Refine
Year of publication
Document Type
- Doctoral Thesis (31)
Has Fulltext
- yes (31)
Is part of the Bibliography
- no (31)
Keywords
- A-Typ-ATPasen (1)
- A1AO ATPase (1)
- Acetogenic bacteria (1)
- Archaea (1)
- Archaebakterien (1)
- Bartonella henselae (1)
- Carbon capture (1)
- Eisen-Schwefel-Zentrum N1a (1)
- Electron microscopy (1)
- Elektronenmikroskopie (1)
Institute
- Biowissenschaften (27)
- Biochemie und Chemie (2)
- Biochemie, Chemie und Pharmazie (1)
- Medizin (1)
Reinigung, biochemische Charakterisierung und Struktur der A1AO-ATPase aus Methanococcus jannaschii
(2006)
Die A1AO-ATPase wurde aus Membranen von M. jannaschii unter Erhalt der Struktur isoliert. Das Enzym wurde durch eine Saccharose-Dichtegradientenzentrifugation, eine Anionenaustauschchromato-graphie an DEAE und eine Gelfiltration zur Homogenität gereinigt. Alle 9 aus der Operon-Struktur vorhergesagten Untereinheiten konnten mittels Western-Blot-Analyse oder einer N-terminalen Sequenzierung identifiziert werden. Die funktionelle Kopplung der A1- und AO-Domäne wurde durch Studien mit dem Inhibitor DCCD nachgewiesen. Das gereinigte Enzym hatte eine Masse von 670 kDa. Die ATP-Hydrolyseaktivität war bei einer Temperatur von 80°C und einem pH-Wert von 6 optimal. Der KM-Wert für MgATP wurde zu 1,2±0,2 mM bestimmt. Bei den Versuchen zur Entwicklung eines Na+-freien Tespuffers trat die strikte Abhängikeit des Enzyms von Hydrogensulfit oder Sulfit als Problem zu Tage. Aus Membranen von M. jannaschii wurden durch Chloroform/Methanol Lipide extrahiert, aus denen dann Liposomen hergestellt wurden. Die A1AO-ATPase aus M. jannaschii wurde in diese Liposomen erfolgreich rekonstituiert, eine ATP-Synthese konnte jedoch nicht nachgewiesen werden. Die elektronenmikroskopischen Analysen zeigten einen für ATPasen charakteristischen Aufbau, aus einer hydrophilen Domäne, die durch mindestens zwei Stiele mit der Membrandomäne verbunden ist. Anhand der Bildrekonstruktion von 17.238 Einzelpartikeln konnten zwei Klassen von ATPase-Molekülen unterschieden werden, die entweder über einen oder zwei periphere Stiele verfügten. Aus verschiedenen Einzelprojektionen wurden Summenbilder generiert, anhand dieser 2D- Rekonstruktion wurde die ATPase vermessen. Der Kopfteil, die Membrandomäne und der zentrale Stiel haben eine Größe von 11,5 x 9,4 nm, 10,6 x 6,4 nm und 8 x 3,9 nm (Länge x Breite). Die Gesamtlänge des Enzyms betrug 25,9 nm. Der zentrale Stiel der ATPase ist über der Membran von einer Kragen-ähnlichen Struktur umgeben, die wiederum mit den peripheren Stielen in Kontakt steht. Scheinbar steht nur einer der peripheren Stiele in direktem Kontakt mit der AO-Domäne. Die Überlagerung der 3D-Rekonstruktion eines A1-Subkomplexes aus Methanosarcina mazei mit der 2D-Rekonstruktion der A1AO-ATPase aus M. jannaschii zeigen deutlich, dass die peripheren Stiele mit dem oberen Ende der A1-Domäne in Kontakt stehen. Durch diese Analysen konnte erstmals die Struktur einer A1AO-ATPase mit einer Auflösung von 1,8 nm dargestellt werden. Sequenzanalysen haben gezeigt, dass das Proteolipid-Gen von Methanopyrus kandleri verdreizehnfacht ist. Das Gen wurde mittels PCR vervielfacht und in einen TOPO®-Vektor kloniert. Versuche das Gen in einen Expressionsvektor umzuklonieren, waren noch nicht erfolgreich.
1.) Die A1AO-ATP-Synthase wurde aus Membranen von P. furiosus unter Erhalt der Struktur isoliert. Das Enzym wurde durch PEG-Fällung, Dichtegradientenzentrifugation, Anionenaustausch-Chromatographie und Gelfiltration zur Homogenität gereinigt. 2.) Die neun aus dem Gencluster vorhergesagten Untereinheiten konnten durch Maldi-TOF-Analysen oder MS/MS identifiziert werden. Die molekulare Masse der A1AO-ATP-Synthase wurde durch LILBID-Analysen zu 730+/-10 kDa bestimmt. 3.) Die funktionelle Kopplung der A1- und AO-Domäne wurde durch Studien mit dem Inhibitor DCCD und TBT nachgewiesen. Weitere ATP-Synthase spezifische Inhibitoren wie DES, Dienestrol und Hexestrol waren in der Lage, das Enzym zu inhibieren. Die I50-Werte betrugen für DES 0,36 mM, für Dienestrol 0,52 mM und für Hexestrol 0,59 mM. 4.) Die ATPase-Aktivität war bei 100°C und pH 6 optimal. Das Enzym hydrolysierte Mg-ATP als bevorzugtes Substrat mit einer maximalen Geschwindigkeit von 1,7 U/mg und einem KM von 0,63 mM. 5.) Die ATPase-Aktivität war Na+-abhängig. Der KM-Wert betrug 0,6 mM. Li+ konnte Na+ substituieren, K+ war dazu nicht in der Lage. Die Wirkung des Inhibitors DCCD (I50 100 μM) konnte durch Zugabe von 5 mM NaCl bis zu einer Konzentration von 0,25 mM aufgehoben werden. Dies war der erste Nachweis einer Na+-abhängigen A1AO-ATP-Synthase. 6.) Das für die c-Untereinheit kodierende Gen wurde aus chromosomaler DNA amplifiziert und sequenziert. Die Genverdopplung konnte bestätigt werden, ebenso die Vorhersage nur einer Ionenbindestelle (Helix 4). Durch LILBIDAnalysen wurde eine Verdopplung der c-Untereinheit aufgrund der molekularen Masse (15,8 kDa) im gereinigten Komplex nachgewiesen. 7.) Die Bildrekonstruktion aus 7400 Einzelbildern zeigte einen Komplex aus zwei Domänen, die durch einen zentralen und zwei periphere Stiele miteinander verbunden sind. Ausgehend von den Summenbildern wurde erstmals eine D-Rekonstruktonsmappe einer A1AO-ATP-Synthase generiert, mit einer Auflösung von 23 Å. In diese 3D-Rekonstruktionsmappe wurden Untereinheiten gelöster Struktur modelliert. Mit Hilfe dieser Daten konnte die voraussichtliche Stöchiometrie der A1AO-ATP-Synthase von P. furiosus zu A3B3CDFE2H2ac10 bestimmt werden. 8.) Durch LILBID-Analysen mit erhöhter Laserintensität wurde ein Subkomplex mit einer molekularen Masse von 233-236 kDa detektiert. Biochemische Daten weisen auf einen Komplex aus einer Kopie der Untereinheit a und 10 Kopien der Untereinheit c hin. Zusammen mit der 3D-Rekonstruktion wurden unabhängige Evidenzien für einen c-Ring bestehend aus 10 Kopien des Monomers mit je 4 transmembranenen Helices und nur einer Ionenbindestelle erhalten. Dies würde eine Na+/ATP-Stöchiometrie von 3,3 ergeben und erklären, warum die A1AO-ATP-Synthase von P. furiosus trotz der V-Typ artigen c-Untereinheit ATP synthetisiert. 