• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Adler, Klaudia Ruth Krimhilde (1)
  • Bach, Fatima (1)
  • Boeckel, Jes-Niels (1)
  • Carvalho, Jorge (1)
  • Diehl, Jens-Florian (1)
  • Doddaballapur, Anuradha (1)
  • Döbele, Carmen (1)
  • Guarani-Pereira, Virginia (1)
  • Heinrich, Eva-Marie (1)
  • Hofmann, Patrick (1)
+ more

Year of publication

  • 2006 (3)
  • 2019 (3)
  • 2011 (2)
  • 2013 (2)
  • 2004 (1)
  • 2005 (1)
  • 2008 (1)
  • 2010 (1)
  • 2015 (1)
  • 2016 (1)
+ more

Document Type

  • Doctoral Thesis (19)

Language

  • English (12)
  • German (7)

Has Fulltext

  • yes (19)

Is part of the Bibliography

  • no (19)

Keywords

  • microRNA (3)
  • Angiogenese (1)
  • Blutgefäßsystem (1)
  • Endothelzelle (1)
  • Immunoseneszenz (1)
  • Pulmonale Hypertonie (1)
  • chronische Herzinsuffizienz (1)
  • endothelial cell (1)
  • glatte Gefäßmuskelzellen (1)
  • miRNS (1)
+ more

Institute

  • Biowissenschaften (11)
  • Medizin (7)
  • Biochemie und Chemie (1)

