Refine
Document Type
- Doctoral Thesis (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Fahrzeug (1)
- Kalman-Filter (1)
- Schwerpunkthöhe (1)
- Schätzverfahren (1)
- THz (1)
- TeraFET (1)
- application (1)
- automotive (1)
- detector (1)
- detectors (1)
Institute
- Physik (7)
The requirement of the versatile signal generator has always been evident in modern RF and communication systems. The most conventional technique, voltage control oscillator (VCO), has inferior phase noise and narrow bandwidth despite its operating frequency can be up to the sub-THz regime. Its phase noise influenced by a various parameter associated with the oscillator circuit e.g. transistor size \& noise, bias current, noise leaking from the bias supply etc. The bandwidth is limited because the input voltage \& the output frequency of the VCO is not strictly linear over the tuning range. The phase noise and SFDR of the VCO output are enhanced by using the phase-lock technique. The phase-locked loop (PLL) uses the feedback system locking the reference frequency set by the VCO. However, the settling time of the PLL is higher due to a feedback control loop. The higher settling time increases the frequency switching time between PLL outputs. IG-oscillators is suitable for multi-GHz range and wide bandwidth application. Signal generation can alos be achieved by the free-electron radiation, optical lasers, Gunn diodes as well and they can operate even at the THz domain. All these signal generators suffer from slow frequency switching, lack of digital controllability, and advance modulation capability even though their frequency of operation is THz regime. Alternatively, the AWG (arbitrary wave generator) can produce a wide range of frequencies with low phase noise, including digital controllability. One of the vital components of the AWG is the direct digital synthesiser (DDS). Generally, it is composed of a phase accumulator, digital to analogue converter, sine mapping circuits and low pass filter. It needs a reference clock that acts as samples of the DDS outputs. Its output frequency can be varied by applying an appropriate digital input code. But high-speed DDS has several limitations; such as low number of output frequency points, lack of phase control unit, high power consumptions etc. This work addresses such limitations.
This thesis deals with the simulation, optimization and realization of quasi-optical scanning systems for active THz cameras. Active THz cameras are sensitive in the THz regime of the electromagnetic spectrum and are suitable for the detection of metal objects such as weapons behind clothing or fabrics (maybe for security applications) or material investigation. An advantage of active THz-systems is the possibility to measure the phase of the THz-radiation and thus to reconstruct the surface topography of the objects under test. Due to the coherent illumination and the required system parameters (like image field size, working distance and lateral resolution) the optical systems (in the THz region often called quasi-optical systems) must be optimized. Specifically, the active illumination systems require highly optimized quasioptical systems to achieve a good image quality. Since currently no suitable multi-pixel detectors are available, the object has to be scanned in one or two dimensions in order to cover a full field of view. This further reinforces the occurring aberrations. The dissertation covers, alongside the underlying theory, the simulation, optimisation and realisation of three different active THz systems. The subdivision of the chapters is as follows: Chapter 1 deals with a motivation. Chapter 2 develops the underlying theory and it is demonstrated that the geometrical optics is an adequate and powerful description of the image field optimization. It also addresses the developed analytic on-axis and the off-axis image field optimization routine. Chapter 3, 4 and 5 are about the basis of various active THz cameras, each presented a major system aspect. Chapter 3 shows how active THz-cameras with very high system dynamics range can be realised. Within this chapter it could although be demonstrated how very high depth resolution can be achieved due to the coherent and active illumination and how high refresh rate can be implemented. Chapter 4 shows how absolute distance data of the objects under test can be obtained. Therefore it is possible to reconstruct the entire object topography up to a fraction of the wavelength. Chapter 5 shows how off-axis quasi-optical systems must be optimized. It is also shown how the illumination geometry of the active THz systems must be changed to allow for real-time frame rates. The developed widened multi-directional lighting approach also fixes the still existing problem of phase ambiguity of the single phase measurement. Within this chapter, the world’s first active real-time camera with very high frame rates around 10 Hz is presented. This could be only realized with the highly optimised quasioptical system and the multi-directional lighting approach. The paper concludes with a summary and an outlook for future work. Within the outlook some results regarding the simulation of synthetic aperture radar systems and metamaterials are shown.