9.) Mit dem gereinigten Enyzm wurde eine 3D-Kristallisation durchgeführt. Die resultierenden Kristalle hatten tetraedrische Gestalt, waren 10 x 5 nm groß und wuchsen über einen Zeitraum von 30 Tagen. Die Kristalle beugten Röntgenstrahlen bis zu einer Auflösung von 15 Å. 10.) Zum Nachweis einer möglichen Na+-Abhängigkeit der ATP-Synthase von M. jannaschii wurde ein Na+-armer Puffer mit Sulfit hergestellt, da bereits eine Sulfitabhängigkeit der ATPase-Aktivität nachgewiesen wurde. Es konnte für die A1AO-ATP-Synthase keine Na+-Abhängigkeit der ATPase- Aktivität zwischen 0,07-400 mM nachgewiesen werden. 11.) Ein Subkomplex konnte durch mehrmaliges Auftauen und Einfrieren der A1AO-ATP-Synthase-haltigen Proteinlösung erhalten werden. Der Komplex enthielt die Untereinheiten ABFDacx. Die Untereinheiten C, E und H fehlten dem Komplex, was zu einem Zerfall in hydrophile und hydrophobe Domäne während der Präparation führte. Es konnten in der elektronenmikroskopischen Untersuchung nur Kopfteile detektiert werden. 12.) Die heterolog produzierte A1AO-ATP-Synthase aus M. mazei Gö1 wurde durch das Detergenz Dodecylmaltosid am besten aus der Cytoplasmamembran von E. coli solubilisiert. 13.) TBT ist ein potenter Inhibitor der heterolog produzierten A1AO-ATP-Synthase (I50=60 μM). Der Wirkort konnte durch Vergleichsmessung mit der heterolog produzierten A1-Domäne identifiziert werden. TBT interagiert mit der AODomäne archäeller ATP-Synthasen und ist daher geeignet, die Kopplung der heterolog produzierten A1AO-ATP-Synthase nachzuweisen.
Genetic analysis of salt adaptation in Methanosarcina mazei Gö1 : the role of abl, ota and otb genes
(2008)
1. M. mazei ist ein halotolerantes methanogenes Archäon und akkumuliert kompatible Solute als längerfristige Anpassung an erhöhte Osmolarität in der Umgebung. Bei intermediären Salzkonzentrationen (~ 400 mM NaCl) wird vorzugsweise α-Glutamat gebildet und bei höheren Salzkonzentrationen (~ 800 mM NaCl) wird Nε-Acetyl-ß-Lysin zusätzlich zu Alpha-Glutamat synthetisiert. 2. Eine Analyse der intrazellulären Solutezusammensetzung mittels NMR ergab, dass M. mazei Glycin-Betain als Osmolyt akkumulieren kann. Für die Aufnahme von Glycin-Betain konnten zwei putative Glycin-Betain-Transporter in M. mazei identifiziert werden, Ota und Otb. Ota steht für „osmoprotectant transporter A“ und Otb für „osmoprotectant transporter B“. Das Genom von M. mazei wurde, nachdem es vollstänidg sequenziert war, nach Genen durchsucht, die eine Rolle bei der Aufnhame von Glycin-Betain oder anderen kompabtiblen Solute spielen könnten. Dafür wurde die Sequenz eines Substratbindeproteins eines bekannten bakteriellen Glycin-Betain-Transporters, opuAC aus B. subtillis als Referenzsequenz verwendet. Hierbei konnte ein Homolog, otaC, in M. mazei identifiziert werden. otaC ist Teil eines Genclusters, welches für einen ABC-Transporter kodiert. otb wurde bei einer genomweiten Expressionsanalyse zur Salzadaptation von M. mazei identifiziert. Es wurden Gene eines putativen ABC-Transporters identifiziert, die unter Hochsalzbedingungen leicht induziert waren. Es stellte sich heraus, dass es sich hierbei um einen zweiten putativen Glycin-Betain-Transporter handelte. Otb gehört auch zur Familie der ABC-Transporter. Vergleichsanalysen zeigten, dass die beiden Transporter keine große Ähnlichkeit zueinander aufweisen. Die Funktion und Rolle der beiden ABC-Transporter, vor allem von Otb, war zu Beginn dieser Arbeit unklar. 3. Bei Analysen des intrazellulären Solutepools im Wildtyp von M. mazei stellte sich heraus, dass in Anwesenheit von Glycin-Betain die Konzentration von Glutamat und NE- Acetyl-ß-Lysin verringert war. Bei 400 mM NaCl reduzierte Glycin-Betain die Glutamat- Konzentration um 16% und bei 800 mM NaCl um 29%. Besonders deutlich zeigte sich der Einfluß von Glycin-Betain bei der Akkumulation von NE-Acetyl-ß-Lysin. Bei 400 mM NaCl reduzierte Glycin-Betain die Konzentration an NE-Acetyl-ß-Lysin um 60% und bei 800 mM NaCl um 50%. Der Einfluß von Glycin-Betain konnte auf verschiedenen Ebenen in M. mazei beobachten werden. Es konnte gezeigt werden, dass die relative Transkriptimenge von ota unter Hochsalzbedingungen zunimmt. Glycin-Betain reduzierte die Transkription von ota bei verschiedenen Salzkonzentrationen. Die relative Transkriptmenge an mRNA von ota wurde mittels quantitativer real-time PCR (qRT-PCR) quantifiziert und war bis zu 52% reduziert in Zellen, die in Gegenwart von Glycin-Betain gewachsen waren. Die Transkriptmenge von otb war unter den gleichen Bedingungen nicht beeinflusst und zeigte generell keine Zunahme mit der Salinität des Mediums. Des Weiteren konnte ein Effekt von Glycin-Betain auf Ebene der Transportaktivität von Ota gezeigt werden. Hier zeigte sich, dass Zellen, die bei 400 mM NaCl in Gegenwart von Glycin-Betain gezogen waren, eine geringere Transportaktivität aufweisen, als Zellen, die bei 400 mM NaCl ohne Glycin-Betain gewachsen waren. Die Transportaktivität war um 90% geringer. Es muss jedoch berücksichtigt werden, dass es sich bei den Zellen, die ohne Glycin-Betain gewachsen waren, um eine Nettoaufnahme von Glycin-Betain handelte. Im Gegensatz dazu, ist davon auszugehen, dass Zellen, die in Gegenwart von Glycin-Betain gewachsen waren, eine Austaschreaktion zwischen bereits vorhandenem intrazellulärem und extrazellulär angebotenem Glycin-Betain vornehmen. [Die dem letzten Punkt zugrundeliegenden Daten wurden von Silke Schmidt im Rahmen einer Diplomarbeit erhoben, die von mir mitbetreut wurde. Aus Gründen der vollständigen Darstellung des Projektverlaufes werden diese Daten mitaufgeführt.] 