19 search hits

  • 1 to 10
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Degradation und subzelluläre Lokalisation von p21(Cip1/Waf1) in Abhängigkeit von PCNA in Endothelzellen (2005)
Holzmann, Yvonne
Das Protein p21 (Cip1/Waf1/Sdi1), ein Mitglied der Familie der Cyclin abhängigen Kinasen-Inhibitoren, ist ein wichtiger Modulator des Zellwachstums und der Reaktion auf DNA-Schädigung. Die Funktion von p21 hängt von der Stabilität des Proteins ab. p21 ist besonders stabil in der Phase G0/G1 des Zellzyklus. Phoshorylierungsvorgänge sowie Interaktionen mit anderen Proteinen spielen in der Stabilität von Proteinen eine wichtige Rolle. Ziel der vorliegenden Arbeit war, herauszufinden, ob die Phosphorylierung von p21 durch die Proteinkinase AKT oder die durch diese Phosphorylierung beeinflusste Interaktion mit dem Proliferating cell nuclear antigen, kurz PCNA, einen Einfluß auf die Stabilität von p21 hat. Mittels Proteinhalbwertszeitbestimmung konnte demonstriert werden, daß die Phosphorylierung am Threonin 145 durch AKT keinen signifikanten Einfluß auf die Stabilität von p21 aufwies. Durch Pulse chase und Westem-Blot Versuche konnte aber nachgewiesen werden, daß die Anwesenheit von PCNA das Protein p21 stabilisierte und die Degradation beeinflusste. Es konnte mittels p21 Mutanten, deren PCNA- Bindung durch Austausch der Aminosäure (M147) inhibiert ist, gezeigt werden, daß nur eine direkte Bindung von PCNA an p21 die Degradation beeinflussen konnte. Die Bestimmung der subzellulären Lokalisation von p21, die zur weiteren Abklärung der erhöhten p21-Stabilität durch PCNA diente, zeigte in Immunopräzipitationsversuchen nach subzellulärer Fraktionierung eine Interaktion von p21 mit PCNA vorwiegend im Zytoplasma. Dies ließ sich auch durch Immunofluoreszenzuntersuchungen bestätigen. Schließlich zeigten die Untersuchungen, daß die subzelluläre Lokalisation von der direkten Bindung an PCNA abhängig war. Zusammenfassend zeigte die Arbeit auf, daß die Stabilität von p21 durch seinen Bindungspartner PCNA beeinflusst werden konnte, und dies vermutlich durch subzelluläre Translokation erfolgt.
Immunhistochemische Bestimmung der eNOS-Expression als möglicher Prognosefaktor bei primären Mammakarzinomen (2008)
Strank, Cornelia
Die Festlegung von Prognose und Therapie hormonabhängiger Tumore wie dem Mammakarzinom, erfolgt heutzutage vor allem über die Bestimmung des Hormonrezeptorstatus. Dieser biologische Zusammenhang hat zu einem wachsenden Interesse an Östrogen-regulierten Proteinen geführt, welche eine über die des Hormonrezeptorstatus hinausgehende prognostische Aussagekraft liefern könnten. Da bekannt ist, dass die Aktivität der endothelialen NO-Synthase (eNOS) durch Östrogen beeinflusst wird, hatte die vorliegende Arbeit den Einfluss von eNOS auf die Prognose von Mammakarzinomen zur Zielsetzung. Die drei Fragestellungen hierfür waren die Lokalisierung der eNOS-Expression, die Korrelation von eNOS mit den klinisch wichtigen Prognosefaktoren (besonderes Interesse galt den hormonellen Parametern), sowie der Einfluss von eNOS auf das Überleben der Patientinnen. Es wurden Gewebeproben von 163 Patientinnen untersucht, der eNOS-Status der in Paraffin eingebetteten Mammakarzinome wurde immunhistochemisch mittels APAAP-Methode bestimmt. Zu allen Fällen lagen die etablierten Prognosefaktoren (Tumorgröße, Lymphknotenstatus, Grading, Hormonrezeptorstatus, Alter) sowie die Verlaufsbeobachtungen vor. Soweit aus den verfügbaren Daten hervorgeht, ist dies der größte Stichprobenumfang an Patientinnen, bei dem die eNOS-Expression in primären Mammakarzinomen nachgewiesen wurde. Die Expression von eNOS konnte in den Tumorzellen der Mammakarzinome lokalisiert werden. Es bestanden signifikante Zusammenhänge zwischen der eNOS-Expression und dem Hormonrezeptor-/ Menopausenstatus, sowie der Zyklushälfte zum Operationszeitpunkt. Es konnte keine signifikante Korrelation zwischen der eNOS-Expression und dem Grading, TNM-Status oder Alter der Patientinnen nachgewiesen werden. Gleichermaßen konnten wir keinen signifikanten Unterschied im Überleben feststellen, dennoch zeigte sich ein kürzeres Gesamtüberleben bei Patientinnen mit eNOS-positiven Tumoren. Die Ergebnisse der vorliegenden Arbeit zeigen, dass invasive Mammakarzinomzellen eNOS exprimieren und dass ein erhöhter Östrogenspiegel im Blut mit einer erhöhten eNOS-Expression einhergeht. Obwohl eNOS als unabhängiger Prognosefaktor ungeeignet ist, so gibt das Vorhandensein des Enzyms Hinweis auf eine ungünstigere Prognose. Daraus lässt sich schlussfolgern, dass eNOS hormonell geregelt wird, dass dieser Zusammenhang im Allgemeinen eine Rolle bei der Entwicklung von Brustkrebs spielt und im Speziellen dass eNOS ein tumorfördernder Parameter sein könnte. Weitere Untersuchungen werden notwendig sein, um die tatsächliche Rolle von eNOS in der Tumorbiologie zu klären.
Einfluss von Atorvastatin und Ramipril auf die Anzahl und Funktion von endothelialen Progenitorzellen bei Patienten mit stabiler koronarer Herzerkrankung (2006)
