Refine
Document Type
- Doctoral Thesis (9)
Language
- English (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- DEER (1)
- DNS (1)
- EPR (1)
- Electron Paramagnetic Resonance (1)
- Elektronenspinresonanz (1)
- Elektronenspinresonanzspektroskopie (1)
- Multi-domain proteins (1)
- Nitroxylradikal (1)
- PELDOR (1)
- PELDOR / DEER (1)
Institute
This thesis demonstrates the advancement of PELDOR spectroscopy beyond its original design of distance measurements in order to disentangle a maximum amount of information additionally encoded in the PELDOR data. In particular, the successful synthesis of novel polynitroxide radicals is described as well as the extraction of the relative orientation of spin labels, conformational flexibility and the separation of dipolar and exchange coupling via orientation selective PELDOR measurements in combination with PESIM based simulations. Moreover, the method of PELDOR "Spin Counting" was experimentally validated.
Pulsed electron-electron double resonance (PELDOR) is a pulsed EPR method that can reliably and precisely provide structural information regarding duplex RNAs and DNAs by measuring long-range distances (1.5-7 nm) utilizing distance-dependent magnetic dipole-dipole interaction between two nitroxide spin labels. In this thesis the application field of PELDOR spectroscopy has been expanded. For the first time the global architecture of tertiary folded RNA has been mapped in vitro. Moreover, the first application of PELDOR for determining structural aspects of RNA and DNA molecules inside cells has been presented. RNA has the central role in cellular processes and gene regulation. It can adopt complex three dimensional structures, which in combination with its conformational dynamics is essential for its function as biological catalyst, structural scaffold and regulator of gene expression. Riboswitches are cis-acting RNA segments that modulate gene expression by direct binding of small molecules with high affinity and specificity. Neomycin-responsive riboswitch is an engineered riboswitch developed by combination of in vitro selection and in vivo screening. Upon insertion into the 5‟ untranslated region of mRNA and binding the cognate ligand it is able to inhibit translational initiation in yeast. Using enzymatic probing the secondary structure had been postulated comprising global stem-loop architecture with a terminal and an internal loop. In the first part of this thesis, the global conformational arrangement of this 27 nucleotides long RNA element has been studied by means of site-directed spin labeling and PELDOR spectroscopy. Spin-labeled neomycin-responsive riboswitch mutants were synthesized via a Sonogashira cross-coupling reaction between 5-membered pyrroline ring based nitroxide radical (TPA) and 5-iodo-uridine. The labeling positions were chosen outside of the binding pocket and UV melting curves revealed that spin-labeling neither disturbs the secondary structure nor interferes with ligand binding. Efficient ligand binding was proven by thermal stabilization of 20.3±3.3 oC upon addition of neomycin, as well as by cw EPR spectra. PELDOR time traces with long observation time windows and with good signal to noise ratio and modulation depth were recorded for all double-labeled samples allowing a reliable data analysis. The fact that there were no shifts in the measured distances upon addition of neomycin implied the existence of a prearranged tertiary structure of the neomycin-sensing riboswitch without a significant global conformational change induced by ligand binding. Measured distances were in very good agreement with the NMR structure of the ligand-bound state of the riboswitch indicating the intrinsic propensity of the global RNA architecture toward its energetically favored ligand-bound form at low temperature. The results harvested in this work represent the first application of PELDOR for mapping the global structure of a tertiary folded RNA. In the second part of this thesis the possibility of applying PELDOR on nucleic acids (NAs) in cellular environment has been investigated. It was shown before that global NA structure depends on matrix conditions, such as concentration of ions and small molecules, molecular crowding, viscosity and interactions with proteins. Therefore, PELDOR spectroscopy on a double-labeled 12-base pair DNA duplex, the 14-mer cUUCGg tetraloop hairpin RNA and the 27-mer neomycin-sensing riboswitch has been used to obtain long-range distance constraints on such systems in Xenopus laevis oocytes and to compare them with in vitro measurements. The reduced lifetime of nitroxide spin labels under cellular conditions has been a major challenge in these measurements. Investigation of nitroxide reduction kinetics in-cell has revealed that the 5-membered pyrrolidine and pyrroline rings are significantly slower reduced compared to 6-membered piperidine ring based nitroxides. Due to prolonged lifetime of the TPA nitroxides covalently attached to NA molecules PELDOR signals could be measured with good signal-to-noise ratios up to 70 minutes of incubation time. The partial loss of coupled spin labels due to nitroxide reduction only led to a decrease in the modulation depth upon increasing the incubation time. No alterations in the measured distances between in vitro and in-cell experiments implies the existence of stable overall conformations of the 14-mer cUUCGg tetraloop hairpin RNA and the 27-mer neomycin-sensing riboswitch, whereas the 12-bp duplex DNA experiences stacking in-cell but retaining the secondary structure. Thus, for the first time nanometer distance measurements were performed inside cells, clearly laying a foundation for the application of PELDOR spectroscopy to study biological processes in cells, such as diffusion, interaction with proteins and other factors or chemical reactions.
