Refine
Document Type
- Doctoral Thesis (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- Polarimetrie (2)
- Spektroskopie (2)
- detector (2)
- Detektor (1)
- Elektronen-Korrelation (1)
- Germaniumdetektor (1)
- Harte Röntgenstrahlung (1)
- Hochgeladene Ionen (1)
- Lambverschiebung (1)
- Mehrfach geladenes Ion (1)
Institute
- Physik (8)
A novel experimental approach for studying exotic transitions in few-electron high-Z ions was developed. In this approach, few-electron ions with selectively produced single K-shell holes are used for the investigation of the transition modes that follow the decay of the excited ions. The feasibility of the developed approach was confirmed by an experimental study of the production of low-lying excited states in He-like uranium, produced by K-shell ionization of initially Li-like species. It was found that K-shell ionization is a very selective process that leads to the production of only two excited states, namely the 1s2s 21S0 and 1s2s 23S1. This high level of selectivity stays undisturbed by the rearrangement processes. These experimental findings can be explained using perturbation theory and an independent-particle model, and are a result of the very different impact parameter dependencies of K-shell ionization and L- intrashell excitation. The L-shell electron can be assumed to stay passive in the collision, whereas the K-shell electron is ionized. It was stressed that the current result might directly be applied to accurate studies of the two-photon decay in He-like ions. Up to now, the experimental challenge in conventional 2E1 experiments has been the photon-photon coincidence technique, which is required to separate the true 2E1 events from the x-ray background associated with single photon transitions. In contrast, by exploiting K-shell ionization, the spectral distribution of the two-photon decay could be obtained simply by a measurement of the photon emission, using only a single x-ray detector in coincidence with projectile ionization. One further particular advantage arises from the fact that the 1s2p 3P0 state is not populated, and does not contribute to the continuum distribution of the two-photon emission. At high Z, this state also undergoes a two-photon E1M1 decay, which would be indistinguishable from the 2E1 decay of the 1s2s 1S0. The first measurement of the two-photon energy distribution from the decay of 1s2s 1S0 level in He-like tin was performed by adopting the technique developed in this thesis. In this technique, excited He-like heavy ions were formed by K-shell ionization of initially Li-like species in collisions with a low-Z gas target, and x-ray spectra following the decay of the He-like ions were measured in coincidence with the up-charged tin ions. The observed intense production of the 2E1 transitions, and a very high level of selectivity, make this process particularly suited for the study of the two-photon continuum, and thus for a detailed investigation of the structure of high-Z He-like systems. The method allowed for a background-free measurement of the distribution of the two-photon decay (21S0 -> 11S0) in He-like tin. The measured distribution could also be discriminated from that of other He-like ions, and confirmed, for the first time, the fully relativistic calculations. In addition, the feasibility of the method was confirmed by studying another exotic transition, namely the two-electron one-photon transition (TEOP) in Li-like high-Z ions. An experimental investigation of the radiative decay modes of the 1s2s2 state in Li-like heavy ions has been started. In the first dedicated beam time at the ESR, selective population of this state via K-shell ionization of initially Be-like species was achieved. The x-rays produced in this process were measured by a multitude of x-ray detectors, each placed under different observation angles with respect to the ion beam direction. The spectra associated with projectile electron loss consist (in all cases) of one single x-ray transition, which was attributed to the TEOP decay to the 1s2 2p1/2 level, possibly contaminated by the M1 decay to the 1s22s. Thus it was proven that, by adopting the developed approach, one can indeed produce the desired initial state. This makes this method perfectly suited for studies of TEOP transitions in high-Z systems. An extension of this study, by the inclusion of an electron spectrometer, would also allow for measurements of the autoionization channel, which would provide complete information on the various decay modes of the 1s2s2 state.
In summary, the cooled heavy-ion beams of the ESR storage ring offer excellent experimental conditions for a precise study of the effects of QED in the groundstate of high-Z one- and two-electron ions. This has been demonstrated within the series of experiments conducted at the electron cooler device as well as at the gasjet target. In this work we have used a recently developed experimental approach to obtain the first direct measurement of the two-electron contributions to the ground state binding energy of helium-like uranium. By employing our method, all one-electron contributions to the binding energy such as finite-nuclear size corrections and the one-electron self energy cancel out completely. Note, this is a distinctive feature of this particular kind of QED test and is in contrast to all other tests of bound state QED for high-Z ions such as 1s Lamb shift (in one-electron systems), g-factor of bound electrons, or hyperfine splitting. Compared to former investigations conducted at the superEBIT in Livermore we could already substantially improve the statistical accuracy and extend studies to the higher-Z regime. Moreover, our result has reached a sensitivity on specific two-electron QED contributions. Our value agrees with the theoretical predictions within the experimental uncertainty. Similar to the superEBIT experiment possible sources of systematic errors are essentially eliminated and the final result is limited only by counting statistics. For the case of the 1s Lamb shift in hydrogen-like uranium, the achieved accuracy of +- 4.2 eV is a substantial improvement by a factor of 3 compared to the most precise value up to now [44] (see Fig. 5.6). Our result already provides a test of the first-order QED contributions at the 1.5% level and only a slight improvement is required in order to achieve a sensitivity to QED contributions beyond first-order SE and VP.
