, es sich bei den vorhergesagten Zielproteinen jedoch nicht ausschließlich um Kernproteine handelt, belegte die Notwendigkeit, die Regulation der intrazellulären Lokalisation von Taspase1 zu entschlüsseln. Experimentelle und bioinformatische Analysen zeigten erstmalig, dass Taspase1 über ein zweigeteiltes Importsignal über Importin-a aktiv in den Kern transportiert wird, jedoch kein nukleäres Exportsignal besitzt. Interessanterweise ist sowohl die cis- als auch die trans-Aktivität von diesem Kerntransport abhängig. Die nukleoläre Akkumulation wird hingegen durch die Wechselwirkung mit Nukleophosmin vermittelt. Erste Ergebnisse deuten darauf hin, dass Taspase1 am Nukleolus aktiviert wird und möglicherweise durch die Kernexportfunktion von Nukleophosmin transient Zugang zum Zytoplasma erhält, um so auch zytoplasmatische Proteine zu prozessieren (Bier et al., Traffic eingereicht). Zusätzlich konnten erstmalig multiple post-translationale Modifikationen von Taspase1 nachgewiesen werden (Bier et al., Manuskript in Vorbereitung). So kann Taspase1 über die Interaktion mit den Peptidasen Senp1-3 sowohl durch Sumo1 als auch durch Sumo2 sumoyliert werden. Diese so vermittelten dynamischen (De)Sumoylierungszyklen könnten eine Feinregulation der Enzym-Substrat-Interaktion darstellen. Zusätzlich wird Taspase1 durch verschiedene Histon-Acetyltransferasen (HAT) acetyliert und dadurch möglicherweise in seiner enzymatischen Aktivität beeinflusst. Interessanterweise acetylieren die HATs p300 und GCN5 hauptsächlich die Proform von Taspase1, was mit einer verstärkten cis-Aktivität einhergeht, während CBP und pCAF eher die prozessierte Form acetylieren. Andererseits interagieren die Histon-Deacetylasen HDAC-3 und -6 mit Taspase1, was nur die cis-Aktivität zu beeinflussen scheint. HDAC1 hingegen verhindert die Prozessierung der zweiten MLL-Schnittstelle, was auf eine zyklische Regulation im Wechsel mit der Acetylierung schließen lässt. WeitereUntersuchungen müssen klären, ob und wie diese post-translationale Feinregulation die (patho)biologische Aktivität von Taspase1 beeinflussen. Zusammenfassend konnten im Rahmen dieser Arbeit entscheidende neue Einblicke in die biologische Funktion und Regulation von Taspase1 gewonnen werden.
Molekularbiologische Charakterisierung und Expressionsanalyse des Brust-Tumorantigens NY-BR-1
(2005)
Brustkrebs ist die häufigste Krebserkrankung bei Frauen. Trotz guter Behandlungsmöglichkeiten für lokalisierte Primärtumoren verläuft die fortgeschrittene Erkrankung, bei der sich bereits Metastasen gebildet haben, oft tödlich. Es besteht daher ein großer Bedarf an weiteren Tumormarkern für die Diagnostik und Verlaufsbeurteilung sowie an geeigneten Zielproteinen für die Entwicklung neuer therapeutischer Strategien. Neben Radio- und Chemotherapie hat in den letzten Jahren die Immuntherapie bei der Behandlung von Krebserkrankungen an Bedeutung gewonnen. Im Gegensatz zur systemischen Wirkungsweise der Zytostatika wird hierbei das zytolytische Potential des Immunsystems genutzt, um zielgerichtet Tumorzellen zu eliminieren. Sogenannte tumorassozierte Antigene bzw. „Cancer/Testis“ Antigene repräsentieren potente und effektive Zielproteine sowohl für die Anwendung therapeutischer Antikörper als auch für Vakzinierungen. Besonders die auf dem Einsatz von Antikörpern basierenden Strategien haben sich in Kombination mit einer Chemotherapie in jüngster Zeit als erfolgreich erwiesen. In einer brustspezifischen SEREX Analyse konnte vor wenigen Jahren das Tumorantigen NY-BR-1 identifiziert werden, für das eine gewebespezifische mRNA Expression in Testis, Brust sowie eine Überexpression in Mammakarzinomen beschrieben wurde. Bioinformatische Vorhersagen legten nahe, dass es sich bei diesem neuen, nicht charakterisierten Protein um einen Transkriptionsfaktor handeln könnte. Ziel der vorliegenden Arbeit war es, das Brust Tumorantigen NY-BR-1 molekularbiologisch und biochemisch zu charakterisieren. Des