Structural biology often employs a combination of experimental and computational approaches to unravel the structure-function paradigm of biological macromolecules. This thesis aims to approach this combination by the application of Pulsed Electron-Electron Double Resonance (PELDOR/DEER) spectroscopy and structural modelling. In this respect, PELDOR spectroscopy in combination with site-directed spin labelling (SDSL) of proteins is frequently used to gain distance restraints in the range from 1.8 to 8 nm. The inter-spin distance and the flexibility of the spin labelled protein domains are encoded in the oscillation and the dampening of the PELDOR signal. The intrinsic flexibility of the commonly used MTSSL (1-Oxyl-2,2,5,5-tetramethylpyrroline-3-methyl) spin label itself can be an obstacle for structural modelling if the flexibility of the label is large compared to the flexibility of the protein domains. In this thesis the investigation of two multi-domain proteins by the 4-pulse PELDOR sequence is presented. At first, the N-terminal polypeptide transport-associated (POTRA) domains of anaOmp85, a rigid three domain protein, giving well-defined PELDOR distance restraints, is investigated. The experimental restraints are used for structure refinement of the X-ray structure and reveal a strong impact of the intrinsic flexibility of MTSSL on the accuracy of structural refinement. The second example, K48-linked diubiquitin, is a highly flexible multi-domain protein on which the flexibility of MTSSL is of minor impact on structural modelling. In this case, the distance restraints are utilized to determine conformational ensembles. Due to the high intrinsic flexibility already characterizing diubiquitin the recently developed 7-pulse Carr-Purcell (CP) PELDOR sequence was applied to investigate longer ubiquitin chains. This sequence enables to measure dipolar oscillations with an extended time window, allowing a good separation between inter- and intramolecular contributions even for long distance and broad conformational distributions, thereby providing an increased accuracy of the obtained distance distributions.
Pulsed electron-electron double resonance (PELDOR), also called Double Electron-Electron Resonance, (DEER) is a pulsed EPR technique that can provide structural information of biomolecules, such as proteins or nucleic acids, complementary to other structure determination methods by measuring long distances (from 1.5 up to 10 nm) between two paramagnetic labels. Incorporation of the rigid Ç-label pairwise into DNA or RNA molecules enables the determination not only of the distance but also of the mutual orientation between the two Ç-labels by multi-frequency orientation-selective PELDOR data (X-, Q- and G-band frequencies). Thus, information about the orientation of secondary structure elements of nucleic acids can be revealed and used as additional angular information for structure determination. Since Ç does not have motion independent from the helix where it resides, the conformational flexibility of the nucleic acid molecule can be directly determined. This thesis demonstrates the advancement of PELDOR spectroscopy, beyond its original scope of distance measurements, to determine the mutual orientation between two rigid spin labels towards the characterization of the conformational space sampled by highly flexible nucleic acid molecules. Applications of the methodology are shown on two systems: a three-way junction, namely a cocaine aptamer in its bound-state, and a two-way junction, namely a bent DNA.