Motiviert durch aktuelle atomphysikalische Fragestellungen zur Struktur und Dynamik der Materie im Bereich hochgeladener Schwerionen entstand der Bedarf zur Weiterentwicklung bestehender und zur Entwicklung neuartiger ortsauflösender Detektorsysteme. Die Untersuchung der Struktur ist hauptsächlich durch die hochauflösende spektroskopische Vermessung einzelner Energieniveaus der atomaren Hülle bestimmt und liefert grundlegende Einblicke in den atomaren Aufbau. Dabei stellen diese Resultate gerade bei schweren hochgeladenen Ionen eine exzellente Testmöglichkeit der QED in extrem starken Feldern dar. Die Dynamik der Materie zeigt sich in der Teilchendynamik (hier der Atomhülle) in extrem starken und extrem kurzen elektromagnetischen Feldern, wie sie bei Ion-Atom-Stößen auftreten. Beobachtet werden können hier vor allem Teilchen und Photonen-Polarisationsphänomene. Solche Polarisationseffekte sind jedoch nicht auf das Gebiet der atomaren Hülle beschränkt. Als ein Beispiel sei die Untersuchung laserbeschleunigter Teilchen genannt. Hier kann die Polarimetrie von Röntgenstrahlung, die durch Thomson-Streuung optischer Photonen an den zuvor auf relativistische Geschwindigkeiten beschleunigten Teilchen erzeugt wird, Aufschluß über die Natur des Beschleunigungsprozesses geben. Einblick in die lineare Polarisation der Röntgenphotonen im für unsere Arbeit interessanten Energiebereich von einigen 10 keV bis einigen 100 keV können mit Compton-Polarimetern gewonnen werden. Kommerziell sind Detektorsysteme, die eine ausreichende Granularität in Kombination mit hinreichender Detektordicke besitzen, um hohe Nachweiseffizienzen zu erreichen, jedoch nicht verfügbar. Im Rahmen der vorgelegten Arbeit, die sich mit Techniken der hochaufgelösten Röntgenspektroskopie und der Röntgenpolarimetrie an hochgeladenen Schwerionen befasst, wurden vielfältige Arbeiten an und mit orts-, zeit- und energieauflösenden planaren Ge(i)-Detektorsystemen durchgeführt. Wesentliches Ziel der Arbeit war es, ein zweidimensional ortsauflösendes planares Halbleiterdetektorsystem, das für den Einsatz im Kristallspektrometer FOCAL und als Compton-Polarimeter angepasst ist, bereitzustellen. Hierzu wurde ein 2D-µ-Streifendetektorsystem aufgebaut, das eine Ortsauflösung von 250µm, bzw. 1167µm in orthogonaler Richtung, bei einer Detektordicke von 11mm und eine Energieauflösung von etwa 2 keV für jeden einzelnen Streifen bei 60 keV Photonenenergie gewährleistet. Durch Messungen an der Synchrotronquelle ESRF, Grenoble (Frankreich), wurde die Eignung des Systems als bildgebendes Element im FOCAL Kristallspektrometer bei einer Photonenenergie von 60 keV und als Compton-Polarimeter bei einer Photonenenergie von 210 keV untersucht. Der große Vorteil in FOCAL ein ortsauflösendes Detektorsystem einzusetzen, liegt darin, dass alle interessanten Beugungswinkel simultan beobachtet werden können. Im herkömmlichen Ansatz würde man mit einer einfachen Diode und einem Kollimator den Bereich abfahren. Wegen der geringen Ereignisrate und dem hohen Untergrund ist dies jedoch nicht praktikabel. Herkömmliche Systeme wie CCD oder Gasdetektoren haben nicht die nötige Effizienz oder eine zu hohe Dunkelrate. Zur Untersuchung der für FOCAL wichtigen Eigenschaften wurden mehrere Positionen auf dem Detektor bei niedriger Energie mit einem fein kollimierten Photonenstrahl (50 x 50 µm2) gescannt. Neben der guten Energieauflösung des Detektorsystems von durchschnittlich 2.2 keV bei 60 keV, zeigen die Ergebnisse das homogene Verhalten der Detektoreffizienz, welche essentiell für den spektographischen Einsatz in FOCAL ist. Es konnten keine Hinweise auf messbare Ladungsverluste im Bereich des aktiven Detektorvolumens festgestellt werden. Ebenso konnte die Multiplizität (Anzahl der Streifen einer Detektorseite, die auf ein Ereignis reagieren), mit der ein Photon nachgewiesen wird, eindeutig mit der Strukturierung der Kontakte auf der Kristalloberfläche in Verbindung gebracht werden. Es stellte sich heraus, dass die Ereignisse der Multiplizität zwei dazu verwendet werden können um Ortsauflösungen deutlich unterhalb einer Streifenbreite zu erreichen. Diese Methode kann jedoch nur auf eine größere Anzahl von Ereignissen angewendet werden, nicht jedoch auf einzelne Ereignisse. Um das 2D-Ge(i)-µ-Streifendetektorsystem auf seine Eignung als Compton-Polarimeter zu testen, wurden Daten mit einem nahezu vollständig linear polarisierten Photonenstrahl (98% linear