4. Zur weiteren Klärung der Rolle und Funktion der beiden putativen Glycin-Betain- Transporter Ota und Otb war es Ziel, Mutantenstudien durchzuführen. Eine Vorraussetzung für die Generierung von Mutanten ist, dass der Organismus auf Agarplatten wächst und Einzelkolonien von einer einzelnen Zelle ausgehend bildet. Dies ist ein wichtiger Punkt bei Methanosarcina spp., die Zellpakete, sogenannte Sarcinen bilden. Deshalb wurde zunächst nach den optimalsten Plattierungsbedingungen gesucht, unter denen M. mazei keine Sarcinen bildet und die Plattierungseffizienz am höchsten war. Die Plattierungseffizienz betrug im Durchschnitt 54%. Für das Einbringen von DNA in die Zellen wurde eine Liposomen-vermittelte Transformation getestet. Ein ähnliches Vorgehen war bereits für Methanosarcina acetivorans beschrieben, konnte bislang aber noch nicht erfolgreich für M. mazei Gö1 und andere Stämme von M. mazei angwendet werden. Erste Schritte zur Anpassung des Transformations-Protokolles beinhalteten das Testen von DOTAP verschiedener Hersteller, sowie die Konzentration an eingesetzter DNA. Das jeweilige Zielgen/Zieloperon, welches deletiert werden sollte, wurde durch eine pac-Kassette ersetzt. Diese kodiert für eine Puromycin-Transacetylase und verleiht dem Organismus Puromycin- Resistenz. Die pac-Kassette wurde von umgebenden Bereichen des Ziellocus flankiert und integrierte mit Hilfe dieser flankierenden Bereiche über doppelt-homologe Rekombination in das Genom. 5. Mit dem oben beschriebenen Verfahren wurden ota::pac- und otb::pac-Mutanten erzeugt und über Southern-Blot Analyse verifiziert. Eine erste Charakterisierung der Mutanten mittels qRT-PCR zeigte, dass auf mRNA-Ebene keine Transkripte von ota in M. mazei ota::pac oder otb in M. mazei otb::pac nachweisbar waren. Zusätzlich konnte auf Proteinebene das Substratbindeprotein OtaC in M. mazei ota::pac und OtbC in M. mazei otb::pac nicht über einen Antikörper gegen das jeweilige Substratbindeprotein nachgewiesen, was die erfolgreiche Deletion bestätigte. Erste phänotypische Charakterisierungen zeigten, dass das Wachstum von M. mazei ota::pac und M. mazei otb::pac unter Hochsalzbedingungen nicht beeinträchtigt und vergleichbar mit dem des Wildtyps war. Auch bei kälteren Wachstumstemperaturen von 22°C wuchsen die Mutanten ohne Phänotyp. 6. Radioaktive Transportstudien mit M. mazei otb::pac zeigten, dass diese Mutante, die noch ein funktionelles Ota besitzt, [14C]Glycin-Betain aufnehmen kann. Es stellte sich heraus, dass diese Mutante eine höhere Transportrate für Glycin-Betain aufwies, als der Wildtyp. Die Aufnahmerate war um einen Faktor 2 höher als beim Wildtyp. Zusätzlich konnten qRT-PCR Analysen zeigen, dass die relative Transkriptmenge an ota in der otb::pac-Mutante um einen Faktor 2 höher war, als im Wildtyp. Umgekehrt konnte dieser Effekt nicht beobachtet werden, d.h. eine erhöhte Transkriptmenge an otb in M. mazei ota::pac. Auf Proteinebene konnte beobachtet werden, dass die intrazelluläre Konzentration an OtaC in der Mutatne leicht höher war als im Wildtyp. Jedoch stellte sich heraus, dass die intrazelluläre Glycin-Betain-Konzentration bei 400 mM NaCl in der Mutante nicht erhöht war verglichen mit Wildtyp, sondern die Konzentrationen gleich waren. Bei höheren Salzkonzentrationen (800 mM NaCl) zeigte sich jedoch ein anderes Bild: die intrazelluläre Glycin-Betain-Konzentration war in der Mutante um 60% erhöht. Dies könnte auf die erhöhte Transportaktivität von M. mazei otb::pac zurückzuführen sein. Die Konzentration anderer kompatibler Solute wie Glutamat und NE-Acetyl-ß-Lysin waren in diesen Zellen bis zu 48% reduziert. In vorherigen Studien konnte gezeigt werden, dass heterolog überproduziertes Ota von M. mazei in E. coli MKH13, eine E. coli-Mutante, die keine Glycin-Betain-Transporter mehr besitzt, die Aufnahme von Glycin-Betain wieder herstellen konnte [die Daten von ota in E. coli MKH13 wurden in der bereits oben erwähnten Diplomarbeit von Silke Schmidt erhoben]. Zur Klärung der Funktion von Otb wurde der gleiche Versuch mit otb in E. coli MKH13 durchgeführt. Jedoch konnte eine heterologe Produktion von Otb aus M. mazei die Aufnahme von Glycin-Betain in E. coli MKH13 nicht wieder herstellen. Hierbei wurde über Western-Blot Analyse sichergestellt, dass Otb tatsächlich in der Membran vorhanden war. Auch Transportstudien mit der Mutante M. mazei ota::pac zeigten, dass diese Mutante kein [14C]Glycin-Betain mehr aufnehmen konnte. Es konnte auch keine Akkumulation von Glycin-Betain mittels NMR in dieser Mutante gemessen werden. Des Weiteren zeigte sich, dass die intrazellulären Konzentrationen an Glutamat und Nε-Acetyl-ß-Lysin bei 400 mM und 800 mM NaCl in der Mutante unbeeinflusst von der Glycin-Betain-Konzentration im Medium waren. Weitere Transportstudien mit M. mazei ota::pac zur Aufnahme von [14C]Cholin zeigten, dass dieses Molekül weder vom Wildtyp, noch von der Mutante aufgenommen wurde. Dieses Ergebnis wurde durch Messung des Solutepools mittels NMR bestätigt. Somit kann ausgeschlossen werden, dass Otb unter den gemessenen Bedingungen weder ein Glycin- Betain-Transporter noch ein Cholin-Transporter in M. mazei ist. Diese Beobachtungen belegen eindeutig, dass Ota der einzige funktionelle Glycin-Betain-Transporter in M. mazei ist, während die Rolle von Otb bislang noch ungeklärt ist. 7. Nε-Acetyl-ß-Lysin, das dominante kompatible Solut in M. mazei bei 800 mM NaCl, wird durch die Enzyme AblA, einer Lysin-2,3-Aminomutase und AblB, einer ß-Lysin- Acetyltransferase synthetisiert. In dieser Arbeit wurde eine Δabl::pac-Mutante generiert, um die Fragen zu klären, ob die beiden Enzyme vom postulierten abl-Operon kodiert werden und wenn ja, welchen Phänotyp eine Nε-Acetyl-ß-Lysin-freier-Mutante