Weiteren sollten dessen Expression in Zelllinien und Geweben untersucht und eine erste Evaluierung der klinischen Relevanz dieses Tumorantigens als Zielprotein für immuntherapeutische Strategien durchgeführt werden. Hierfür wurden zunächst ein NY-BR-1 Volllängen-Expressionskonstrukt kloniert sowie ein polyklonales anti-NY-BR-1 Antiserum hergestellt, das in der Lage ist, rekombinantes und überexprimiertes NY-BR-1 Protein zu detektieren. Für den Nachweis des endogenen Proteins konnte später ein monoklonaler anti-NY-BR-1 Antikörper verwendet werden, der im Rahmen dieser Arbeit bezüglich seiner Funktionalität und Spezifität in diversen Anwendungen (Western Blot, Immunpräzipitation, Immunfluoreszenz, Durchflusszytometrie, Immunhistochemie) getestet und eingesetzt wurde. Expressionsanalysen mittels quantitativer RT-PCR und cDNA-„Microarrays“ zeigten, dass NY-BR-1 in normalem Brustgewebe, in primären Mammakarzinomen und in Brusttumormetastasen exprimiert ist, wobei im Vergleich zu Normalgewebe in 70% der Tumorproben eine Überexpession zu beobachten war. Interessanterweise wird NY-BR-1 auch in normalem Prostatagewebe und in einigen Prostatatumoren exprimiert. Es gelang in der vorliegenden Arbeit erstmalig, die Expression des endogenen NY-BR-1 Proteins in normalem Brust-, Testis- und Prostatagewebe sowie entsprechenden Tumorproben im “Western Blot” nachzuweisen, wobei das Protein nur in der unslöslichen Membranfraktion einer Gewebe-Lysatpräparation detektiert werden konnte. Es wurde mit verschiedenen biochemischen und zellbiologischen Methoden in transient transfizierten Zellen gezeigt, dass NY-BR-1 ein Membranprotein ist, dessen N- und C-Terminus sich auf der Zelloberfläche befinden. Immunfluoreszenz und FACS-Analysen belegen, dass der monoklonale Antikörper das NY-BR-1 Epitop auf der Zelloberfläche lebender transfizierter Zellen erkennt. Da NY-BR-1 in Pleuralergusszellen von Brustkrebspatientinnen sowie in etablierten Brust-Zelllinien nur in einigen Fällen auf mRNA Ebene, nicht jedoch auf Proteinebene nachweisbar war, wurde die Lokalisation des endogenen Proteins in Gewebeproben immunhistochemisch untersucht. Während NY-BR-1 in Brust-, Prostata- und Hodentumorzellen überwiegend im Zytoplasma gefunden wird und zum Teil vesikulär/aggregiert vorliegt, konnte in einigen Zellen der Brust- und Hodenkarzinome eine Membranlokalisation des Proteins beobachtet werden. Die vorhergesagte Funktion von NY-BR-1 als Transkriptionsfaktor konnte experimentell nicht bestätigt werden. Die Ergebnisse von Co-Immunpräzipitationsexperimenten legten nahe, dass das NY-BR-1 Protein Dimere oder Multimere mit sich selbst bzw. mit dem C-Terminus des Proteins bilden kann. Erste funktionelle Studien lassen eine direkte Beteiligung von NY-BR-1 an der malignen Transformation vermuten. In Weichagar Experimenten konnten NY-BR-1 exprimierende murine Fibroblasten (NIH3T3 Zellen) Kolonien bilden. Desweiteren wurde beobachtet, dass NY-BR-1 Expression in embryonalen Nierenzellen (293T Zellen) einen positiven Einfluß auf deren Adhäsionsverhalten an humane Endothelzellen zur Folge hat. Serologische Untersuchungen von über 50 Brustkrebs Patientenseren konnten bestätigen, dass NY-BR-1 ein Tumorantigen ist und ergaben, dass mindestens 5% der Patienten detektierbare anti-NY-BR-1 Serumantikörper entwickelten. Die Ergebnisse der vorliegenden Arbeit konnten dazu beitragen, das Expressionsmuster, die zelluläre Lokalisation und die biologische Funktion des Tumorantigens NY-BR-1 näher zu untersuchen. Da NY-BR-1 gewebespezifisch in Brust, Testis und Prostata exprimiert ist und in 70% der Brust- und einigen Prostatatumoren (über)exprimiert wird, ist NY-BR-1 ein geeigneter Tumormarker und ein attraktives Zielprotein für aktive und passive Immuntherapie bei Brust- und evtl. bei Prostatakrebspatienten. Speziell für auf Antikörpern basierenden Therapien stellt das Zelloberflächenantigen NY-BR-1 ein interessantes „target“ für zukünftige Therapiestudien dar.