Adler, Klaudia Ruth Krimhilde
Zusammenfassend lässt sich sagen, dass eine medikamentöse Therapie mit Atorvastatin bei Patienten mit stabiler KHK zur Steigerung kultivierter EPCs mit verbesserter funktioneller Aktivität führt. Die Daten zeigen des weiteren, dass die Statintherapie nicht die Zahl hämatopoetischer Progenitorzellen erhöht, sondern die Differenzierung in zirkulierende EPCs fördert. Ein Faktor, wie z.B. VEGF, GM-CSF oder TNF-alpha, der die erhobenen Ergebnisse reflektiert bzw. vermittelt, konnte nicht gefunden werden. Allerdings konnte gezeigt werden, dass Atorvastatin über den PI3K-Signaltransduktionsweg, unabhängig von NO, die Differenzierung von EPCs stimuliert. In einer zweiten Studie konnte gezeigt werden, dass auch der ACE-Inhibitor Ramipril vor allem eine Verbesserung der funktionellen Aktivität der EPCs induzierte und ebenfalls zu einer Steigerung der Zahl der kultivierten EPCs führte. Aufgrund der starken Schwankungen der FACS-Messungen bei kleinen Patientenkollektiven besteht eine Diskrepanz zwischen den kultivierten und zirkulierenden EPCs. Auch konnte gezeigt werden, dass die EPC-Zahl und -Funktionalität vor Therapie durch den HGF-Serumspiegel reflektiert wurde und positiv mit ihm korrelierte. Diese Korrelation blieb jedoch unter Ramipriltherapie nicht bestehen, so dass davon auszugehen ist, dass der Einfluss von Ramipril nicht durch HGF, sondern über einen noch zu untersuchenden Mechanismus vermittelt wird. So können Statine und potentiell einige Subgruppen der ACE-Inhibitoren neue Therapieoptionen der KHK eröffnen.
Regulation und Funktion von Homeobox-Transkriptionsfaktoren in Endothelzellen (2006)
Diehl, Jens-Florian
Die funktionelle Integrität des Endothels ist von essentieller Bedeutung für den Organismus. Die Entstehung und Progression vaskulärer Erkrankungen, wie z.B. der Atherosklerose, ist daher oftmals ursächlich mit einer Dysfunktion des Endothels verbunden. Vor diesem Hintergrund ist insbesondere die Aufklärung der molekularen Grundlagen der Regulation von Endothelzellfunktionen, ein zentraler Aspekt heutiger Forschung. Homeobox- (Hox) Transkriptionsfaktoren nehmen eine Schlüsselposition bei der Regulation einer Vielzahl zellulärer Prozesse, wie Proliferation, Migration und Gewebe-spezifischer Differenzierung ein. Die Identifikation sowie die Analyse der Funktion und Regulation von Hox-Transkriptionsfaktoren in Endothelzellen, leistet deshalb einen wichtigen Beitrag zum Verständnis der Endothelzellbiologie. Als ein zentraler Befund dieser Arbeit, konnte mit der Histon-Methyltransferase MLL erstmals die funktionelle Rolle eines epigenetischen Hox-Regulators auch in differenzierten Endothelzellen nachgewiesen werden. MLL erwies sich hierbei von essentieller Bedeutung für pro-angiogene Endothelzell-Funktionen. Die bedeutende Rolle von MLL bei der Migration von Endothelzellen konnte mit der transkriptionellen Regulation der beiden Hox-Transkriptionsfaktoren HoxA9 und HoxD3 in Verbindung gebracht werden, die hier erstmals als direkte Zielgene von MLL in Endothelzellen beschrieben wurden. Als funktionelle Mediatoren der MLLabhängigen Migration konnten zudem der EphB4-Rezeptor sowie die Integrine αVβ3 und α5β1, als Zielgene von HoxA9 bzw. HoxD3 nachgewiesen werden. Neben der Migration konnte für MLL auch eine essentielle Rolle für das Sprouting von Endothelzellen nachgewiesen werden, die sich im Gegensatz zur Migration, nicht auf die Regulation von HoxA9 oder HoxD3 zurückführen ließ. Diese Beobachtung lässt auf die Involvierung zusätzlicher MLLabhängiger Faktoren schließen, und verdeutlicht damit die zentrale Rolle von MLL bei der Regulation komplexer, pro-angiogener Prozesse in Endothelzellen. Über die genannte Rolle von MLL hinaus konnte im Rahmen dieser Arbeit das Wissen um Hox-Transkriptionsfaktoren mit funktioneller Relevanz für Endothelzellen, um die beiden Hox-Transkriptionsfaktoren HoxB4 und HoxB5 erweitert werden. Hier konnte für HoxB4 eine Rolle für die Fähigkeit von Endothelzellen zur Ausbildung zwei- und 3-dimensionaler Gefäßstrukturen nachgewiesen werden, während HoxB5 in die Proliferation, die Expression des endothelialen Markergens eNOS sowie die morphologische Beschaffenheit von Endothelzellen eingreift. Zusätzlich konnte die Rolle von transkriptionellen Hox Co-Faktoren, als Modulatoren von Hox-Funktionen, am Beispiel der Interaktion von Meis1 und HoxA9 bei der Transaktivierung des eNOS-Promoters aufgezeigt werden. Zusammenfassend leisten die hier gezeigten Daten einen Beitrag zum Verständnis der Rolle von Hox-Transkriptionsfaktoren als molekulare Regulatoren endothelialer Zellfunktionen.
Statin-Therapie verbessert die verringerte Differenzierung von endothelialen Vorläuferzellen zu Kardiomyozyten bei Patienten mit KHK (2004)
Rupp, Stefan