bei Salzstress zeigt. NMR-Analysen zeigten, dass in der abl::pac-Mutante kein Nε-Acetyl-ß-Lysin mehr nachweisbar war. Dies belegt, dass die Gene ablA und ablB und deren Genprodukte für die Synthese von NE-Acetyl-ß-Lysin in M. mazei essentiell sind. Unter Hochsalzbedingungen ist das Wachstum von M. mazei abl::pac im Vergleich zum Wildtyp deutlich verlangsamt. Dieses Ergebnis war unerwartet, da eine abl::pac-Mutante von Methanococcus maripaludis unter Hochsalzbedingungen nicht mehr wachsen konnte. Unter Niedrigsalz und bei intermediären Salzkonzentration war das Wachstum von M. mazei abl::pac nicht eingeschränkt und verhielt sich wie der Wildtyp. In Gegenwart von Glycin-Betain akkumulierte die abl::pac-Mutante von M. mazei unter Hochsalzbedingungen 2,4 mal mehr Glycin-Betain als der Wildtyp, um das Defizit im Solutepool auszugleichen und Wachstum bei Hochsalz zu ermöglichen. Dadurch war sie in der Lage, wieder wie der Wildtyp zu wachsen. 8. Der Verlust von NE-Acetyl-ß-Lysin wurde unter Hochsalzbedingungen durch erhöhte Konzentrationen an Glutamat und einem neuen kompatiblen Solut kompensiert. NMRAnalysen zeigten, dass es sich hierbei um Alanin handelte. Bis jetzt wurde die Verwendung von Alanin als kompatibles Solut noch nie beschrieben. Um sicherzustellen, dass Alanin als kompatibles Solut in M. mazei abl::pac dient, wurde die Konzentration bei verschiedenen Salzkonzentrationen gemessen. Die Konzentration an Alanin nahm mit steigender Salzkonzentration zu. Bei 800 mM NaCl war die Konzentration 12 fach erhöht verglichen mit der Konzentration bei 400 mM NaCl. Außerdem redzierte Glycin-Betain die Alanin- Konzentration bei 800 mM NaCl um 58%. Transportexperimente zeigten, dass M. mazei kein Alanin aus dem Medium aufnehmen kann. 9. Erste Analysen möglicher Synthesewege für Alanin zeigten, dass die Alanin- Dehydrogenase nicht auf Transkriptebene unter Hochsalzbedingungen induziert war und somit keine Rolle in der Synthese von Alanin als kompatibles Solut spielen dürfte. Es könnten jedoch Aminotransferasen eine Rolle bei der Biosynthese von Alanin spielen. Des Weiteren sind die Enzyme, die für die Synthese von Glutamat als kompatibles Solut verantwortlich sind, unbekannt. Dies gilt für alle bis jetzt untersuchten Organismen, die Glutamat als kompatibles Solut nutzen. In dieser Arbeit wurde versucht, mit Hilfe der abl::pac-Mutante, die erhöhte Glutamat-Mengen zum Osmoschutz produziert, der Frage nachzugehen, welche Gene/Enzyme eine Rolle spielen könnten bei der Synthese von Glutamat als kompatibles Solut. Dazu wurden unter Hochsalzbedingungen die Transkriptmengen verschiedener Genen, die an der Glutamat-Synthese beteiligt sein könnten, in der Mutante und im Wildtyp untersucht. Hierbei zeigte sich, dass mehrere Gene verschiedener Enzyme unter Hochsalzbedingungen in der Mutante leicht induziert waren. Eines dieser Enzyme ist die Glutaminsynthetase. Dieses Enzym ist für die Umsetzung von Glutamat zu Glutamin unter Verbrauch von ATP verantwortlich. M. mazei besitzt zwei Gene, die für eine putative Gluaminsynthetase kodieren. In M. mazei abl::pac ist unter Hochsalzbedingungen das Gen glnA2 im Vergleich zum Wildtyp (4,03 ± 1,14) leicht induziert (7,63 ± 2,2). Des weiteren konnte in der Mutante eine leichte Induktion von gltB1, gltB2 und gltB3 unter Hochsalz beobachtet werden. Diese Gene kodieren für die einzelnen Domänen einer Glutamatsynthase. Diese ersten Analysen geben einen Hinweis darauf, dass die Synthese von Glutamat als kompatibles Solut über eine gekoppelte Reaktion der Glutaminsynthetase und der Glutamatsynthase verlaufen könnte.
Die Bedeutung verschiedener CRASP-Proteine für die Komplementresistenz von Borrelia burgdorferi s.s.
(2010)
Die vorliegende Arbeit liefert einen wichtigen Beitrag zum Verständnis des molekularen Mechanismus der Immunevasion von B. burgdorferi s.s., insbesondere der Bedeutung einzelner CRASP-Proteine für die Komplementresistenz. Sie trägt dazu bei, die Relevanz dieser Proteine für die Pathogenese dieses Erregers zu untermauern. Im Rahmen dieser Arbeit gelang es, verschiedene Vektoren mit den ursprünglichen oder mutierten CRASP-kodierenden Genen cspA, cspZ, erpP und erpA aus B. burgdorferi s.s. zu generieren und diese in das CRASP-negative Isolat B. garinii G1 zu transformieren. Die Expression der speziesfremden Gene als auch der Transport der CRASP-Moleküle auf die Zelloberfläche von B. garinii G1 konnten nachgewiesen werden. Für die konstitutiv CRASP-1- oder CRASP-2-produzierenden Borrelienzellen konnte gezeigt werden, dass diese, auf der Zelloberfläche lokalisierten CRASP-Moleküle mit Faktor H und FHL-1 interagieren, die gebundenen Komplementregulatoren ihre funktionelle Aktivität zur C3b-Inaktivierung aufrechterhalten und die Zellen in Gegenwart von Komplement überleben. Damit wurde erstmals der Nachweis erbracht, dass beide CRASP-Moleküle unabhängig voneinander Schutz vor komplementvermittelter Lyse verleihen. Untersuchungen mit den veränderten CRASP-1-Molekülen ergaben, dass die Transformante G1/pCRASP-1 E147K eine verringerte Bindung von Faktor H und FHL-1 aufwies, welche sich jedoch nicht auf die Komplementresistenz der Zellen auswirkte. Im Gegensatz dazu führte eine Aminosäuresubstitution im C-Terminus des CRASP-1-Moleküls an Position 240 zum Verlust der Bindung von Faktor H und einer stark verminderten Bindung von FHL-1, so dass auch keine Kofaktoraktivität nachgewiesen werden konnte. Trotz des Bindungsverlustes beider Komplementregulatoren zeigte die Transformante G1/pCRASP-1 Y240A nur geringe Ablagerungen des lytischen, terminalen Komplementkomplexes (TCC) auf der Zelloberfläche und Wachstum in Gegenwart von aktiven Komplement. Mittels eines Hämolyse-Assays wurde schließlich festgestellt, dass CRASP-1 direkt mit Komponenten des Komplementsystems interagiert und dadurch