More in detail, the conformational changes of the cocaine aptamer upon cocaine binding were investigated by analysis of the distance distributions. The cocaine-bound and the unbound states could be differentiated by their conformational flexibility, which decreases in the presence of the ligand. Moreover, the obtained distance distributions revealed a small change in the mean distance between the two spin labels upon cocaine binding. This indicates a ligand-induced conformational change, which presumably originates at the junction where cocaine is known to bind. The investigation of the relative orientation between the two spin-labeled helices of the aptamer revealed further structural insights into the conformational dynamics of the cocaine-bound state. The angular information from the orientation-selective PELDOR data and the a priori knowledge about the secondary structure of the aptamer were helpful in obtaining a molecular model describing its global folding and flexibility. In spite of a large flexible aptamer, the kink angle between the Ç-labeled helices was found to be rather well-defined.
As for the bent DNA molecule, a two-step protocol was proposed to investigate the conformational flexibility. In the first step, a database with all the possible conformers was created, using available restraints from NMR and distance restraints derived from PELDOR. In a second step, a weighted ensemble of these conformers fitting the multi-frequency PELDOR data was built. The uniqueness of the obtained structural ensemble was checked by validation against an independent PELDOR data set recorded at a higher magnetic field strength. In addition, the kink and twist angle pairs were determined and the resulting structural ensemble was compared with the conformational space deduced both from FRET experiments and from the structure determined by the NMR restraints alone.
Overall, this thesis underlines the potential of using PELDOR spectroscopy combined with rigid spin labels in the context of structure determination of nucleic acids in order to determine the relative orientation between two helices, the conformational flexibility and the conformational changes of nucleic acid molecules upon ligand binding.
Metal ions as novel polarizing agents for dynamic nuclear polarization enhanced NMR spectroscopy
(2017)
High-spin complexes of Gd(III) and Mn(II) were introduced as polarizing agents (PAs) for solid-state dynamic nuclear polarization (DNP) in 2011. This dissertation was undertaken in 2013, with the intention of exploring these PAs further. Major goals of this work were to understand their DNP mechanism(s) and explore their application in biomolecular research. This cumulative thesis details the methods, advantages, and practical implications of using high-spin PAs for MAS DNP. Data from electron paramagnetic resonance (EPR) and NMR spectroscopy are discussed for a complete understanding of DNP mechanisms.
Out of the two main mechanisms − solid effect (SE) and cross effect (CE − active under experimental conditions of solid-state DNP, commonly used nitroxide PAs evoke CE owing to their broad EPR spectra. On the other hand, DNP mechanisms evoked by high-spin metal ions seem non-trivial due to additional features (originating from spin-orbit coupling or zero field splitting) in their EPR spectra. The features of the EPR signal generally influence the shape of enhancement profiles. Therefore, the metal ion with a simpler EPR signal i.e., Gd(III) , is chosen as the starting point for the investigation of DNP mechanisms. Varying concentrations (2, 10, 20 mM) of a water-soluble and stable complex Gd-DOTA was dissolved as the PA in a glycerol-water solution of 13C,15N - urea. Field profiles of DNP enhancement on each nuclear type (1H, 13C, and 15N) establishes SE as the active DNP mechanism at the smallest PA concentration (2 mM). This confirms the theoretical predictions that narrow line width of the Gd(III) EPR signal arising from the central transition (CT, ms = -1/2 +1/2) allows for resolved SE DNP. However, that is no longer the case at higher PA concentrations of 10 and 20 mM. At higher Gd(III) concentrations, the CE mechanism contributes significantly and varies with nuclear Larmor frequency (ωn) of the concerned nuclei. The enhancement maxima shifts towards the EPR resonance as the contribution from CE increases. This shift is evident in the field profiles of 15N and 13C, whereas that of 1H is least influenced. This observation can be explained by combining theoretical estimates with the experimental data; the CE is evoked by increased dipolar coupling (Dee) – a prerequisite for CE – between neighboring Gd(III) spins as the statistical inter-spin distance shortens at elevated concentrations. This finding is important because the knowledge of active DNP mechanisms is essential for accurate interpretation of results from DNP experiments.