Kardiovaskuläre Erkrankungen nehmen einen großen Sektor des gegenwärtigen Krankheitsspektrums ein. Die Entdeckung von Stammzellen, die sich zu Gefäßen oder Herzmuskelzellen entwickeln können, bietet neben bereits etablierten Behandlungen völlig neue therapeutische Ansatzpunkte zur kardialen Regeneration dieser Patienten. Neben embryonalen oder adulten Stammzellen kommen auch leicht aus dem peripheren Blut zu gewinnende endotheliale Vorläuferzellen für mögliche Therapien in Frage. Um den Ansatz der Differenzierung von Stamm- oder Vorläuferzellen in Herzmuskelzellen in vitro zu untersuchen, wurde ein bereits bekanntes Modell der Ko-Kultur von neonatalen Rattenkardiomyozyten mit verschiedenen Populationen von Stamm- oder Vorläuferzellen genutzt. Anlehnend an dieses Modell wurden in dieser Arbeit EPCs für sechs Tage zusammen mit neonatalen Kardiomyozyten der Ratte kultiviert. Es zeigt sich, dass EPCs nach sechs Tagen Ko-Kultur mit neonatalen Rattenkardiomyozyten in der Lage sind, zu Kardiomyozyten zu differenzieren und typische kardiomyozytäre Eigenschaften aufweisen, zu denen beispielsweise die Expression kardiospezifischer Proteine gehören sowie die Integration mit umliegenden Kardiomyozyten. Nach Etablierung dieses Versuchsansatzes wurde die Differenzierungskapazität der EPCs KHK erkrankter Patienten untersucht, sowie der Einfluß von Statineinnahme der Patienten, da eine prinzipielle Wirkung der Statine auf EPCs bereits vielfach beschrieben wurde. Es zeigt sich, dass auch EPCs von KHK-Patienten in der Lage sind, zu Kardiomyozyten zu differenzieren, wobei eine verringerte Differenzierungsrate zu beobachten ist. Durch Behandlung der Patienten mit Statinen lässt sich diese verringerte Kapazität verbessern, wie sich nicht nur in einer Querschnittsuntersuchung, sondern auch im prospektiven Verlauf gezeigt hat. Der Mechanismus, über den Statine eine Verbesserung der EPC-Differenzierung erreichen, ist nicht geklärt. Interessanterweise sind Statine in vitro nicht in der Lage, die EPCDifferenzierung zu Kardiomyozyten zu verbessern. Der vielversprechende Ansatz der Regeneration von Gewebe durch Stammzellen wird durch die vergleichsweise geringe Ausbeute an differenzierten Zellen limitiert. Aus diesem Grunde wurden verschiedene Versuche durchgeführt, die Differenzierungsrate in vitro anzuheben. Leider zeigen VEGF (beschrieben ist beispielsweise ein positiver Effekt auf Überleben und Migration), 5’-Azacytidine (Erhöhung der Differenzierungsrate embryonaler Stammzellen) oder hypoxisch-konditioniertes Medium (Erhöhung der Differenzierung von Stammzellen in neurales Gewebe) keinen positiven Effekt auf die EPC-Differenzierungsrate zu Kardiomyozyten. Von grundlegender Bedeutung ist es, die Mechanismen der Differenzierung von Stamm- oder Vorläuferzellen aufzuklären. Erschwert wird diese Aufgabe durch die Möglichkeit, dass in verschiedenen Geweben verschiedene Mechanismen (Zellfusion auf der einen und Transdifferenzierung auf der andere Seite) für die Stammzellintegration verantwortlich sein könnten. Mithilfe einer Ko-Kultur der EPCs mit fixierten Kardiomyozyten konnte gezeigt werden, dass die Differenzierung der EPCs zu Kardiomyozyten den direkten Kontakt zu anderen Kardiomyozyten benötigt, jedoch nicht zwingend auf einer Zellfusion basiert. Um den Differenzierungsprozess weiter zu untersuchen, wurden die für die Zell-Zell- oder Zell-Matrix- Interaktion wichtigen Proteine untersucht. In einem Blockierungsversuch der für die Zell-Matrix- Interaktion wichtigen Integrine, ließ sich kein Nachweis für eine Rolle der Integrine für den Differenzierungsprozess erbringen. Für die Zell-Zell- Interaktion stellen die kalziumabhängigen Cadherine eine wichtige Gruppe dar. In einer Ko-Kultur, die in einem kalziumfreien Medium durchgeführt wurde, ließ sich eine signifikante Reduktion des Überlebens der EPCs feststellen. Ein weiterer Versuch, der mit einer Mischung verschiedener Cadherin-blockierender Antikörper durchgeführt wurde, zeigt eine signifikante Reduktion der Differenzierung der EPCs in Kardiomyozyten. Die Untersuchung, welches Cadherin für den Differenzierungsprozess eine besondere Bedeutung spielt, ist Gegenstand gegenwärtiger Untersuchungen. Diese Doktorarbeit zeigt, dass EPCs prinzipiell in der Lage sind, in Kardiomyozyten zu differenzieren. Ebenso sind EPCs KHK-erkrankter Patienten in der Lage in Kardiomyozyten zu differenzieren, jedoch zu einem geringeren Prozentsatz. Statinbehandlung steigert den Prozentsatz der EPC-Differenzierung bei KHK-erkrankten Patienten. Mit medikamentöser Behandlung (beispielsweise Statineinnahme) könnte der Stammzelltherapieansatz bei KHK-erkrankten Patienten unterstützt werden. Erste Hinweise für den komplexen Prozess der Progenitorzelldifferenzierung weisen auf einen kalziumabhängigen, Cadherin-vermittelten Mechanismus hin.
Acetylation-dependent Regulation of Notch Signaling by SIRT1 (2010)
Guarani-Pereira, Virginia