die Assemblierung des TCC verhindert. Die Bedeutung der Aminosäuren an den Positionen 81, 139, 207 und 211 im CRASP-2-Molekül für die Faktor H / FHL-1-Bindung und die daraus resultierenden Auswirkungen auf die Komplementresistenz der Borrelien wurde gleichfalls nachgewiesen. Dabei wies insbesondere die Transformante G1/pCRASP-2 Y211A ein inhibiertes Wachstum in Humanserum und verstärkt Komplementablagerungen auf der Zelloberfläche auf, was auf den Verlust bzw. der sehr schwachen Bindung von FHL-1 und Faktor H zurückzuführen ist. Im Gegensatz zu den Transformanten, welche ein CRASP-2-Molekül mit nur einem Aminosäureaustausch produzierten, zeigten die Transformanten, deren CRASP-2-Molekül zwei Aminosäuresubstitutionen aufwies (G1/pCRASP-2 R139A-Y207A, G1/pCRASP-2 R139A-Y211A, G1/pCRASP-2 Y207A-Y211A) keine Bindung der beiden Regulatorproteine und keinen Schutz der Zellen vor der lytischen Wirkung von Komplement. Neue, unerwartete Erkenntnisse ergaben sich aus den Untersuchungen mit Borrelienzellen, welche das CRASP-3- oder CRASP-5-kodierende erpP- bzw. erpA-Gen enthielten. Obwohl gereinigtes als auch denaturiertes CRASP-3 und RASP-5 in der Lage war, Faktor H zu binden, wiesen die vitalen Zellen der Transformanten G1/pCRASP-3 und G1/pCRASP-5 keine Bindung von Faktor H und keinen Schutz der Zellen vor komplementvermittelter Lyse auf. Aus den durchgeführten Untersuchungen konnten für gereinigtes CRASP-3 und CRASP-5 als auch für die CRASP-3- und CRASP-5-produzierenden Transformanten neue Liganden, nämlich CFHR-2 und CFHR-5, aus Humanserum identifiziert werden. Zusammenfassend lassen sich folgende Aussagen hinsichtlich des molekularen Mechanismus der Komplementresistenz bei B. burgdorferi s.s. aus den erhobenen Daten dieser Arbeit mit transformierten Borrelienzellen formulieren: *Die Komplementresistenz der Borrelien wird durch die Faktor H- und FHL-1-bindenden Proteine CRASP-1 und CRASP-2, jedoch nicht durch CRASP-3 und CRASP-5 determiniert, *CRASP-1 als multifunktionelles Protein ist zusätzlich in der Lage, direkt mit Komplement zu interagieren, *Die C-terminalen Domänen von CRASP-1 und CRASP-2 sind für die Bindung der beiden Komplementregulatoren Faktor H und FHL-1 relevant, *CRASP-3 und CRASP-5 auf der Borrelienoberfläche lokalisiert, interagieren mit CFHR-1, CFHR-2 und CFHR-5, aber nicht mit Faktor H.
(1) Die genomweite Expressionsanalyse von salzadaptierten Zellen von M. mazei Gö1 identifizierte eine Reihe von salzregulierten Genen. Neben den beiden Operone ota und abl, die für die Akkumulierung von Glycin-Betain und Ne-Azetyl-b-Lysin verantwortlich sind, konnte ein ABC-Transporter (MM0953), der in seiner Genumgebung weitere Transporter sowie Proteine mit konservierten S-Layer-Domänen aufweist, als salzreguliert erkannt werden. Dies deutet auf ein S-Layer-Exportsystem hin, das eine Rolle in salzadaptierten Zellen spielen könnte. (2) Eine genomweite Expressionsanalyse von Zellen von M. mazei Gö1 zu unterschiedlichen Zeitpunkten nach einem hyperosmotischen Schock auf 400 mM NaCl ermöglichte Einblicke in den Verlauf der Genexpression. Die Erhöhung der externen Osmolarität resultierte in der erhöhten Expression von Genen, die für die Aufnahme und Biosynthese von kompatiblen Soluten verantwortlich sind sowie von Genen deren Produkte regulatorische Funktion haben könnten. (3) Genomweite Expressionsanalysen von Zellen von M. mazei Gö1 nach einem hypoosmotischen Schock zeigten erhöhte Expression von Genen, die an der Regulation und an der generellen Stressantwort beteiligt sind. Gene, deren Produkte im Stoffwechsel wichtig sind – besonders Gene, die für Methylamin-Corrinoid-Methyltransferasen kodieren – erscheinen stark reprimiert. (4) Die Bestimmung der intrazellulären Ionenkonzentrationen zeigte ein unspezifisches Einströmen von den Ionen, die den osmotischen Schock auslösen sofort nach dem Schock, sowie den Ausstrom derselben Ionen im Verlauf von 5 Minuten. Die Ionenkonzentrationen der Ionen, die den Schock auslösten, blieben intrazellulär erhöht. Das Ein- und Ausströmen der Ionen nach einem hyperosmotischen Stress ist nicht energieabhängig. (5) M. mazei akkumulierte nach einem hyperosmotischen Schock kein K+, zeigte aber eine erhöhte intrazelluläre Konzentration dieses Ions, wenn die Zellen in Medium mit erhöhter Osmolarität angezogen wurden. (6) Durch hyperosmotische Schocks mit verschiedenen Salzen und Zuckern konnte gezeigt werden, dass die kurzzeitige Akkumulation von Ionen keine gerichtete Antwort auf den osmotischen Stress ist. (7) Es konnte weiters gezeigt werden, dass Zellen von M. mazei Gö1, die mit dem kompatiblen Solut Betain inkubiert wurden, nach einem hyperosmotischen Schock K+ akkumulieren. Dies bedeutet möglicherweise eine K+-abhängige Regulation des Glycin-Betain-Transporters. (8) Die Funktion der drei im Genom kodierten Na+/H+-Antiporter konnte auf transkriptioneller Ebene nicht geklärt werden. Trotzdem zeigt ein Hydrophobizitätsplot des Proteins eine mögliche Beteiligung von Nha1 (MM0294) an der Osmoregulation durch eine hydrophile C-terminale Domäne. (9) Nach einem hyperosmotischen Schock von 38,5 auf 400 mM NaCl erhöhte sich die intrazelluläre Konzentration an Glutamat, das in M. mazei als kompatibles Solut fungiert, bereits nach drei Stunden. Zellen, die bereits an die erhöhte Salzkonzentration adaptiert waren, enthielten 1,4 μmol Glutamat/mg Protein. (10) Die Glutamin-Synthetase zeigte eine erhöhte Transkription nach einem hyperosmotischen Schock. Das Protein wird aber nicht salzabhängig produziert und zeigt keine Enzymaktivität. Die Biosynthese des Solutes über eine Glutamat-Dehydrogenase ist die wahrscheinliche Alternative. (11) Aufgrund der generierten Expressionsprofile und der physiologischen Daten konnte ein Modell der Osmoadaptation in Methanosarcina mazei Gö1 erstellt werden.