In der Doktorarbeit wurde ein Verfahren zur Ermittlung der Schwerpunkthöhe eines Fahrzeugs aus den Messwerten von Sensoren, die serienmäßig in vielen geländegängigen Fahrzeugen verbaut sind, entwickelt. Dieses Verfahren benötigt nur die Signale von Sensoren des elektronischen Stabilitätssystems (ESP) und eines Fahrwerks mit Luftfeder. Um die Höhe des Schwerpunkts zu bestimmen, wurde ein Modell entworfen, das die Drehbewegung des Fahrzeugs um seine Längsachse beschreibt. Eine der unbekannten Größen in diesem Modell ist das Produkt m_g\Deltah, wobei mit m_g die gefederte Masse des Fahrzeugs und mit Deltah der Abstand zwischen dem Schwerpunkt und der Wankachse des Fahrzeugs bezeichnet wird. Die Höhe des Schwerpunkts wird berechnet, indem zu diesem Abstand der als bekannt vorausgesetzte Abstand der Wankachse von der Straße addiert wird. Es wurden drei Varianten des Modells betrachtet. Die eine Modellvariante (stationäres Modell) beschreibt das Fahrzeugverhalten nur in solchen Fahrsituationen exakt, in denen die Wankgeschwindigkeit und die Wankbeschleunigung vernachlässigbar klein sind. In dieser Modellvariante wurden die Federkräfte mit einem detaillierten Modell der Luftfeder berechnet. Eine Eingangsgröße dieses Modells ist der Druck in den Gummibälgen der Luftfeder. Um diesen Druck zu ermitteln, wurde ein Algorithmus auf dem Steuergerät des Luftfedersystems implementiert. Um die Genauigkeit des Luftfedermodells zu testen und um die Abmessungen bestimmter Bauteile der Luftfeder zu ermitteln, wurden Messungen am Federungsprüfstand durchgeführt und eine Methode entwickelt, wie aus diesen Messungen die gesuchten Größen berechnet werden können. Bei den zwei übrigen Modellvarianten (dynamisches Modell) gelten die Einschränkung für die Fahrsituationen nicht. Die einzelnen Varianten des dynamischen Modells unterscheiden sich darin, dass das eine Mal die Feder- und Dämpferkonstanten als bekannt vorausgesetzt und das andere Mal aus den Sensorsignalen geschätzt werden. Passend zu jeder Modellvariante wurde ein Verfahren gewählt, mit dem Schätzwerte für das Produkt m_g\Deltah berechnet wurden. Des Weiteren wurde auch eine Methode entwickelt, mit der die Masse mg geschätzt wurde, ohne zuvor ein Wert für das Produkt m_g\Deltah zu ermitteln. Die Schätzwerte wurden unter Verwendung von Daten ermittelt, die bei einer Simulation und bei Messfahrten gewonnen worden sind. Das Ergebnis des Vergleiches der betrachteten Modellvarianten ist, dass die eine Variante des dynamischen Modells zum Teil falsche Werte für m_g\Deltah liefert, weil die Modellgleichungen ein nicht beobachtbares System bilden. Die andere Variante dieses Modells liefert nicht bei jeder Beladung exakte Werte, was vor allem daran liegt, dass in den Modellgleichungen dieses Modells ein konstanter Wert für die Federsteifigkeit angenommen wird. Bei Fahrzeugen mit Luftfeder ändert sich jedoch dieser Wert in Abhängigkeit von der Fahrzeugmasse. Die Werte von m_g\Deltah und mg können am genauesten mit dem stationären Modell ermittelt werden. Des Weiteren wurden Methoden entwickelt, die die Genauigkeit der durch den Schätzalgorithmus ermittelten Werte verbessern. So wurde zusätzlich zu dem Produkt m_g\Deltah und der Masse mg auch die Verteilung des Gewichtes auf die Vorder- und Hinterachse betrachtet. Es wurde ermittelt, welche Zusammenhänge zwischen dieser Verteilung und dem Produkt m_g\Deltah sowie zwischen dieser Verteilung und der Masse des Fahrzeugs bestehen. So konnte der Fehler in den Schätzwerten dieser Größen minimiert werden. Außerdem wurde auch der Zusammenhang zwischen dem Produkt m_g\Deltah und der Masse des Fahrzeugs ermittelt. Damit konnten die Schätzwerte dieser Größen genauer bestimmt werden. Aus den so gewonnenen Werten kann die Schwerpunkthöhe von einem Mercedes ML auf etwa 8cm genau berechnet werden. Diese Genauigkeit reicht aus, um das elektronische Stabilitätsprogramm auf die aktuelle Beladung des Fahrzeugs abzustimmen und damit einen Gewinn an Agilität für dieses Fahrzeug zu realisieren.