polarisiert) bei einer Energie von 210 keV aufgenommen. Die Daten zeigen die erwartete Dipol-ähnliche Asymmetrie im Ortsbild und dienen als Kalibrationsgrundlage zur Interpretation zukünftiger Experimente zur Polarimetrie in diesem Energiebereich. Parallel hierzu wurde an Simulationsprogrammen auf Basis der etablierten Monte Carlo Software EGS4 gearbeitet. Hiermit wurden Vorhersagen bezüglich des Nachweisverhaltens des Detektors auf linear polarisierte Röntgenstahlung gemacht. Ferner wurde für ein 4x4-Pixel-Polarimeter, das bei der ersten Bestimmung der linearen Polarisation der K-REC Strahlung von U92+ am Speichering ESR der GSI eingesetzt wurde, im Rahmen der Datenanalyse mit den auf EGS4-basierenden Programmen die Detektoreffizienz für linear polarisierte Strahlung einer bestimmten Energie simuliert. Mit diesen Simulationsergebnissen konnten die selbstentwickelten Methoden zur Korrektur der Nachweiswahrscheinlichkeit eines Compton-Ereignisses als Funktion des Wechselwirkungspunkts innerhalb des Detektorkristalls und der Energie erfolgreich verifiziert werden. Die detektorbezogenen Resultate dieser Arbeit fanden ihre erste Anwendung in der FOCAL-Spektrometer Strahlzeit 2006, deren genaue Beschreibung jedoch über den Umfang dieser Arbeit hinausgeht. Ebenso flossen die Erfahrungen, die mit den Detektorsystemen, im speziellen dem 2D-Ge(i)-µ-Streifendetektor, gemacht wurden in die Realisierung eines Si(Li)-Detektors mit 32+32 Streifen zur Compton-Polarimetrie bei niedrigeren Energien (ab 60 keV) ein, der gegenwärtig in ersten Experimenten am ESR eingesetzt wird.
Im Rahmen dieser Arbeit sind Experimente zur Bestimmung der 1s Lamb-Verschiebung in wasserstoffartigen Schwerionen und zur Bestimmung des Innerschalenübergangs 2 3P2 --> 2 3S1 in heliumartigen Schwerionen durchgeführt worden. Diese Untersuchungen sind interessant, da es sich hierbei um die Überprüfung der Quantenelektrodynamik im Bereich sehr starker Coulombfelder handelt. Neben den reinen QED-Effekten spielen in diesen schweren Systemen auch relativistische Effekte eine immer bedeutendere Rolle. Es ist erstmals gelungen, eine direkte Messung des Innerschalenübergangs 2 3P2 --> 2 3S1 in einem schweren Z-System durchzuführen. Während in bisherigen Experimenten lediglich leichtere Ionen bis zu einer Kernladungszahl Z = 54 untersucht wurden, sind wir mit unserem Experiment an U90+-Ionen in den Bereich schwerer Systeme vorgedrungen. Zur Energiebestimmung sind am Gastarget des Experimentier-speicherrings (ESR) ein Kristallspektrometer unter einem Beobachtungswinkel von 90° und ein einfacher planarer Germaniumdetektor unter einem Winkel von 35° aufgebaut worden. Das Kristallspektrometer ermöglicht eine hohe Energieauflösung, während der Germaniumdetektor einen breiten Energiebereich abdeckt und somit eine eindeutige Identifizierung der Übergänge ermöglicht. Ein Fit des aufgenommenen Energiespektrums mit einer Simulation zeigt, wie gut die theoretischen Vorhersagen die Übergangsdynamik in diesem Zwei-Elektronen-System beschreiben. Der Innerschalenübergang kann eindeutig von benachbarten Übergängen unterschieden werden. Mit dem Kristallspektro-meter ergibt sich eine Übergangsenergie von 4510,31 ± 0,51 eV, mit dem Germanium-detektor 4509,6 ± 1,5 eV. Beide stimmen gut mit den theoretischen Vorhersagen überein. Durch den geringen Fehler von 0,51 eV stellt diese Messung auch im Vergleich mit den vorhergehenden Experimenten in leichten Systemen eine der genauesten Messungen des Innerschalenübergangs in He-artigen Ionen dar. Zusätzlich dazu kann die Differenz der Innerschalenübergangsenergie von Li-artigem und He-artigem Uran ermittelt werden: 50,94 ± 0,45 eV. Mit dieser Genauigkeit ist unser Experiment empfindlich auf die Zwei-Elektronen-QED und ermöglicht erstmal eine experimentelle Überprüfung dieses Beitrags, der von Kozhedub et al. mit 1,18 eV angegeben wird. Zur Untersuchung der 1s Lamb-Verschiebung von wasserstoffartigen Schwerionen sind bereits eine Vielzahl an Experimenten durchgeführt worden, mit einer maximalen Genauigkeit von 4,6 eV. Die theoretische Auswertung von Korrekturtermen höherer Ordnung erfordert jedoch neue experimentelle Methoden, mit denen sich Genauigkeiten auf dem Niveau von 1 eV und besser erzielen lassen. Dazu hat es ein Nachfolge-experiment zur bisher genauesten Messung der 1s Lamb-Verschiebung in U91+ und des Zwei-Elektronen-Beitrags zum Grundzustand in U90+ am Elektronenkühler gegeben. Hierzu ist das