One of the key functions of blood vessels is to transport nutrients and oxygen to distant tissues and organs in the body. When blood supply is insufficient, new vessels form to meet the metabolic tissue demands and to re-establish cellular homeostasis. Expansion of the vascular network through sprouting angiogenesis requires the specification of ECs into leading (sprouting) tip and following (non-sprouting) stalk cells. Attracted by guidance cues tip cells dynamically extend and retract filopodia to navigate the nascent vessel sprout, whereas trailing stalk cells proliferate to form the extending vascular tube. All of these processes are under the control of environmental signals (e.g. hypoxia, metabolism) and numerous cytokines and peptide growth factors. The Dll4/Notch pathway coordinates several critical steps of angiogenic blood vessel growth. Even subtle alterations in Notch activity can profoundly influence endothelial cell behavior and blood vessel formation, yet little is known about the intrinsic regulation and dynamics of Notch signaling in endothelial cells. In addition, it remains an open question, how different growth factor signals impinging on sprouting ECs are coordinated with local environmental cues originating from nutrient-deprived, hypoxic tissue to achieve a balanced endothelial cell response. Acetylation of lysines is a critical posttranslational modification of histones, which acts as an important regulatory mechanism to control chromatin structure and gene transcription. In addition to histones, several non-histone proteins are targeted for acetylation reversible acetylation is emerging as a fundamental regulatory mechanism to control protein function, interaction and stability. Previous studies from our group identified the NAD+-dependent deacetylase SIRT1 as a key regulator of blood vessel growth controlling endothelial angiogenic responses. These studies revealed that SIRT1 is highly expressed in the vascular endothelium during blood vessel development, where it controls the angiogenic activity of endothelial cells. Moreover, in this work SIRT1 has been shown to control the activity of key regulators of cardiovascular homeostasis such as eNOS, Foxo1 and p53. The present study describes that SIRT1 antagonizes Notch signaling by deacetylating the Notch intracellular domain (NICD). We showed that loss of SIRT1 enhances DLL4-induced endothelial Notch responses as assessed by different luciferase responsive elements as well as transcriptional analysis of Notch endogenous target genes activation. Conversely, SIRT1 gain of function by overexpression of pharmacological activation decreases induction of Notch targets in response to DLL4 stimulation. We also showed that the NICD can be directly acetylated by PC AF and p300 and that SIRT1 promotes deacetylation of NICD. We have identified 14 lysines that are targeted for acetylation and their mutation abolishes the effects of SIRT1 of Notch responses. Furthermore, over-expression or activation of SIRT1 significantly reduces the levels of NICD protein. Moreover, SIRT1-mediated NICD degradation can be reversed by blockade of the proteasome suggesting a mechanism resulting from ubiquitin-mediated proteolysis. Indeed, we have shown that SIRT1 knockdown or pharmacological inhibition decreased NICD ubiquitination. We propose a novel molecular mechanism of modulation of the amplitude and duration of Notch responses in which acetylation increases NICD stability and therefore permanence at the promoters, while SIRT1, by inducing NICD degradation through its deacetylation, shortens Notch responses. In order to evaluate the physiological relevance of our findings we used different models in which the Notch functions during blood vessel formation have been extensively characterized. First, retinal angiogenesis in mice lacking SIRT1 activity shows decreased branching and reduced endothelial proliferation, similar to what happens after Notch gain of function mutations. ECs from these mice exhibit increased expression of Notch target genes. Second, these results were reproducible during intersomitic vessel growth in sirt1-deficient zebrafish. In both models, the defects could be partially rescued by inhibition of Notch activation. Third, we used an in vitro model of vessel sprouting from differentiating embryonic bodies in response to VEGF in a collagen matrix. Our results showed that Sirt1-deficient cells shows impaired sprouting which correlated with increased NICD levels. In addition, when in competition with wild-type cells in this assay, Sirt1-deficient cells are more prone to occupy the stalk cell position. Taken together, our study identifies reversible acetylation of NICD as a novel molecular mechanism to adapt the dynamics of Notch signaling and suggest that SIRT1 acts as a rheostat to fine-tune endothelial Notch responses. The NAD+-dependent feature of SIRT1 activity possibly links endothelial Notch responses to environmental cues and metabolic changes during nutrient deprivation in ischemic environments or upon other cellular stresses.
Functional characterization of members of the microRNA-17-92 cluster in the vascular system (2011)
Döbele, Carmen