Heterodyne array receivers are employed in radio astronomy to reduce the observing time needed for mapping extended sources. One of the main factors limiting the amount of pixels in terahertz receivers is the difficulty of generating a sufficient amount of local oscillator power. Another challenge is efficient diplexing and coupling of local oscillator and signal power to the detectors. These problems are attacked in this dissertation by proposing the application of two vacuum electronic terahertz amplifier types for the amplification of the LO-signal and by introducing a new method for finding the defects in a quasioptical diplexer.
A traveling wave tube (TWT) design based on a square helix slow wave structure (SWS) at 825 GHz is introduced. It exhibits a simulated small-signal gain of 18.3 dB and a 3-dB bandwidth of 69 GHz. In order to generate LO-power at even higher frequencies, the operation of an 850-GHz square helix TWT as a frequency doubler has been studied. A simulated conversion efficiency of 7% to 1700 GHz, comparable with the state-of-art solid-state doublers, has been achieved for an input power of 25 mW.
The other amplifier type discussed in this work is a 1-THz cascade backward wave amplifier based on a double corrugated waveguide SWS. Specifically, three input/output coupler types between a rectangular waveguide and the SWS are presented. The structures have been realized with microfabrication, and the results of loss measurements at 1 THz will be shown.
Diplexing of the LO- and signal beams is often performed with a Martin-Puplett interferometer. Misalignment and deformation of the quasioptical components causes the polarization state of the output signal to be incorrect, which leads to coupling losses. A ray-tracing program has been developed for studying the influence of such defects. The measurement results of the diplexer of a multi-pixel terahertz receiver operated at the APEX telescope have been analyzed with the program, and the results are presented. The program allows the quasioptical configuration of the diplexer to be corrected in order to obtain higher receiver sensitivity.
High-resolution, compactness, scalability, efficiency – these are the critical requirements which imaging radar systems have to fulfil in applications such as environmental monitoring, cloud mapping, body sensing or autonomous driving. This thesis presents a modular millimetre-wave frequency modulated continuous-wave (FMCW) radar front-end solution intended for such applications. High-resolution is achieved by enlarging the operating frequency band of the radar system. This can be realized at millimetre-wave frequencies due to the large spectrum availability. Furthermore, the size of components decreasing with increasing frequency makes millimetre-wave systems a good candidate for compactness. However, the full integration of radar front-ends is a challenge at millimetre-wave frequencies due to poor signal integrity and spectral purity, which are essential for imaging applications. The proposed radar uses an alternative technique and tackles this limitation by featuring highly-integrable architectures, specifically the Hartley architecture for signal conversion and enhanced push-pull amplifier for harmonic suppression. The resolution of imaging radars can be further improved by increasing the number of transmitters and receivers. This has spurred the investigation of spectrum, time and energy-efficient multiplexing techniques for multi-input multi-output (MIMO) radar systems. The FMCW radar architecture proposed in this thesis is based on code-division technique using intra-pulse, also called intra-chirp modulation. This advanced scalable and non-complex solution, made possible by the latest achievements on direct digital synthesis for signal generation, guarantees signal integrity and compact size implementation. The proposed architecture is investigated by a thorough system analysis. A transmitter module and a receiver module for a 35 GHz imaging radar prototype are designed, fabricated and fully characterized to validate the feasibility of our novel approach for high-resolution highly-integrated MIMO front-ends.
Terahertz (THz) physics are an emerging field of research dealing with electromagnetic radiation in the far-infrared to microwave region. The development of innovative technologies for the generation and detection of THz radiation has only in the recent past led to a tremendous rise of both fundamental research as well as investigation of possible fields of application for THz radiation. The most prominent reason has long been the scarce accessibility of the THz region of the electromagnetic spectrum - commonly loosely located between 0.1 and 30 THz - to broad research, and it was mostly limited to astronomy and high energy physics facilities. Over the recent years, numerous novel concepts on both the source and detector side have been proposed and successfully implemented to overcome this so-called THz gap. New technology has become available and paved the way for wide-spread experimental laboratory work and accompanying theoretical investigations. First application studies have emerged and in some cases even commercial development of the field of THz physics is on the rise. Despite these enormous progresses, a continuing demand for more efficient THz detectors still impels current technological research. Relatively low source powers are often a major limiting factor and the request for new detection concepts, their understanding and implementation, as well as the optimization on a device basis has been and still remains in place. One of these concepts is the use of field-effect transistors (FETs) high above their conventional cut-off frequencies as electronic THz detectors. The concept has been proposed in a number of theoretical publications by M. Dyakonov and M. Shur in the early 1990's, who pioneered to show that under certain boundary conditions, non-linear collective excitations of the charge carrier system of a two-dimensional electron gas (2DEG) by incident THz radiation can exhibit rectifying behaviour - a detection principle, which has become known as plasma wave or plasmonic mixing. Up until this day, the concept has been successfully implemented in many device realizations - most advanced in established silicon CMOS technology - and stands on the edge of becoming commercially available on a large scale. The main direction of the work presented in this thesis was the modeling and experimental characterization of antenna-coupled FETs for THz detection - termed TeraFETs in this and the author's previous works - which have been implemented in different material systems. The materials presented in this thesis are AlGaN/GaN HEMTs and graphene FETs. In a number of scientific collaborations, TeraFETs were designed based on a hydrodynamic transport model, fabricated in the respective materials, and characterized mainly in the lower THz frequency region from 0.2 to 1.2 THz. The theoretical description of the plasma wave mixing mechanism in TeraFETs, as initiated by Dyakonov and Shur, was based on a fluid-dynamic transport model for charge carriers in the transistor channel. The THz radiation induces propagating charge density oscillations (plasma waves) in the 2DEG, which via non-linear self-mixing cause rectification of the incident THz signals. Over the course of this work, it became evident in the on-going detector characterization experiments that this original theoretical model of the detection process widely applied in the respective literature does not suffice to describe some of the experimental findings in TeraFET detection signals. Thorough measurements showed signal contributions, which are identified in this work to be of thermoelectric origin arising from an inherent asymmetric local heating of charge carriers in the devices. Depending on the material, these contributions constituted a mere side effect to plasmonic detection (AlGaN/GaN) or even reached a comparable magnitude (graphene FETs). To include these effects in the detector model, the original reduced fluid-dynamic description was extended to a hydrodynamic transport model. The model yields at the current stage a reasonable qualitative agreement to the measured THz detection signals. This thesis presents the formulation of a hydrodynamic charge carrier transport model and its specific implementation in a circuit simulation tool. A second modeling aspect is that the transport equations cover only the intrinsic plasmonic detection process in the active gated part of the TeraFET's transistor channel. In order to model and simulate the behavior of real devices, extrinsic detector parts such as ungated channel regions, parasitic resistances and capacitances, integrated antenna impedance, and others must be considered. The implemented detector model allows to simulate THz detection in real devices with the above influences included. Besides presentation of the detector model, experimental THz characterization of the fabricated TeraFETs is presented in this work. Careful device design yielded record detection performance for detectors in both investigated materials. The respective results are shown and the experimental observations of the thermoelectric effect in TeraFETs are compared to modeling results. It is the goal of this work to provide a framework for further theoretical and experimental studies of the plasmonic and thermoelectric effect in TeraFETs, which could eventually lead to a new type of THz detectors particularly exploiting the thermoelectric effect to enhance the sensitivity of today's plasmonic TeraFETs.
Terahertz (THz) technology is an emerging field that considers the radiation between microwave and far-infrared regions where the electronic and photonic technologies merge. THz generation and THz sensing technologies should fill the gap between photonics and electronics which is defined as a region where THz generation power and THz sensing capabilities are at a low technology readiness level (TRL). As one of the options for THz detection technology, field-effect transistors with integrated antennae were suggested to be used as THz detectors in the 1990s by M. Dyakonov and M. Shur from where the development of field-effect transistor-based detector began. In this work, various FET technologies are presented, such as CMOS, AlGaN/GaN, and graphene-based material systems and their further sensitivity enhancement in order to reach the performance of well-developed Schottky diode-based THz sensing technology. Here presented FET-based detectors were explored in a wide frequency range from 0.1 THz up to 5 THz in narrowband and broadband configurations.
For proper implementation of THz detectors, the well-defined characterization is of high importance. Therefore, this work overviews the characterization methods, establishes various definitions of detector parameters, and summarizes the state-of-the-art THz detectors. The electrical, optical, and cryogenic characterization techniques are also presented here, as well as the best results obtained by the development of the characterization methods, namely graphene FET stabilization, low-power THz source characterization for detector calibration, and technology development for cryogenic detection.
Following the discussion about the detector characterization, a wide range of THz applications, which were tested during the last four years of Ph.D. and conducted under the ITN CELTA project from HORIZON2020 program, are presented in this work. The studies began with spectroscopy applications and imaging and later developed towards hyperspectral imaging and even passive imaging of human body THz radiation. As various options for THz applications, single-pixel detectors as well as multi-pixel arrays are also covered in this work.
The conducted research shows that FET-based detectors can be used for spectroscopy applications or be easily adapted for the relevant frequency range. State-of-the-art detectors considered in this work reach the resonant performance below 20 pW/√Hz at 0.3 THz and 0.5 THz, as well as 404 pW/√Hz cross-sectional NEP at 4.75 THz. The broadband detectors show NEP as low as 25 pW/√Hz at around 0.6 THz for the best AlGaN/GaN design and 25 pW/√Hz around 1 THz for the best CMOS design. As one of the most promising applications, metamaterial characterization was tested using the most sensitive devices. Furthermore, one of the single-pixel devices and a multi-pixel array were tested as an engineering solution for a radio astronomy system called GREAT in a stratosphere observatory named SOFIA. The exploration of the autocorrelation technique using FET-based devices shows the opportunity to employ such detectors for direct detection of THz pulses without an interferometric measurement setup.
This work also considers imaging applications, which include near-field and far-field visualization solutions. A considerable milestone for the theory of FET technology was achieved when scanning near-field microscopy led to the visualization of plasma (or carrier density) waves in a graphene FET channel. Whereas another important milestone for the THz technology was achieved when a 3D scan of a mobile phone was performed under the far-field imaging mode. Even though the imaging was done through the phone’s plastic cover, the image displayed high accuracy and good feature recognition of the smartphone, inching the FET-based detector technology ever so close to practical security applications. In parallel, the multi-pixel array testing was carried out on 6x7 pixel arrays that have been implemented in configurable-size aperture and imaging configurations. The configurable aperture size allowed the easier detector focusing procedure and a better fit for the beam size of the incident radiation. The imaging has been tested on various THz sources and compared to the TeraSense 16x16 pixel array. The experimental results show the big advantage of the developed multi-pixel array against the used commercial technology.
Furthermore, two ultra-low-power applications have been successfully tested. The application on hyper-frequency THz imaging tested in the specially developed dual frequency comb and our detector system for 300 GHz radiation with 9 spectral lines led to outstanding imaging results on various materials. The passive imaging of human body radiation was conducted using the most sensitive broadband CMOS detector with a log-spiral antenna working in the 0.1 – 1.5 THz range and reaching the optical NEP of 42 pW/√Hz. The NETD of this device reaches 2.1 K and overcomes the performance limit of passive room-temperature imaging of the human body radiation, which was less than 10 K above the room temperature. This experiment opened a completely new field that was explored before only by the multiplier chain-based or thermal detectors.
...