From the experiments on Gd-DOTA it becomes clear that concentration, inter-spin distances, and hence induced Dee are intertwined. In order to explicitly address the influence of inter-spin distances on DNP mechanisms we started a collaboration with the group of Adelheid Godt (Bielefeld). In this collaborative project, bis-complexes of the type Gd(III)-spacer-Gd(III) with variable spacer lengths were investigated. These PAs provided an excellent model system where the influence of only inter-spin distances can be determined for a fixed Gd(III) concentration. A small PA concentration of 4 mM is used to ensure absence of significant inter-molecular dipolar interactions. A mono-Gd complex of similar geometry and chemistry is taken as a reference for SE DNP.
The mono-Gd complex yields enhancements arising from SE as expected from negligible inter-molecular Dee. The contribution of CE increases as the inter-spin distances between Gd(III) ions become shorter going from 3.4 nm 2.1 nm 1.4 nm 1.2 nm due to corresponding increase in Dee. The extent of CE on ωn follows the same trend as for Gd-DOTA. Highest CE contribution is observed on nuclei with the smallest ωn 15N because smaller ωn approaches the width of the EPR signal, this is an additional requirement for CE DNP.
The field position for maximum DNP enhancement corresponding to Gd-DOTA, is used for DNP experiments on Ubiquitin with an attached Gd-tag as PA. The success of DNP on this sample illustrates the possibility of site-directed DNP with metal ions tags as PAs. As a perspective Gd-tags can be used to examine change in conformation of a protein that would give higher enhancements due to CE if two Gd(III) labeled domains are closer in space. In a separate project, Mn(II) (s=5/2) bound to the divalent site of a hammerhead ribozyme was used as a PA which resulted in the first demonstration of intra-complex DNP using an intrinsically bound metal ion PA.
Transport mechanism of a multidrug resistance protein investigated by pulsed EPR spectroscopy
(2019)
In human several diseases result from malfunctions of ATP-binding cassette (ABC) systems, which form one of the largest transport system superfamily. Many ABC exporters contain asymmetric nucleotide-binding sites (NBSs) and some of them are inhibited by the transported substrate.1 For the active transport of diverse chemically substrates across biological membranes, ABC transport complexes use the energy of ATP binding and subsequent hydrolysis. In this thesis, the heterodimeric ABC exporter TmrAB2,3 from Thermus thermophilus, a functional homolog of the human antigen translocation complex TAP, was investigated by using pulsed electron-electron double resonance (PELDOR/DEER) spectroscopy. In the presence of ATP, TmrAB exists in an equilibrium between inward- and outward-facing conformations. This equilibrium can be modulated by changing the ATP concentration, showing asymmetric behaviour in the open-to-close equilibrium between the consensus and the degenerate NBSs. At the degenerate NBS the closed conformation is more preferred and closure of one of the NBSs is sufficient to open the periplasmic gate at the transmembrane domain (TMD).3 By determining the temperature dependence of this conformational equilibrium, the thermodynamics of the energy coupling during ATP-induced conformational changes in TmrAB were investigated. The results demonstrate that ATP-binding alone drives the global conformational switching to the outward-facing state and allows the determination of the entropy and enthalpy changes for this step. With this knowledge, the Gibbs free energy of this ATP induced transition was calculated. Furthermore, an excess of substrate, meaning trans-inhibition of the transporter is resulting mechanistically in a reverse transition from the outward-facing state to an occluded conformation predominantly.3 This work unravels the central role of the reversible conformational equilibrium in the function and regulation of an ABC exporter. For the first time it is shown that the conformational thermodynamics of a large membrane protein complex can be investigated. The presented experiments give new possibilities to investigate other related medically important transporters with asymmetric NBSs or other similar protein complexes.
Pulsed electron–electron double resonance (PELDOR) spectroscopy is a powerful tool for measuring nanometer distances in spin-labeled systems and recently is increasingly applied to membrane proteins. However, after reconstitution of labeled proteins into liposomes, spin labels often exhibit a much faster transversal relaxation (Tm) than in detergent micelles, thus limiting application of the method in lipid bilayers. In the first part of the thesis, optimization of transversal relaxation in phospholipid membranes was systematically investigated by use of spin-labeled derivatives of stearic acid and phosphatidylcholine as well as spin-labeled derivatives of the channel-forming peptide gramicidin A under the conditions typically employed for PELDOR distance measurements. Our results clearly show that dephasing due to instantaneous diffusion that depends on dipolar interaction among electron spins is an important contributor to the fast echo decay in cases of high local concentrations of spin labels in membranes. The main difference between spin labels in detergent micelles and membranes is their local concentration. Consequently, avoiding spin aggregation and suppressing instantaneous diffusion is the key step for maximizing PELDOR sensitivity in lipid membranes. Even though proton spin diffusion is an important relaxation mechanism, only in samples with low local concentrations does deuteration of acyl chains and buffer significantly prolong Tm. In these cases, values of up to 7 μs have been achieved. Furthermore, our study revealed that membrane composition and labeling position in the membrane can also affect Tm, either by promoting the segregation of spin-labeled species or by altering their exposure to matrix protons. Effects of other experimental parameters including temperature (<50 K), presence of oxygen, and cryoprotectant type are negligible under our experimental conditions.
In the second part of the thesis, inhomogeneous distribution of spin-labels in detergent micelles has been studied. A common approach in PELDOR is measuring the distance between two covalently attached spin labels in a macromolecule or singly-labeled components of an oligomer. This situation has been described as a spin-cluster. The PELDOR signal, however, does not only contain the desired dipolar coupling between the spin-labels of the molecule or cluster under study. In samples of finite concentration the dipolar coupling between the spin-labels of the randomly distributed molecules or spin-clusters also contributes significantly. In homogeneous frozen solutions or lipid vesicle membranes this second contribution can be considered to be an exponential or stretched exponential decay, respectively. In this study, it is shown that this assumption is not valid in detergent micelles. Spin-labeled fatty acids that are randomly partitioned into different detergent micelles give rise to PELDOR time traces which clearly deviate from stretched exponential decays. As a main conclusion a PELDOR signal deviating from a stretched exponential decay does not necessarily prove the observation of specific distance information on the molecule or cluster. These results are important for the interpretation of PELDOR experiments on membrane proteins or lipophilic peptides solubilized in detergent micelles or small vesicles, which often do not show pronounced dipolar oscillations in their time traces.
In the third part, PELDOR has been utilized to study the structural flexibility of the Toc34 GTPase homodimer, a preprotein receptor of the translocon of the outer envelope of chloroplasts (TOC). Toc34 belongs to GAD subfamily of G-proteins that are regulated and activated by nucleotide-dependent dimerization. However, the function of Toc34 dimerization is not yet fully understood. Previous structural investigations of the Toc34 dimer yielded only marginal structural changes in response to different nucleotide loads. PELDOR revealed a nucleotide-dependent transition of the dimer flexibility from a tight GDP to a flexible GTP-loaded state. Substrate-binding stabilizes the dimer in the transition state mimicked by GDP-AlFx, but induces an opening in the GDP or GTP-loaded state. Thus, the structural dynamics of bona fide GTPases induced by GTP hydrolysis is replaced by substrate-dependent dimer flexibility, which represents the regulatory mode for dimerizing GTPases.
In the fourth part of the thesis, conformational flexibility and relative orientation of the N-terminal POTRA domains of a cyanobacterial Omp85 from Anabaena sp. PCC 7120, a key component of the outer membrane protein assembly machinery, were investigated by PELDOR spectroscopy. Membrane proteins of the Omp85-TpsB superfamily are composed of a C-terminal β-barrel and a different number of N-terminal POTRA domains, three in the case of cyanobacterial Omp85. It has been suggested that the N-terminal POTRA domains (P1 and P2) might have functions in substrate recognition. Molecular dynamics (MD) simulations predicted a fixed orientation for P2 and P3 and a flexible hinge between P1 and P2. The PELDOR distances measured between the P2 and P3 POTRA domains are in good agreement with the structure determined by X-ray, and compatible with the MD simulations suggesting a fixed orientation between these domains. PELDOR constraints between the P1 and P2 POTRA domains imply a rather rigid structure with a slightly different relative orientation of these domains compared with the X-ray structure. Moreover, the large mobility predicted from MD is not observed in the frozen solution. The PELDOR results further highlight the restricted relative orientation of the POTRA domains of the Omp85-TpsB proteins as a conserved characteristic feature that might be important for the processive sliding of the unfolded substrate towards the membrane.