1. Halobacillus halophilus akkumuliert zum Ausgleich geringer, extrazellulärer Wasserpotentiale kompatible Solute. Bei Anzuchten in Gegenwart von 0,4 – 1,5 M NaCl wurden Glutamin und Glutamat als die dominierenden kompatiblen Solute identifiziert, während zwischen 2,0 und 3,0 M NaCl Prolin das dominierende Solut darstellt. Außerdem wurde Ectoin als zweites kompatibles Solut gefunden, das spezifisch bei hohen Salzgehalten akumuliert wird. Die Konzentrationen während der exponentiellen Wachstumsphase war jedoch um den Faktor 6 – 7 geringer im Vergleich zu Prolin. 2. Aus Wachstumsexperimenten in Gegenwart unterschiedlicher Anionen war bekannt, dass Glutamat, im Gegensatz zu Gluconat und Nitrat, in der Lage ist, das Wachstum von H. halophilus auch in Abwesenheit von Chlorid zu ermöglichen. Um der Frage nachzugehen, ob die wachstumsfördernde Wirkung von unphysiologisch hohen Glutamat-Konzentrationen im Medium auf die Verwendung von Glutamat als kompatiblem Solut in den Zellen zurückzuführen ist, wurden Gesamtsolutepools von Chlorid-, Nitrat-, Gluconat- und Glutamat-gezogenen Zellen gemessen. In NaCl-gezogenen Zellen zeigte sich Glutamat als dominantes Solut, während Prolin und Glutamin einen geringeren Teil am Gesamtpool ausmachten. In Nitrat-gezogenen Zellen betrug der Gesamtpool nur noch 83% und in Gluconat-gezogenen Zellen nur noch 27% im Vergleich zu Chlorid-gezogenen Zellen. Zellen, die mit Glutamat gezogen wurden, zeigten jedoch eine Gesamtkonzentration an Soluten, die ca. 100% über dem Vergleichswert aus Chlorid-gezogenen Zellen lag. Die Konzentration an Glutamin in den Zellen stieg dabei um 168%, die Konzentration an Glutamat sogar um 299%. Die Prolinkonzentration verringerte sich um 32%. Diese Daten belegen, dass der wachstumsstimulierende Effekt von Glutamat auf die Verwendung als kompatibles Solut zurückzuführen ist. 3. Zur Untersuchung der molekularen Grundlage der Salzadaptation sowie der Abhängigkeit von Chlorid in H. halophilus wurde in Zusammenarbeit mit der Gruppe von Prof. D. Oesterhelt (MPI für Biochemie, Martinsried) die Sequenzierung des Genoms begonnen. Das Projekt ist zur Zeit noch nicht abgeschlossen und befindet sich in der „Lückenschluß-Phase“. Die bisherigen Sequenzdaten konnten dennoch für die in dieser Arbeit beschriebenen Untersuchungen herangezogen werden. Das Genom besitzt eine Größe von ca. 4,1 Mbp mit einem ungefähren GC-Gehalt von 40%. Außerdem wurden 2 Plasmide identifiziert mit einer Größe von 16047 und 3329 bp. 4. Die Schlüsselgene bekannter Biosynthesewege für Glutamin und Glutamat konnten identifiziert werden. Darunter befinden sich zwei Isogene für eine Glutamatdehydrogenase (gdh1 und gdh2), ein Gen für die große Untereinheit einer Glutamatsynthase (gltA), zwei Gene für die kleine Untereinheit einer Glutamat-Synthase (gltB1 und gltB2) und zwei Isogene für eine Glutaminsynthetase (glnA1 und glnA2). glnA1 befindet sich in einem Cluster zusammen mit einem Gen, das für einen Regulator kodiert (glnR), wie er auch aus B. subtilis bekannt ist. Über reverse Transkription von mRNA und anschließender PCR-Analyse konnte gezeigt werden, dass sowohl gltA/gltB1 als auch glnA1/glnR in einem Operon organisiert sind. 5. Wurde die Transkriptmenge der in Punkt 4 erwähnten Biosynthesegene in Zellen quantifiziert, die in Gegenwart unterschiedlicher Salzkonzentrationen (0,4 – 3,0 M NaCl) gezogen wurden, so zeigte sich keine Abhängigkeit von der Salzkonzentration für die Gene gltA, glnA1 und gdh1. Über die Transkriptmengen von gdh2 ließ sich keine abschließende Aussage treffen, da die gefundenen Transkriptmengen sehr gering waren und daher zu sehr großen Varianzen bei der Quantifizierung führten. Eine klare Abhängigkeit der Transkriptmenge von der im Medium zugesetzten Salzkonzentration konnte für glnA2 gezeigt werden. Die glnA2 mRNA-Menge stieg dabei mit steigender Salzkonzentration an und erreichte bei 1,5 – 2.0 M NaCl ein Maximum. Bei diesen Salzkonzentrationen war die Menge an mRNA ca. 4 mal höher als der Vergleichswert bei 0,4 M NaCl. Bei höhern Salzkonzentrationen sank die Menge an Transkript wieder leicht und war dann ca. nur noch 3 mal so hoch wie bei 0,4 M NaCl. 6. Die zelluläre Konzentration der glnA2-Transkripte in Abhängigkeit unterschiedlicher Anionen im Anzuchtmedium wurde untersucht. Die Quantifizierung der glnA2–mRNA ergab eine 2 mal höhere Transkriptmenge in Gegenwart von Chlorid verglichen mit Nitrat oder Gluconat. 7. Es wurde nach Enzymaktivitäten der bekannten Schlüsselenzyme im Glutamat und Glutamin-Biosyntheseweg gesucht. Eine Glutamatdehydrogenase und eine Glutamatsynthase – Aktivität konnte nicht oder nur in vernachlässigbarem Maße nachgewiesen werden. Im Gegensatz dazu konnt eine Glutaminsynthetase – Aktivität eindeutig belegt werden. Diese Aktivität erwies sich abhängig von der Art und der Konzentration des angebotenen Anions im Medium. Maximale Aktivitäten wurden mit NaCl in einer Konzentration von 2,5 – 3,0 M erreicht. Interessanterweise erwies sich die Glutaminsynthetase – Aktivität auch abhängig von der Art des im Testpuffers verwendeten Anions. Hier zeigte sich eine deutliche Stimulierung der Aktivität durch das Anion Chlorid. [Die für diesen Punkt zugrunde liegenden Daten wurden im Rahmen einer von mir mitbetreuten Diplomarbeit von Jasmin F. Sydow erhoben und sind aus Gründen der vollständigen Darstellung des Projektverlaufes mitaufgeführt!] 8. Wie im Punkt 1 dargelegt, wird Prolin vor allem bei hohen Salzkonzentrationen in H. halophilus - Zellen akkumuliert. Neben der Abhängigkeit von der Salzkonzentration wurde außerdem die Abhängigkeit von der Wachstumsphase untersucht. Die Analyse der Prolinkonzentrationen während verschiedener Wachstumsphasen in Kulturen, die bei 1,0 bzw. 2,5 M NaCl angezogen wurden, zeigte, (i) dass die Prolinkonzentration während der frühen exponentiellen Phase ca. 2,5-fach erhöht war im Vergleich zu Niedrigsalz-Zellen, (ii) dass die Prolinkonzentration beim Übergang von der frühen in die späte exponentielle Phase dramatisch abnahm (um 64% bei 2,5 M NaCl) und dass (iii) in der stationären Phase Prolin praktisch nicht mehr nachzuweisen war. 9. Die Biosynthesegene für die Herstellung von Prolin aus Glutamat konnten im Genom von H. halophilus identifiziert werden. Es handelt sich dabei um ein Cluster von 3 Genen, die für eine putative Pyrrolin-5-carboxylatreductase (proH), eine Glutamat-5-kinase (proJ), und eine Glutamat-5-semialdehyd-dehydrogenase (proA) kodieren. Mittels reverser Transkription von mRNA und anschließenden PCR-Analysen konnte gezeigt werden, dass die drei Gene ein Operon bilden. 