Almost two decades ago, microRNAs were discovered as novel posttranscriptional regulators of gene expression. Since then, research efforts have uncovered their involvement in the control of various cellular processes including migration, proliferation and cell survival. Even more complex events, such as the formation of new blood vessels or organ development, have been shown to be tightly regulated and orchestrated by microRNAs. Due to their crucial regulatory role in tissue homeostasis in vertebrates, it does not come as a big surprise that dysregulated microRNA ex-pression is associated with pathology of diverse diseases. In this regard, the miR-17-92 cluster is a prime example since it has become famous for its amplified expression in tumours and its on-cogenic potential. Our lab demonstrated the expression of the members of the miR-17-92 cluster, namely miR-17, -18a, -19a, -20a, -19b and -92a, in endothelial cells and provided evidence for the anti-angiogenic activity of miR-92a in ECs as well as its important regulatory role in tissue re-covery after ischemia. In this work we addressed the function of the remaining members of the miR-17-92 cluster, i.e. miR-17, miR-18a, miR-19a and miR-20a, in endothelial cells and angiogenesis. Surprisingly, the individual members all displayed anti-angiogenic properties in endothelial cells in vitro, although overexpression of the whole cluster in transformed colonocytes was shown to promote tumour angiogenesis in a mouse model. In this context, we provide evidence that the individual miRs differentially affect the paracrine angiogenic activity of endothelial and tumour cells. Moreover, Antagomir-mediated inhibition of miR-17/20 in a mouse tumour model did not affect tumour angi-ogenesis, although miR-17/20 inhibition profoundly increased vascularization of Matrigel plugs. Thus, our research efforts suggest a differential involvement of the members of the miR-17-92 cluster in physiological and tumour angiogenesis. Additionally, we identified Janus kinase (JAK) 1 as a novel miR-17 target in endothelial cells and demonstrated the involvement of JAK1 in angio-genesis and in the phosphorylation of STAT3 in response to different cytokines in vitro. Overall, inhibition of specific members of the miR-17-92 cluster might represent an attractive therapeutic strategy to enhance angiogenesis in ischemic diseases. In the second part of the present work we investigated the therapeutic value of Antagomir-mediated microRNA inhibition in animal models of pulmonary arterial hypertension. Collectively, inhibition of miR-17 by the respective Antagomir revealed a significant improvement of pulmonary hemodynamics and cardiac function in both the chronic hypoxia mouse model and the mono-crotaline-induced lung injury rat model. Histomorphometric analysis of the lungs of the pulmonary hypertensive mice and rats uncovered a significant reduction of disease associated musculariza-tion of pulmonary arteries in Antagomir-17 treated animals compared to the control animals indicating interference with smooth muscle cell proliferation or survival. Probing of lung tissue of the pulmonary hypertensive rats for selected miR-17 targets uncovered a profound increase in the expression of the cyclin dependent kinase inhibitor p21 in the Antagomir-17 treated rats suggest-ing that inhibition of miR-17 impairs proliferation by impeding cell cycle progression. Analysis of miR-17 function in human smooth muscle cells in vitro corroborated the results from the animal experiments by demonstrating pro-proliferative activity of miR-17 and decreased levels of p21 in these cells. Collectively, our results indicate that Antagomir-17 improves pulmonary hemodyna-mics and cardiac function by interfering with vascular remodelling within the lung. Hence, inhibi-tion of miR-17 might be of therapeutic value to ameliorate the disease pattern in pulmonary arte-rial hypertension. In summary, the present work provides insights into the regulatory functions of members of the miR-17-92 cluster, especially miR-17, in blood vessels and suggests that specific inhibition of members of the miR-17-92 cluster might be a novel option to treat vascular diseases.
BRAG2, an Arf GEF, regulates integrin-dependent endothelial adhesion and is involved in developmental and pathological angiogenesis (2013)
Manavski, Yosif
ß1-integrins are essential for angiogenesis but the mechanisms regulating integrin function in endothelial cells (EC) and their contribution to angiogenesis remain elusive. BRAG2 is a guanine nucleotide exchange factor for the small Arf-GTPases Arf5 and Arf6. The role of BRAG2 in EC and angiogenesis and the underlying molecular mechanisms remains unclear. siRNA-mediated BRAG2-silencing reduced EC angiogenic sprouting and migration. BRAG2-siRNA-transfection differentially affected a5ß1- and aVß3-integrin function: specifically, BRAG2-silencing increased focal/fibrillar adhesions and EC adhesion on ß1-integrin-ligands (fibronectin and collagen), while reducing the adhesion on the aVß3-integrin-ligand, vitronectin. Consistent with these results, BRAG2-silencing enhanced surface expression of a5ß1-integrin, while reducing surface expression of aVß3-integrin. Mechanistically, BRAG2 