One of the most important tasks in chemistry and especially in structural biology has always been the elucidation of three-dimensional molecular structures - either of small molecules or large biopolymers. Among the (bio)physical methods to acquire structural data at atomic resolution electron paramagnetic resonance (EPR) spectroscopy is the most valuable technique for obtaining structural information about many different kinds of paramagnetic species. In biological systems, either paramagnetic metal ions/clusters, transient paramagnetic intermediates in electron transfer processes or artificially attached stable spin labels can be found. The usual approach to interpret EPR spectra is to perform simulations based on the so-called spin Hamiltonian (SH). This means that the well-defined numerical parameters (tensors) in the SH representing different types of interaction are obtained by fitting the experimental data. The SH parameters include electronic g-values, hyperfine coupling (HFC) and quadrupole coupling (&C) constants, zero-field splittings and constants to describe exchange and dipolar interactions between electron spin systems. However, since the SH only contains spin degrees of freedom, a direct translation of the SH EPR parameters into structural information is not straightforward. Therefore, methods to predict such SH interaction parameters starting from molecular structures are required. In this thesis it was investigated whether quantum chemical calculations of EPR parameters based on density functional theory (DFT) methods may be employed to overcome these problems thus enabling a correlation of experimental EPR data with molecular structure. It was the central goal of this work to point out the potential of a fruitful interplay between quantum chemistry and experiment and to study how both can benefit from each other. For this purpose DFT methods were applied to a variety of organic radical or transition metal systems to calculate different EPR parameters. Using the 'broken symmetry' formalism it was possible to compute the exchange coupling constant for a nitroxide biradical and furthermore decompose the exchange mechanism in different through-bond and through-space interactions. Spin density distributions, 14N and 1H HFC constants as well as dipole moments and polarizabilities were computed for a number of aromatic nitroxides to examine their properties and select promising candidates which may serve as DNA-intercalating spin labels. Systematic investigations of the influence of hydrogen bond geometry on the 14N QC parameters for imidazole-water and methylimidazole-benzosemiquinone complexes lead to the conclusion that especially the imidazole amino nitrogen &C parameters are very sensitive probes of the bond geometry, in particular of the hydrogen bond length. The results of this study may be applied to biological systems, e.g. to gain structural information about quinone binding sites. Moreover, quantum chemical methods were applied to elucidate the structure of a nitrogen-centered radical intermediate in the inhibition process of ribonucleotide reductase (RNR). It was possible to find a molecular structure in accordance with all experimentally available data, thus revealing the longsought structure of the No radical and providing evidence for the trapping of a 3'-ketonucleotide in the reduction process catalyzed by RNR. To test the capability of modern DFT methods to predict g- and molybdenum HFC tensors for MoV complexes, validation studies were carried out. Comparison of computed EPR parameters of a number of MoV compounds with corresponding experimental values showed that g- and HFC tensors could be predicted in good accuracy, although some systematic errors of the computational methods have to be considered for such heavy 4d1 transition meta1 systems. Furthermore, DFT calculations on a Mn2+ binding site model of the hammerhead ribozyme allowed to conclude that the structure of the binding site as studied by EPR spectroscopy in frozen solution is very likely to be identical to the site found occupied by Mn2+ in crystals. Finally, computational methods were employed to aid in the structural characterization of the Mn2+ binding site in Ras (rat sarcoma protein) by providing accurate starting parameters for spectral simulations and furthermore helping to interpret the experimental data. In conclusion, it was demonstrated in this thesis that the combination of sophisticated experimental and quantum chemical methods represents a powerful approach in the field of EPR spectroscopy and that it may be essential to employ EPR parameter computations to extract the full information content from EPR spectra. Therefore, great potential lies in future applications of DFT methods to the large number of systems where detailed and reliable experimental data is available but where an unequivocal correlation of these data with structural information is still lacking.
Pulsed dipolar (PD) EPR spectroscopy is an established and reliable tool for the investigation of biomolecules. In terms of long distance and orientation measurements, it is one of the leading methods and further fields of application are constantly being explored. The distances that can be detected with PD EPR also correspond to the range in which almost all important biomolecule interactions occur. In the transition from in vitro spectroscopy to in-cell spectroscopy, the power of PD EPR spectroscopy is particularly evident. It is non-invasive, more sensitive than NMR, and does not exhibit background signals from diamagnetic molecules. In particular, the absence of background signals is of great importance given the high density of molecules within cellular environment. However, like any other spectroscopic method, PD EPR has certain limitations. Owing to the intrinsically fast electron spin echo dephasing at higher temperature, these experiments are commonly carried out in frozen solutions at about 50 K. This temperature is far away from the physiological conditions and the freezing additives used, e.g. glycols, can further influence the structure. To enable measurements with and within living organisms, it is therefore necessary to ascend from the cold depths of the frozen state. At the same time, one has to adapt the spin tags for the desired application. Established nitroxides commonly used for EPR studies are typically susceptible to reduction. Thus, for studies under physiological conditions, e.g. in the cell, one has to fight against the reductive environment in the cell and somehow protect the spin labels. Initial published in-cell experiments within the research group and investigations of homogeneously distributed labeled double-stranded (ds) ‐DNA samples in solid matrices showed promising results and enabled pulsed measurement in the temperature range of 50‐ 295 K. It could also be demonstrated that spherical shielded nitroxides have a significantly longer life span in cellular environments than non-protected ones and first nuclear acids were measured in cell. Based on these results, we have gone further to overcome the standing limitations and developed the use of PD EPR spectroscopy. This work addresses these challenges with the overall goal of advancing the applications of PD EPR spectroscopy for studying biomolecules under physiological conditions.
We have focused on four different approaches. The results of these studies were published in various publications. They are presented and discussed together with further studies and put into the context of research conducted before and after the authors' publications.
In approach 1, we fought against the two main obstacles for using pulsed dipolar spectroscopy at ambient conditions – minimizing phase memory time T2 and averaging of the anisotropic dipolar coupling by rotational diffusion. We focused on an immobilization approach, while using rigid spin labels at same time. Besidesto the distance information, the incorporated rigid spin labels will give additional angular constrains and information about the molecular dynamics.
In approach 2, we focused on the on-site and on-demand formation of nitroxide spin labels using light-sensitive alkyl protection groups. This a very mild and efficient procedure that will hardly interfere with sensitive functional groups present in oligonucleotides or peptides. By establishing this method and using coumarin protecting groups plus two-photon excitation, this property may offer the potential to generate spin labels with very high levels of spatial and temporal resolution.
For approach 3, we used paramagnetic Gd3+ -ions as intrinsically stable labels, which are not reducible within a cellular environment. Easy to mix and bound to encodable lanthanide binding tags within the molecule Interleucin 1β, we were able to measure distances between two tags with PELDOR spectroscopy. We tested the extent to which this system is suitable for in-cell measurements.
Finally, we focus on methods for easier labeling by using non-covalentlabeling techniques. One of these is the novel nitroxide G´ for site-directed spin labeling of nucleic acids, especially for RNA. This spin label is sterically hindered, easy to build and binding occurs in seconds by simply mixing the spin label with the target. For large RNAs, another easy-to-mix and noncovalent spin-labeling strategy will be experimentally accompanied and presented.
The approaches and results described here are intended to demonstrate that the study of the biological functions of biomolecules under physiological conditions by pulsed EPR spectroscopy is feasible and operational. In combination, they will enable the life sciences to make further and faster progress in the search for the molecular master plan.