10. Eine Quantifizierung der Transkriptmengen der Biosynthesegene proH, proJ und proA mittels quantitativer PCR in Zellen, die bei unterschiedlichen NaCl-Konzentrationen gezogen wurden, zeigte einen deutlichen Zusammenhang zwischen der Salinität des Mediums und der Menge an Transkript. Diese war umso höher, je höher die Salinität des Mediums war. Die maximale Transkriptmenge (6-fach) wurde bei einer Salzkonzentration von 2,5 M NaCl erreicht. Bei noch höherer Salzkonzentration sank die Transkriptmenge auf die ca. 5-fache Menge des Kontrollwertes ab. 11. Um die Regulation und Dynamik der Osmoregulation unabhängig vom Wachstum untersuchen zu können, wurde ein Zellsuspensions-System für H. halophilus etabliert, bei dem eine konzentrierte Zellsuspension direkt von geringen auf hohe Salzkonzentrationen überführt wurde und bei dem die Prozesse der Transkription, Translation und Solut-Biosynthese erhalten blieben. Beispielhaft wurde dieses System an der Produktion von Prolin nach einem Salzschock von 0,8 auf 2,0 M NaCl getestet. Es zeigte sich bei der Analyse, dass sich die Transkriptmengen unmittelbar nach dem Salzschock deutlich erhöhten und bereits nach 1,5 Stunden ein Maximum erreicht wurde. Verglichen mit dem Wert zu Beginn des Versuches waren die Transkriptmengen ca. 13-fach erhöht, sanken im weiteren Verlauf jedoch wieder ab und blieben bei einer 4-fachen Transkriptmenge konstant. Mit der Erhöhung der Transkriptmenge ging auch eine Erhöhung der Prolinkonzentration einher, die ein Maximum von ca. 6 μmol/mg Protein nach 6 Stunden erreichte. Auch diese Konzentration verringerte sich im weiteren Verlauf wieder und erreichte nach 20 Stunden den Ausgangswert. 12. Um den Einfluß diverser Anionen bzw. Osmolyte im Medium auf die Produktion von Prolin zu untersuchen, wurden Zellsuspensionen von H. halophilus einer Erhöhung der Osmolarität von 0,8 M auf 2,0 M unterzogen. Es zeigte sich dabei, dass die maximale Akkumulation von Prolin in Anwesenheit von Chlorid am höchsten war. Nitrat und Glutamat führten zu ähnlichen, aber leicht geringeren maximalen Konzentrationen (92 bzw. 83% des Chloridwertes). Gluconat führte noch zu einer Akkumulation von ca. 51%, während die anderen Osmolyte zu keiner Akkumulation führten. Eine Analyse der Transkriptmengen zeigte jedoch ein völlig anderes Bild. Während Chlorid, Nitrat und Gluconat zu vergleichbaren Anstiegen der Transkripmengen führten, war die maximale Transkriptmenge der Glutamatinkubierten Zellen 3-9 mal höher als in Vergleichszellen mit Chlorid. In anschließenden Titrationsexperimenten mit verschiedenen Glutamatkonzentrationen konnte gezeigt werden, dass eine minimale Konzentration von 0,2 M Glutamat ausreichend ist, um eine 90-fache Steigerung der Transkriptmenge herbeizuführen. 13. Als Antwort auf Hochsalz-Bedingungen akkumuliert H. halophilus neben Prolin auch Ectoin. Die Ectoinkonzentration bei 2,5 M NaCl war ca. 2-3 mal höher als in Zellen, die bei 1,0 M gezogen wurden. Die Bestimmung der intrazellulären Ectoin-Konzentrationen während des Wachstums zeigte außerdem, dass die Produktion von Ectoin wachstumsphasenabhängig ist. Die Konzentration in der stationären Phase war ca. 5-fach höher als in der exponentiellen Phase. Die Entwicklung der Ectoin- Konzentration verhielt sich somit reziprok zur Entwicklung der Prolin-Konzentration während des Wachstums. 14. Es wurde ein Cluster von drei Genen im Genom von H. halophilus identifiziert, deren Genprodukte die Biosynthese von Ectoin aus Aspartatsemialdehyd katalysieren. ectA kodiert dabei für eine putative Diaminobutyrat-Acetyltransferase, ectB für eine putative Diaminobutyrat-2-oxoglutarat-Transaminase und ectC für eine putative Ectoin-Synthase. Mittels reverser Transkription von mRNA und anschließenden PCR-Analysen konnte gezeigt werden, dass die drei Gene ein Operon bilden. 15. Die Transkription der ect-Gene war abhängig von der Salinität des Mediums. Ab 2,0 M stieg die Menge an RNA um das 10-fache an und erreichte bei 3,0 M ein Maximum mit der 23,5-fachen Menge. 16. Nach einem osmotischen Schock stieg die Konzentration an ect-mRNA signifikant und erreichte ein Maximum nach 3 - 4 Stunden. Das Maximum wurde somit 1,5 – 2,5 Stunden später erreicht als bei anderen Genen der Solute-Biosynthese wie etwa gdh1, das für eine Glutamatdehydrogenase, glnA2, das für eine Glutamin-Synthetase oder proH, das für eine Pyrrolin-5-Carboxylase kodiert. Die maximal erreichten Wert lagen 13-fach (ectA), 6,5-fach (ectB) und 3-fach (ectC) über dem Wert vor dem Salzschock. Gegen EctC wurden polyklonale Antikörper generiert. Western-Blot Analysen mit diesem Antikörper zeigten, dass die EctC-Menge nach 4 Stunden um das 2,5-fache stieg, dann aber wieder abfiel auf das 1,6 – 1,7-fache des Ausgangswertes. Der Rückgang an EctC fand keine Entsprechung in der gemessenen Ectoin-Konzentration, welche über einen Zeitraum von 18 Stunden kontinuierlich anstieg. Die maximale Konzentration nach 18 Stunden betrug das ca. 6,3-fache des Ausgangswertes. 17. Wurden H. halophilus Zellen mit anderen Osmolyten außer NaCl geschockt, so ergab sich folgendes Bild der Regulation der Ectoin-Biosynthese: (i) die Transkription der ect-Gene zeigte keine Chlorid-abhängige Regulation. Die maximale Transkriptmenge wurde in Gegenwart von Nitrat erreicht, wohingegen Gluconat zu vergleichbachen mRNA-Mengen führte wie Chlorid. Glutamat führte nur zu schwacher Stimulierung der Transkription. (ii) auf Ebene der Proteinmenge war zu sehen, dass die Menge an EctC nach osmotischem Schock vergleichbar war in Zellen, die mit Chlorid oder Nitrat inkubiert wurden. Gluconat führte nur zu einer 40%-igen Zunahme während andere Osmolyte nahezu wirkungslos auf die Menge an EctC blieben. (iii) die höchste Akkumulation an Ectoin nach einer plötzlichen Erhöhung der Osmolarität wurde erreicht mit Chlorid (6-fache Zunahme) gefolgt von Nitrat (5,6-fache Zunahme). Gluconat führte lediglich zu einer 3,3-fachen und Glutamat nur noch zu einer 2-fachen Steigerung der Ectoinkonzentration. Glutamat hat somit ähnliche Effekte wie Tartrat, Saccharose oder Sulfat. Succinat führte zu keiner Akkumulation und Glycin sogar zu einer deutlichen Abnahme. Die Produktion von Ectoin ist somit hauptsächlich abhängig vom Anion/Osmolyt und nur untergeordnet von der Osmolarität.
We found that the HMTase G9a, that catalyzes H3K9me2 in euchromatin, plays a key modulatory role in type I IFN expression. This finding raises the possibility of targeted intervention with type I IFN expression by using small synthetic inhibitors of G9a. Given the overall minimal negative effect of G9a-deficiency on differentiated cells, the short-term suppression of G9a could be used to potentiate type I IFN expression during chronic viral diseases such as hepatitis C. Accordingly, pharmacological enhancement of methylation, for example by inhibition of the H3K9me2 specific demethylases, could be potentially used to attenuate type I IFN expression and help to control chronic inflammatory and autoimmune conditions. The mechanism responsible for canvassing the epigenetic profile of type I IFN expressing cells are not known. It is plausible, that similar to neurons, where G9a is targeted to specific loci with the help of noncoding RNAs, IFN expressing cells possess similar mechanisms to target H3K9me2 demethylating enzymes to type I IFN loci, thus keeping these loci accessible for IFN-inducing transcription factors. Identification of non-coding RNAs that may contribute to the establishment of the epigenetic state of IFN producing cells will provide a further opportunity for targeted manipulation of IFN expression.
In my thesis, I describe the collaborative experiments that show the ability of synthetic compounds that interfere with the histone readers to suppress inflammation. Our results present a novel concept for the regulation of inflammatory gene expression. The diversity of histone readers and the combinatorial nature of regulation of gene transcription may provide an opportunity for highly selective interference with disease associated transcriptional programs by interfering with specific readers. In the future we plan to address the therapeutic potential of BET antagonists in autoimmune and chronic inflammatory conditions.In summary, the experiments described in my thesis provide an example of how the understanding of the basic mechanisms of chromatin control of gene expression can facilitate novel therapeutic approaches that target chromatin.
In der vorliegenden Arbeit wurde erstmals die Interaktion von A. baumannii mit humanem Plasminogen untersucht. Mit dem Translations-Elongationsfaktor TufAb, dem äußeren Membranprotein OmpW sowie dem Lipoprotein p41 konnten insgesamt drei Plasminogen-bindende Proteine von A. baumannii identifiziert werden. Außerdem wurde ein grundlegender Beitrag zur funktionellen Charakterisierung von TufAb sowie p41 von A. baumannii erbracht.
Es konnte nachgewiesen werden, dass gereinigtes TufAb humanes Plasminogen bindet und diese Interaktion teilweise durch Lysin-Reste vermittelt und von der Ionenstärke beeinflusst ist. An TufAb-gebundenes Plasminogen war für den Plasminogen-Aktivator u-PA zugänglich und konnte zu Plasmin aktiviert werden, welches das chromogene Substrat S-2251, das physiologische Substrat Fibrinogen und die zentrale Komplementkomponente C3b proteolytisch spaltete. Schließlich konnte TufAb als „Moonlighting“-Protein auf der Zelloberfläche von A. baumannii identifiziert werden.
Für das Lipoprotein p41 konnte ebenfalls gezeigt werden, dass dieses an Plasminogen bindet. Die Bindung von Plasminogen an p41 erfolgte ebenfalls über Lysin-Reste, zeigte sich allerdings von der Ionenstärke unbeeinflusst. Im Fall von p41 konnte mit Hilfe von C-terminal verkürzten p41-Konstrukten gezeigt werden, dass C-terminale Lysin-Reste an der Bindung von Plasminogen beteiligt sind. Weitere Versuche mit p41-Proteinen, bei welchen vier C-terminale Lysin-Reste durch Alanin-Reste substituiert wurden, ergaben, dass die beiden Lysin-Reste K368 und K369 essentiell für die Bindung von Plasminogen an p41 sind. Zudem konnte gezeigt werden, dass sowohl Kringle-Domäne 1 als auch Kringle-Domäne 4 von Plasminogen bei der Interaktion mit p41 involviert sind. An p41 gebundenes Plasminogen ließ sich durch u-PA zu Plasmin aktivieren, welches Fibrinogen sowie die zentrale Komplementkomponente C3b degradierte. p41 ist außerdem in der Lage, die Komplementkomponenten C3, C3b und C5 zu binden und den alternativen Weg zu inhibieren. Zudem ergaben Untersuchungen im Rahmen dieser Arbeit erste Hinweise darauf, dass zumindest die Plasminogen-bindende Region auf der Zelloberfläche von A. baumannii lokalisiert ist.
Die Inaktivierung des p41-kodierenden Gens führte zu einer signifikanten Abnahme im Überleben von A. baumannii-Zellen in der Gegenwart von NHS. Zudem zeigte die Mutante Δp41 einen Defekt in der Plasmin-abhängigen Transmigration durch einen Endothelzell-Monolayer. Beide Versuche untermauern die physiologische Relevanz für die Interaktion von A. baumannii mit Plasminogen.
Identifizierung des vertebraten-spezifischen Proteins C7orf43 als neue TRAPPII Komplexuntereinheit
(2016)
Bei den transport protein particle (TRAPP) Komplexen handelt es sich um eine Familie von Protein Komplexen, die jeweils aus mehreren Untereinheiten bestehen. In der vorliegenden Arbeit konnte das Protein C7orf43 als neue potenzielle TRAPPII Untereinheit identifiziert werden, die - wie auch die beiden anderen TRAPPII-spezifischen Komponenten TRAPPC9 und TRAPPC10 - sowohl für die Erhaltung von ERGIC, Golgi-Apparat und COPI Vesikel als für den ER zu Golgi Transportweg benötigt wird.