mediated recycling of aVß3-integrins and endocytosis of ß1-integrins and specifically of the active/matrix bound a5ß1-integrin present in fibrillar/focal adhesions (FA), suggesting that BRAG2 contributes to the disassembly of FA via ß1-integrin-endocytosis. Arf5 and Arf6 are promoting downstream of BRAG2 angiogenic sprouting, ß1-integrin-endocytosis and the regulation of FA. In vivo silencing of the BRAG2-orthologues in zebrafish embryos using morpholinos perturbed vascular development. Furthermore, in vivo intravitral injection of plasmids containing BRAG2-shRNA reduced pathological ischemia-induced retinal and choroidal neovascularization. These data reveals that BRAG2 is essential for developmental and pathological angiogenesis by promoting EC sprouting through regulation of adhesion by mediating ß1-integrin internalization and associates for the first time the process of ß1-integrin endocytosis with angiogenesis.
Functional characterization of the Jumonji C domain-containing protein 6 (Jmjd6) in the vascular system (2011)
Boeckel, Jes-Niels
Conclusion: Proteins containing a Jumonji C (JmjC) domain appear in almost all living organisms and catalyze a variety of oxidation reactions. Therefore, they are important regulators in many biological processes such as proliferation and differentiation. They act either as protein hydroxylases, histone demethylases or by regulate mRNA splicing. Given the fact that some of the JmjC domain-containing proteins are shown to be upregulated in response to hypoxia as well as the dependency of JmjC domain catalytic activity on oxygen led to the assumption of an involvement in angiogenesis. For Jmjd6, a member of the JmjC domain-containing protein family, a regulatory involvement in mRNA splicing has been shown. The Jmjd6-/- mouse dies perinatally due to several severe organ malformations, especially in the heart. Despite the pale appearance, the growth retardation and the cardiac defects, it is unclear whether these mice exhibit defects of cells comprising the vasculature. Therefore, the involvement of Jmjd6 in angiogenesis was examined in vitro using angiogenesis assays as well as in vivo using the Jmjd6+/- mouse. An siRNA-mediated knockdown of Jmjd6 in ECs significantly impaired the formation of capillary-like networks in the tube formation assay as well as sprouting in the spheroid assay. Moreover, after siRNA-mediated knockdown of Jmjd6 in ECs cell migration was significantly reduced. These findings were confirmed in the matrigel plug assay in vivo. Implanted matrigel plugs of Jmjd6+/- mice exhibited significantly less perfused vessels compared to wildtype littermates. Furthermore, cultured lung ECs from Jmjd6+/- mice exhibited impaired network forming activity ex vivo compared to cells isolated from wildtype littermates. To elucidate the mechanisms underlying the requirement of Jmjd6 in angiogenesis, an Affymetrix exon-array was performed, which allows detection of changes in gene expression as well as splicing. The siRNA-mediated knockdown of Jmjd6 altered the expression of genes known to play a role in vascular biology. The bioinformatic assessment of alternative splice variants revealed that Jmjd6 silencing affects the splicing of the VEGF receptor 1 (Flt1). Differential splicing of Flt1 was shown to generate a short and soluble form of Flt1 (sFlt1), which sequestrates VEGF and PlGF, and thereby inhibits angiogenesis. In particular, a significant increase in sFlt1 expression was observed. Jmjd6 was recently reported to hydroxylate the splicing factor U2AF65. Therefore, we investigated whether U2AF65 might mediate Flt1 splicing and binds to Flt1 mRNA. Indeed, U2AF65 co-immunoprecipitated with Jmjd6 in ECs, while an interaction of U2AF65 with sFlt1 was demonstrated. Moreover, inhibition of Jmjd6 catalytic function by reduced oxygen concentration altered splicing of Flt1 resulted in an increase of the sFlt1 splice variant. Finally, saturating concentrations of VEGF or PlGF or neutralizing antibodies against sFlt1 significantly reduced the inhibition of sprouting caused by Jmjd6 knockdown in vitro. Collectively, our results indicate that Jmjd6 has an essential role in the oxygen-dependent regulation of angiogenesis by controlling the splicing of Flt1 mRNA, thereby adjusting the generation of the anti-angiogenic short splice variant sFlt1. Several publications demonstrated a major importance for sFlt1 as a biomarker for many severe human diseases such as preeclampsia, sepsis, cancer, myocardial infarction as well as chronic heart failure. Therefore, the identification of the molecular mechanism behind the generation of sFlt1 might enable the development of new or more precise clinical markers for the diagnosis of the corresponding diseases. Furthermore, the discovery of the enzymes involved in the generation of sFlt1 provides further possibilities to modulate sFlt1 levels and thereby may potentially gives rise to the development of new therapies.