Experiment bei einer niedrigeren Strahlenergie durchgeführt worden. Dabei hat sich allerdings gezeigt, Ionenstrahlen mit einer Energie unterhalb von 20MeV/u besitzen zu kurze Lebensdauern, da bei den niedrigeren Energien die Rekombinationsverluste mit dem Restgas sehr hoch werden und der Ionenstrahl aus technischen Gründen noch einmal umgebuncht werden muss, wobei zusätzlich Zeit und Intensität verloren gehen. Als weiterer Schritt auf dem Weg zu höherer Präzision ist eine Kombination aus einem hochauflösenden Kristallspektrometer (FOCAL) und einem neuartigen orts- und energieauflösenden 2dimensionalen Germaniumdetektor getestet worden. Mit diesem Detektor ist es möglich, mehrere Reflexe gleichzeitig zu messen und somit die Effizienz des Experimentes deutlich zu steigern. Allerdings ist die maximale Energieauflösung bisher über die 250 µm Streifenbreite des Detektors definiert, das entspricht etwas weniger als 200 eV. Tests mit Kalibrationsquellen und das Verfahren des Detektors entlang der Dispersionsachse haben jedoch gezeigt, dass eine Auflösung kleiner als ein Streifen erreichbar ist. Dadurch soll eine Genauigkeit von 1 eV erreicht werden. Die Bewegung der Detektoren, die bei der letzten Strahlzeit einen erheblichen systematischen Fehler verursacht hat, kann mit neuen Detektorplattformen und kontinuierlicher Stickstofffüllung deutlich reduziert werden. Bei den alternativen Methoden Mikrokalorimeter und Absorptionskantenspektroskopie scheinen Mikrokalorimeter eine vielversprechend Entwicklung zu sein, da sie sowohl eine hohe Energieauflösung bieten als auch einen breiten Energiebereich abdecken. Dagegen beinhaltet die Absorptionskantenspektroskopie im Vergleich zu den anderen Methoden zu große systematische Fehler. Aus den Ergebnissen des Experimentes zum Innerschalenübergang und des FOCAL-Commissioning-Experimentes zeigt sich, wie erfolgsversprechend der Einsatz von Kristallspektrometern auf dem Weg zu neuen hochpräzisen Experimenten ist.
Zahlreiche physikalische Prozesse, wie Bremsstrahlung, Synchrotronstrahlung oder Radiative Rekombination verursachen die Emission linear hochpolarisierter Röntgenstrahlung. Dennoch wird technisch nutzbare hochpolarisierte Röntgenstrahlung derzeit fast ausschließlich von einigen wenigen hochspezialisierten Synchrotronlichtquellen oder Freie Elektronen Lasern zur Verfügung gestellt. In der vorliegenden Arbeit wurde der Radiative Einfang in die K-Schale von nacktem Xenon verwendet, um erstmals eine Quelle einstellbarer, monoenergetischer sowie hochpolarisierter Röntgenstrahlung (97%) in einer Speicherringumgebung zu realisieren. Zum Nachweis der Polarisation der Strahlung wurde erstmals auch ein neuartiger orts-, zeit- und energieauflösender Si(Li) Streifendetektor als Röntgenpolarimeter eingesetzt, mit dem die Beschränkungen traditioneller Compton - Polarimeter umgangen werden können. Der gemessene Grad hoher linearer Polarisation, der mit den Vorhersagen durch die Theorie übereinstimmt, ist durchaus bemerkenswert, da die hochpolarisierte Röntgensstrahlung in einem Stoßprozess zwischen einem unpolarisierten Ionenstrahl und einem unpolarisierten Gasjet zustande kam. Dies bedeutet, dass der Radiative Elektroneneinfang ein ideales Werkzeug darstellt, um hochpolarisierte, energetisch frei wählbare Röntgenstrahlung in einer Speicherringumgebung zu erzeugen. Die Entwicklung der neuen 2D Detektortechnologie eröffnet auch Möglichkeiten zur experimentellen Untersuchung der Details atomphysikalischer Vorgänge. So konnte im Rahmen dieser Arbeit durch die Kombination des verwendeten Detektors und der Beschleunigereinrichtung der GSI erstmals experimentell die lineare Polarisation der Strahlung des Radiativen Elektroneneinfangs in die energetisch partiell aufgelösten L-Unterschalen von nacktem Uran bestimmt werden. Zudem wurden neue und präzisere Werte für die Polarisation der Einfangstrahlung in die K-Schalen von nacktem und wasserstoffähnlichem Uran gemessen. Die theoretischen Vorhersagen zeigten eine starke Sensitivität von Messungen linearer Polarisation der bei dem Radiativen Elektroneneinfang emittierten Strahlung auf den Einfluss der insbesondere bei Schwerionen - Atom - Stößen zu berücksichtigenden höheren Ordnungen der Multipolentwicklung. Während die Effekte bei der Messung von Winkelverteilungen des Radiativen Elektroneneinfangs gerade bei den kleineren Winkeln im Bezug auf die Ionenstrahlachse im Laborsystem vergleichsweise gering ausfallen, ist hier ein sehr ausgeprägter Effekt der Depolarisation zu beobachten. Hier liegt der wesentliche Unterschied zwischen den in dieser Arbeit vorgestellten Messungen der linearen Polarisation der Strahlung des Radiativen Einfangs in Xenon sowie in Uran. Das Auftreten der starken Depolarisation veranschaulicht die starke Abhängigkeit der Polarisationscharakteristik des REC-Prozesses von der Kernladungszahl des Projektils. Abschließend sei der Schritt zu der erstmals für diese Arbeit verwendeten Messtechnik mit einem hochaufgelösten Streifendetektor hervorgehoben. Im Gegensatz zu früheren Polarisationsmessungen mit grob dimensionierten Pixeldetektoren waren zu der Gewinnung der hier vorgestellten Messungen praktisch keinerlei zusätzliche Annahmen oder Simulationen zu der Interpretation der gewonnenen Winkelverteilungen notwendig. So konnte mit dem System bereits während des Experimentes eine erste Abschätzung der linearen Polarisation der beobachteten Strahlung durchgeführt werden. Diese Tatsache wird es in naher Zukunft ermöglichen, das für die niederenergetische Röntgenstrahlung weitgehend neue ”Fenster” polarimetrischer Messungen für weitere atomphysikalische Prozesse zu öffnen.
Die intensiven gekühlten Schwerionenstrahlen des ESR-Speicherrings in Kombination mit dem dort installierten Überschallgastarget bieten einzigartige Möglichkeiten, Elektroneneinfangprozesse bei unterschiedlichen Projektilenergien zu untersuchen. In der vorliegenden Arbeit wurde die Emission der charakteristischen Balmerstrahlung detailliert nach (n, j)-Zuständen untersucht; die Lyman-alpha-Strahlung konnte aufgrund der großen Feinstrukturaufspaltung des 2p3/2-Niveaus darüber hinaus auch nach der Besetzung der magnetischen Unterzustände untersucht werden. Hierbei wurde gezeigt, dass der Einfangmechanismus einen starken Einfluss auf die Besetzung der magnetischen Unterzustände und damit auf die Winkelabhängigkeit der Emission der charakteristischen Photonen hat. Erstmals konnte an einem schweren Stoßsystem die Multipolmischung beim Ly-alpha1-Übergang mit großer Genauigkeit nachgewiesen werden; es ergab sich eine sehr gute Übereinstimmung mit der theoretischen Vorhersage. Aus dem Vergleich der Messung der Anisotropie bei höheren Energien mit der Vorhersage einer relativistisch exakten Theorie wurde geschlossen, dass die Messwerte nur dann erklärt werden können, wenn die Mischung von E1- und M2-Übergängen berücksichtigt wird. Durch den Vergleich der als zuverlässig anzusehenden Vorhersage für den REC-Prozeß mit den Messwerten konnte, erstmals für atomare Übergänge in Schwerionen, die Beeinflussung der messbaren Anisotropie durch Mischung der Strahlung unterschiedlicher Multipolaritäten aufgedeckt werden. Hiermit war es möglich, das Übergangsratenverhältnis Gamma M2 / Gamma E1 und daraus das Übergangsamplitudenverhältnis <M2>/<E1> zu extrahieren. Dieser kleine Beitrag(<1%) ist mit anderen Methoden nicht zu vermessen. Die beiden nichtrelativistischen Theorien, den nichtradiativen Einfang in das Projektil beschreiben, liefern bei den totalen Einfangswirkungsquerschnitten nahezu gleiche Ergebnisse in Übereinstimmung mit dem Experiment. Auch die (n, j)-differentiellen Querschnitte zeigen bei dem Vergleich mit den gemessenen Balmerspektren eine sehr gute Übereinstimmung. Erst wenn die magnetischen Unterzustände in die Untersuchung miteinbezogen werden, weichen die beiden Theorien voneinander ab. Unter Einbeziehung der Multipolmischung stimmt die Vorhersage der CDW-Theorie mit den Messwerten überein; die andere Theorie unterschätzt das Alignment des 2p3/2-Zustands und die daraus folgende Anisotropie der Lyman-alpha1-Strahlung. Es muss hervorgehoben werden, dass es durch die Anwendung der Abbremstechnik für nacktes Uran gelungen ist, diese Prozesse in einem Bereich extrem starker Störung (Q/v) zu untersuchen. Dieser Bereich ist im Allgemeinen experimentell nicht zugänglich und ist eine Herausforderung für die theoretische Beschreibung. Wie sich aus den Ausführungen zu den Zerfallskaskaden ergibt, ist die Messung des Alignments bei niedrigen Stoßenergien stark von Kaskadeneffekten beeinflusst. Das bedeutet, dass das Alignment der Lyman-alpha1-Strahlung sowohl durch den direkten Einfang als auch durch die Zerfallskaskade bestimmt ist. Dieses resultiert in einer von der jeweiligen Theorie abhängigen Vorhersage, wodurch sich eine integrale Aussage über die Güte einer bestimmten Beschreibung ableiten lässt.
In der nuklearen Astrophysik sind Experimente mit hochgeladenen Radionukliden von großer Bedeutung. Diese exotischen Nuklide können in Schwerionenbeschleunigeranlagen hergestellt und in Speicherringen gespeichert werden. Momentan existieren weltweit zwei Anlagen, die solche Experimente ermöglichen: das GSI Helmholtzzentrum für Schwerionenforschung GmbH in Darmstadt und das Institut für moderne Physik (IMP) in Lanzhou, China. Da die Ausbeute dieser Nuklide gering ist, werden zerstörungsfreie Nachweismethoden in den Speicherringen verwendet. Diese machen von den Methoden der Spektralanalyse Gebrauch. Nicht nur die geringe Ausbeute, sondern auch die kurze Lebensdauer dieser Nuklide stellen hohe Anforderungen an die Sensitivität und Geschwindigkeit dieser Detektoren.
Eine übliche Methode ist die Verwendung kapazitiver Schottky-Sonden. Eine solche Sonde ist seit 1991 an der GSI im Speicherring ESR im Einsatz. Um die Empfindlichkeit zu erhöhen, kann man Mikrowellenkavitäten als resonante Pickups verwenden. Die von den Teilchen induzierten elektromagnetischen Felder können resonante Moden im Resonator anregen. Die Geometrie des Pickups und das verwendete Material spielen eine wesentliche Rolle in der Gestaltung der Feldbilder. Die resultierenden Signale, auch Schottky Signale genannt, werden mittels einer Antenne ausgekoppelt und anschliessend an einen Spektrumanalysator angeschlossen. Für die Analyse der gespeicherten Daten können verschiedene Methoden der Spektralschätzung wie z.B. das Multi-Taper angewendet werden. Nachdem eine externe Kalibrierung durchgeführt worden ist, kann das Pickup auch als ein Stromsensor verwendet werden.
Diese Arbeit befasst sich mit der Theorie, dem Aufbau und ersten Anwendungen eines neuen resonanten Pickups, das im Jahr 2010 in den Speicherring ESR eingebaut und in mehreren Experimenten erfolgreich eingesetzt wurde. Ein ähnliches Pickup wurde im Jahr 2011 in den CSRe im IMP Lanzhou eingebaut. Einzelne Schwerionen mit 400 MeV pro Nukleon wurden erfolgreich mit dem GSI-Pickup nachgewiesen. Das Pickup wird regelmässig in Speicherringexperimenten eingesetzt. Ähnliche Experimente sind für CSRe in Lanzhou geplant.
Experimente zum radiativen Elektroneneinfang (REC, Radiative Electron Capture), der Zeitumkehrung der Photoionisation, wie er in Stößen hochgeladener, relativistischer Schwerionen mit leichten Gasatomen auftritt, ermöglicht einen einzigartigen Zugang zum Studium der Photonen-Materie-Wechselwirkung im Bereich extrem starker Coulombfeldern. So ist die REC-Strahlung im relativistischen Bereich zum einen geprägt durch das Auftreten von höheren elektrischen und magnetischen Multipolordnungen und zum anderen durch starke Retardierungseffekte. In Folge dessen wurde der REC-Prozeß in den vergangen Jahren sehr detailliert untersucht, wobei sich die experimentelle und theoretische Forschung auf die Emissionscharakteristik der REC-Photonen konzentrierte, wie z.B. auf Untersuchungen von Winkelverteilungen und Linienprofilen. Mittlerweile kann der REC-Prozeß als ein - selbst für die schwersten Ionen - wohlverstandener Effekt angesehen werden. Allerdings entzog sich den Experimenten bislang eine zur Beschreibung der Photonenmission wesentlich Größe, näamlich die Polarisation der Strahlung. Die lineare Polarisation der REC-Strahlung, wie sie in Stößen zwischen leichten Atomen und den schwersten, hochgeladenen Ionen vorhergesagt wird, war der Gegenstand der vorliegende Arbeit, in der es erstmals gelang, die diese für den konkreten Fall des Einfangs in die K-Schale von nackten Uranionen nachzuweisen und im Detail zu untersuchen. Die hierzu notwendigen experimentellen Untersuchungen erfolgten am Speicherring ESR der GSI-Darmstadt für das Stoßsystem U92+ -> N2 und für Projektilenergien, die im Bereich zwischen 98 und 400 MeV/u lagen. Besonders hervorzuheben ist der Einsatz eines segmentierten Germaniumdetektors, der speziell für den Nachweis linear polarisierter Strahlung im Energiebereich oberhalb 100 keV entwickelte wurde. Die lineare Polarisation der Strahlung wurde hierbei durch eine Analyse der Comptonstreuung innerhalb des Detektors gewonnen. Die durch eine präzise Analyse der Comptonstreuverteilungen gewonnenen Daten zeigen eine ausgeprägte lineare Polarisierung der REC-Strahlung in der Streuebene, die zudem eine starke Abhängigkeit als Funktion der Stoßenergie und des Beobachtungwinkels aufweist. Der detaillierte Vergleich mit nicht-relativistischen und relativistischen Vorhersagen ermöglichte darüberhinaus den Nachweis für das Auftreten starker relativistischer Effekte, die sich allerdings depolarisierend auswirken. Das Experiment wurde am internen Target des ESR-Speicherrings durchgeführt, wobei der Photonennachweis mittels mehrerer Ge(i)-Detektoren erfolgte, die die Ionen-Target-Wechselwirkungszone unter Beobachtungswinkeln zwischen nahe Null und 150 Grad einsahen. Alle Photonendetektoren wurden in Koinizidenz mit einem Teilchendetektor betrieben, um so die volle Charakteristik des REC-Prozesses zu erfassen, also den Einfang eines Targetelektrons in die nackten Uranionen (U92+) unter Emission eines Photons. Für den Polarisationsnachweis entscheidend war der Einsatz eines Germanium-Pixel-Detektors, der abwechselnd unter den Winkeln von 60 und 90 Grad betrieben wurde. Dieser Detektor verfügt über eine 4x4 Pixelmatrix (Pixelgröße: 7x7 mm), wobei die elektronische Information jedes Pixels (Energiesignale und schnelle Zeitsignale) separat registriert und aufgezeichnet wurde. Hierdurch war es möglich Ereignisse, die koinzident in zwei Pixeln erfolgten, zu detektieren und zu analysieren. Dies ist die eigentliche Voraussetzung für den Nachweis der linearen Polarisation bei hohen Photonenenergien, bei dem die Abhängigkeit des differenziellen Wirkungsquerschnitts für Comptonstreuung von der linearen Polarisation der einfallenden Photonen ausgenutzt wird (siehe Klein-Nishina Formel Eq. 2.7). Der Nachweis der Comptonstreuung erfolgt hierbei durch die Detektion des Compton-Rückstoßelektrons (deltaE) und des gestreuten Comptonphotons (hw'), die jeweils separat, aber koinzident in zwei unterschiedlichen Segmenten des Detektors nachgewiesen werden. Hier sei betont, dass für Germanium bereits ab Photonenenergien von ca. 160 keV die Absorption der Strahlung durch den Compton-Effekt über die Photoabsorption dominiert und somit das Ausnutzen des Compton-Effekts prinzipiell eine sehr effektive Technik ist. Der Auswertung der Datenfkam wesentlich zugute, dass der Germanium-Detektor über eine im Vergleich zu Szintillations- oder Gaszählern gute Energieauflösung von ca. 1.8 keV bei 122 keV verfügt. Somit kann durch Bilden der Summenenergie hw = hw' + deltaE für koinzidente Ereignisse die Energie des einfallenden Photons (hw) rekonstruieren werden und als zwingende Bedingung dafür herangezogen werden, dass es sich bei dem Ereignis im Detektor um ein Compton-Event gehandelt hat. Für den Fall linearer Polarisation ist eine wesentliche Aussage der Klein-Nishina-Formel, dass die maximale Intensität für die Compton gestreuten Photonen senkrecht zur Polarisationsebene zu erwarten ist. Tatsächlich zeigen bereits die während des Experiments aufgenommenen Rohdaten für den Fall der untersuchten REC-Strahlung, die durch den Einfang in die K-Schale des Projektils entsteht, dass es sich hierbei um eine stark polarisierte Strahlung handelt, wobei eine erhöhte Intensität für Comptonstreuung senkrecht zur Stoßebene (für den REC-Prozeß definiert durch die Ionenstrahlachse und den Impuls des REC-Photons) festgestellt wurde (vgl. Fig. 7.3). Zur genauen qualitativen Analyse der Meßdaten wurden alle möglichen Pixelkombinationen der (4x4) Detektorgeometrie ausgewertet, wobei jedoch koinzidente Ereignisse benachbarter Segmente ausgeschlossen wurden, um den hier vorhandenenen Einfluß elektronischer Übersprecher zu eliminieren. Zudem erfolgte die Analyse der Daten unter Berücksichtigung verschiedenster Effekte, die einen Einfluß auf die Nachweiseffizienzen für die Compton gestreuten Photonen haben könnten. An prominenter Stelle ist hier die Korrektur zu nennen, die durch die Detektordicke von 1,5 cm und der Pixelgröße von 7x7 cm2 hervorgerufen wird. Zu betonen ist hier, dass für die Auswertung nur relative Effizienzen eine Rolle spielen und so der Einfluß systematischer Fehler, hervorgerufen durch Effizienzkorrekturen, stark reduziert werden konnte (für eine so gewonnene, vollständige Compton-Streuverteilung sei auf Abbildung 9.1 verwiesen, in der die Intensitätsverteilung für Compton-Streuung dargestellt ist). Es sei auch hervorgehoben, dass der Nachweis der Polarisation durch Messungen von vollständigen Compton-Intensitätverteilung im Detektor erfolgte, was das hier diskutierte Experiment wesentlich von konventionellen Polarisationsexperimenten für harte Röntgen- und gamma-Strahlung unterscheidet. Üblicherweise wird in diesen Experimenten die Comptonstreuung ausschließlich in der Reaktionsebene und senkrecht dazu nachgewiesen. Generell weisen die in der vorliegenden Arbeit gewonnen Compton-Streuverteilungen für den K-REC-Prozeß ein ausgeprägtes Maxium senkrecht zur Reaktionsebene auf und bestätigen somit den bereits aus den Rohdaten abgeleiteten Befund, dass die Polarisationsebene der KREC Strahlung in der Reaktionsebene des Stosses liegt. In der Tat kann dieser Befund für alle Energien und Beobachtungswinkel bestätigt werden, die in dem hier diskutierten Experiment verwendet wurden. Hier sei zudem darauf hingewiesen, dass es durch die Erfassung der vollständigen Compton-Streuverteilung möglich war, die Orientierung der Polarisationsebene in Bezug auf die Stoßebene mit hoher Präzision zu erfassen. So konnte z.B. bei der Stossenergie von 400 MeV/u und dem Winkel von 90 Grad, die Orientierung der Comptonstreuverteilung in Bezug auf die Stoßebene zu ph=90 Grad bestimmt werden. Dieser Befund könnte für die Planung zukünftiger Experimente zum Nachweis polarisierter Ionenstrahlen entscheidend sein, da eine Abweichung von der ph = 90 Grad Symmetrie nur durch das Vorhandensein polarisierter Teilchen erklärt werden kann. Dieser Effekt, der in neuesten theoretischen Behandlungen im Detail untersucht wurde, stellt gleichsam einen neuen Zugang zur Bestimmung des Polarisationsgrads der Projektile dar. Hierdurch wird die Stärke der hier angewandten Technik verdeutlicht, die auf dem Einsatz eines ortsempfindlichen Germanium-Pixel- Detektors beruht. Die Bestimmung des genauen Polarisationsgrades für die K-REC-Strahlung erfolgte durch eine X2-Anpassung der Klein-Nishina-Formel an die experimentellen Daten. Die hieraus resultierenden Daten zeigen für alle Strahlenergien und Beobachtungsgwinkel eine starke Polarisation von etwa 80%, wobei die experimentelle Unsicherheit im 10% Bereich liegt. Letztere ist im wesentlichen auf die statistische Genauigkeit zurückzuführen. Die Daten wurden zudem eingehend mit theoretischen Vorhersagen verglichen. Die Theorie stützt sich auf eine vollständige relativistische Beschreibung des REC-Prozesses unter Verwendung exakter Wellenfunktionen für das Kontinuum und den 1s Zustand in wasserstoffartigem Uran. Typischer weise mußten bei den Rechnungen sowohl elektrische wie auch magnetische Multipolterme bis hin zu L=20 verwendet werden, um Konvergenz zu erreichen. Der Vergleich zeigt eine hervorragende Übereinstimmung zwischen Experiment und Theorie. Zudem verdeutlicht der Vergleich mit der ebenfalls diskutierten Vorhersage der nicht-relativistischen Dipolnäherung die Bedeutung relativistischer Effekte (vor allem das Auftreten höherer elektrischer und magnetischer Multipole), die für die Emission der REC-Strahlung bei hohen, relativistischen Energien und hohem Z charakteristisch sind. Offensichtlich wirken sich diese Effekte stark depolarisierend aus. Dass in der Tat eine Zunahme der depolarisierenden Effekte mit einer Zunahme der Strahlenergie verbunden ist, wird auch durch die Daten dokumentiert, die für den Beobachtungswinkel von 60 Grad als Funktion des Projektilenergie untersucht wurden. Die in der vorliegenden Arbeit gewonnenen Resultate für die Polarisation der REC-Strahlung ebenso wie die neuartige Experimenttechnik, die hierbei zum Einsatz kam, lassen für die nahe Zukunft eine Serie von weiteren Polarisations-Experimenten erwarten. Hierbei könnte der REC-Strahlung und deren Polarisation als Mittel zur Diagnostik und zum Nachweis des Polarisationsgrades gespeicherter Ionenstrahlen eine Schlüsselrolle zukommen. Als Detektorsysteme werden hierzu zwei-dimensionale Germanium- und Silizium-Streifen-Detektoren zum Einsatz kommen bzw. Kombinationen aus zweidimensionalen Silizium- und Germanium-Detektoren, sogenannte Compton-Teleskope. Diese Compton-Polarimeter, die gegenwärtig für neue Experimentvorhaben am ESR-Speicherring entwickelt werden, verfügen über eine wesentlich verbesserte Ortsauflösung (z.B. 1x1 mm2) und somit über eine wesentlich gesteigerte Nachweiseffizienz für die Comptonstreuung (ein bis zwei Größenordnungen). Hierdurch sollte es möglich sein, den für Polarisationexerperimente zugänglichen Energiebereich wesentlich auszudehnen, sodass selbst die charakteristische Strahlung der Schwerionen (ca. 50 bis 100 keV) für solche Experimente zugänglich wird.