Aptamer-mediated transport of microRNAs into cells of the cardiovascular system (2016)
Rohde, Jan-Hendrik
Ischemic injuries of the cardiovascular system are still the leading cause of death worldwide. They are often accompanied by loss of cardiomyocytes (CM) and their replacement by non-functional heart tissue. Cardiac fibroblasts (CF) play a major role in the recovery after ischemic injury and in the scar formation. In the last few years researchers were able to reprogram fibroblasts into CM in vitro and in murine models of myocardial infarction using various protocols including a cocktail of microRNAs (miRs). These miRs can target hundreds of messenger RNAs and inhibit their translation into proteins, potentially regulating multiple cellular signaling pathways. Because of this, there has been a rising interest in the use of miRs for therapeutic purposes. However, as different miRs have different effects in different cells, there is the danger of causing serious side effects. These could be alleviated by enacting a cell-specific transport of miRs, for example by using aptamers. Aptamers are usually short strands of DNA or RNA, which can fold into a specific three-dimensional confirmation which allows them to bind specifically to target molecules. Aptamers are commonly selected from a large library for their ability to bind to target molecules using a procedure called SELEX. Aptamers have already been used to transport miRs into cancer cells. In this thesis, we first established the transport of miRs into cells of the cardiovascular system using aptamers. MiR-126 is an important part of the signaling in endothelial cells (EC), protects from atherosclerosis and supports angiogenesis, which is why we chose it as a candidate to transport into the vasculature. We first tested two aptamers for their ability to internalize into EC and fibroblasts. Both the aptamer for the ubiquitously expressed transferrin receptor (TRA) and a general internalizing RNA motif, but not a control construct, could internalize efficiently into all cell types tested. We then designed three chimeras (Ch) using different strategies to connect TRA to miR-126. While all chimeras could internalize efficiently, only Ch3, which connects TRA to Pre-miR-126 using a sticky bridge structure, had functional effects in EC. Ch3 reduced the protein expression of VCAM-1 in EC and increased the VEGF induced sprouting of EC in a spheroid-sprouting assay. Treatment of breast cancer cells with Ch3 emulated the effects of treatment with classical miR-126-3p and miR-126-5p mimics. In the SK-BR3 cell line Ch3 and miR-126-3p reduce the viability of the cells while they reduce recruitment of EC by the MCF7 cell line. miR-126-5p had no apparent effect in the SK-BR3 line, but increased viability of MCF7 cells, as did Ch3. This implies that Ch3 can be processed to both functional miR-126-3p and miR-126-5p in treated cells. We were unable to achieve a reprogramming of adult murine cardiac fibroblasts into cells resembling CM using the cocktail of 4 miRs. This indicates that the miR-mediated transdifferentiation is only possible in neonatal fibroblasts. The effects in mice after an AMI might possibly be caused by an enhanced plasticity of fibroblasts in and close to the infarcted area. We also screened to find aptamers specifically binding to cells of the cardiovascular system. We used two oligonucleotide libraries in a cell-SELEX to select candidates which bind to CF, but not EC. We observed that only the library which contains two randomized regions of 26 bases showed an enrichment of species binding to fibroblasts. We then sequenced rounds 5-7 of the SELEX and analyzed the data bioinfomatically to select 10 candidate aptamers. All candidates showed a strong binding not only to CF, but also EC. This indicates that the selection pressure against species binding to EC was not high enough and would have to be increased to find true CF-aptamers. Four promising candidates were also analyzed for their potential to be internalized and we surprisingly found that all of them were internalized by EC and CF more efficiently than TRA. The similar behavior of the candidates implies that they possibly share a ligand, which is expressed both by EC and CF, but more prominently by the latter. This work demonstrates the possibility of using aptamers to transport miRs into cells of the cardiovascular system. It also shows that it is possible to select aptamers for non-cancerous mammalian cells, which has not been done before. It is reasonable to assume that a refinement of the cell-SELEX will allow selection of cell-specific aptamers. Due to the failure of reprogramming of adult fibroblasts into induced cardiomyocytes we were unable to test whether a miR-mediated reprogramming might be inducible using aptamer transported-miRs. Ultimately, aptamer mediated transport of miRs is a feasible and promising therapeutic option for the treatment of cardiovascular diseases and other disorders like cancer.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks