Refine
Year of publication
Document Type
- Doctoral Thesis (33)
Has Fulltext
- yes (33)
Is part of the Bibliography
- no (33)
Keywords
- A-Typ-ATPasen (1)
- A1AO ATPase (1)
- Acetogenic bacteria (1)
- Archaea (1)
- Archaebakterien (1)
- Bartonella henselae (1)
- Carbon capture (1)
- Eisen-Schwefel-Zentrum N1a (1)
- Electron microscopy (1)
- Elektronenmikroskopie (1)
Institute
- Biowissenschaften (29)
- Biochemie und Chemie (2)
- Biochemie, Chemie und Pharmazie (1)
- Medizin (1)
Genetic analysis of salt adaptation in Methanosarcina mazei Gö1 : the role of abl, ota and otb genes
(2008)
1. M. mazei ist ein halotolerantes methanogenes Archäon und akkumuliert kompatible Solute als längerfristige Anpassung an erhöhte Osmolarität in der Umgebung. Bei intermediären Salzkonzentrationen (~ 400 mM NaCl) wird vorzugsweise α-Glutamat gebildet und bei höheren Salzkonzentrationen (~ 800 mM NaCl) wird Nε-Acetyl-ß-Lysin zusätzlich zu Alpha-Glutamat synthetisiert. 2. Eine Analyse der intrazellulären Solutezusammensetzung mittels NMR ergab, dass M. mazei Glycin-Betain als Osmolyt akkumulieren kann. Für die Aufnahme von Glycin-Betain konnten zwei putative Glycin-Betain-Transporter in M. mazei identifiziert werden, Ota und Otb. Ota steht für „osmoprotectant transporter A“ und Otb für „osmoprotectant transporter B“. Das Genom von M. mazei wurde, nachdem es vollstänidg sequenziert war, nach Genen durchsucht, die eine Rolle bei der Aufnhame von Glycin-Betain oder anderen kompabtiblen Solute spielen könnten. Dafür wurde die Sequenz eines Substratbindeproteins eines bekannten bakteriellen Glycin-Betain-Transporters, opuAC aus B. subtillis als Referenzsequenz verwendet. Hierbei konnte ein Homolog, otaC, in M. mazei identifiziert werden. otaC ist Teil eines Genclusters, welches für einen ABC-Transporter kodiert. otb wurde bei einer genomweiten Expressionsanalyse zur Salzadaptation von M. mazei identifiziert. Es wurden Gene eines putativen ABC-Transporters identifiziert, die unter Hochsalzbedingungen leicht induziert waren. Es stellte sich heraus, dass es sich hierbei um einen zweiten putativen Glycin-Betain-Transporter handelte. Otb gehört auch zur Familie der ABC-Transporter. Vergleichsanalysen zeigten, dass die beiden Transporter keine große Ähnlichkeit zueinander aufweisen. Die Funktion und Rolle der beiden ABC-Transporter, vor allem von Otb, war zu Beginn dieser Arbeit unklar. 3. Bei Analysen des intrazellulären Solutepools im Wildtyp von M. mazei stellte sich heraus, dass in Anwesenheit von Glycin-Betain die Konzentration von Glutamat und NE- Acetyl-ß-Lysin verringert war. Bei 400 mM NaCl reduzierte Glycin-Betain die Glutamat- Konzentration um 16% und bei 800 mM NaCl um 29%. Besonders deutlich zeigte sich der Einfluß von Glycin-Betain bei der Akkumulation von NE-Acetyl-ß-Lysin. Bei 400 mM NaCl reduzierte Glycin-Betain die Konzentration an NE-Acetyl-ß-Lysin um 60% und bei 800 mM NaCl um 50%. Der Einfluß von Glycin-Betain konnte auf verschiedenen Ebenen in M. mazei beobachten werden. Es konnte gezeigt werden, dass die relative Transkriptimenge von ota unter Hochsalzbedingungen zunimmt. Glycin-Betain reduzierte die Transkription von ota bei verschiedenen Salzkonzentrationen. Die relative Transkriptmenge an mRNA von ota wurde mittels quantitativer real-time PCR (qRT-PCR) quantifiziert und war bis zu 52% reduziert in Zellen, die in Gegenwart von Glycin-Betain gewachsen waren. Die Transkriptmenge von otb war unter den gleichen Bedingungen nicht beeinflusst und zeigte generell keine Zunahme mit der Salinität des Mediums. Des Weiteren konnte ein Effekt von Glycin-Betain auf Ebene der Transportaktivität von Ota gezeigt werden. Hier zeigte sich, dass Zellen, die bei 400 mM NaCl in Gegenwart von Glycin-Betain gezogen waren, eine geringere Transportaktivität aufweisen, als Zellen, die bei 400 mM NaCl ohne Glycin-Betain gewachsen waren. Die Transportaktivität war um 90% geringer. Es muss jedoch berücksichtigt werden, dass es sich bei den Zellen, die ohne Glycin-Betain gewachsen waren, um eine Nettoaufnahme von Glycin-Betain handelte. Im Gegensatz dazu, ist davon auszugehen, dass Zellen, die in Gegenwart von Glycin-Betain gewachsen waren, eine Austaschreaktion zwischen bereits vorhandenem intrazellulärem und extrazellulär angebotenem Glycin-Betain vornehmen. [Die dem letzten Punkt zugrundeliegenden Daten wurden von Silke Schmidt im Rahmen einer Diplomarbeit erhoben, die von mir mitbetreut wurde. Aus Gründen der vollständigen Darstellung des Projektverlaufes werden diese Daten mitaufgeführt.] 4. Zur weiteren Klärung der Rolle und Funktion der beiden putativen Glycin-Betain- Transporter Ota und Otb war es Ziel, Mutantenstudien durchzuführen. Eine Vorraussetzung für die Generierung von Mutanten ist, dass der Organismus auf Agarplatten wächst und Einzelkolonien von einer einzelnen Zelle ausgehend bildet. Dies ist ein wichtiger Punkt bei Methanosarcina spp., die Zellpakete, sogenannte Sarcinen bilden. Deshalb wurde zunächst nach den optimalsten Plattierungsbedingungen gesucht, unter denen M. mazei keine Sarcinen bildet und die Plattierungseffizienz am höchsten war. Die Plattierungseffizienz betrug im Durchschnitt 54%. Für das Einbringen von DNA in die Zellen wurde eine Liposomen-vermittelte Transformation getestet. Ein ähnliches Vorgehen war bereits für Methanosarcina acetivorans beschrieben, konnte bislang aber noch nicht erfolgreich für M. mazei Gö1 und andere Stämme von M. mazei angwendet werden. Erste Schritte zur Anpassung des Transformations-Protokolles beinhalteten das Testen von DOTAP verschiedener Hersteller, sowie die Konzentration an eingesetzter DNA. Das jeweilige Zielgen/Zieloperon, welches deletiert werden sollte, wurde durch eine pac-Kassette ersetzt. Diese kodiert für eine Puromycin-Transacetylase und verleiht dem Organismus Puromycin- Resistenz. Die pac-Kassette wurde von umgebenden Bereichen des Ziellocus flankiert und integrierte mit Hilfe dieser flankierenden Bereiche über doppelt-homologe Rekombination in das Genom. 5. Mit dem oben beschriebenen Verfahren wurden ota::pac- und otb::pac-Mutanten erzeugt und über Southern-Blot Analyse verifiziert. Eine erste Charakterisierung der Mutanten mittels qRT-PCR zeigte, dass auf mRNA-Ebene keine Transkripte von ota in M. mazei ota::pac oder otb in M. mazei otb::pac nachweisbar waren. Zusätzlich konnte auf Proteinebene das Substratbindeprotein OtaC in M. mazei ota::pac und OtbC in M. mazei otb::pac nicht über einen Antikörper gegen das jeweilige Substratbindeprotein nachgewiesen, was die erfolgreiche Deletion bestätigte. Erste phänotypische Charakterisierungen zeigten, dass das Wachstum von M. mazei ota::pac und M. mazei otb::pac unter Hochsalzbedingungen nicht beeinträchtigt und vergleichbar mit dem des Wildtyps war. Auch bei kälteren Wachstumstemperaturen von 22°C wuchsen die Mutanten ohne Phänotyp. 6. Radioaktive Transportstudien mit M. mazei otb::pac zeigten, dass diese Mutante, die noch ein funktionelles Ota besitzt, [14C]Glycin-Betain aufnehmen kann. Es stellte sich heraus, dass diese Mutante eine höhere Transportrate für Glycin-Betain aufwies, als der Wildtyp. Die Aufnahmerate war um einen Faktor 2 höher als beim Wildtyp. Zusätzlich konnten qRT-PCR Analysen zeigen, dass die relative Transkriptmenge an ota in der otb::pac-Mutante um einen Faktor 2 höher war, als im Wildtyp. Umgekehrt konnte dieser Effekt nicht beobachtet werden, d.h. eine erhöhte Transkriptmenge an otb in M. mazei ota::pac. Auf Proteinebene konnte beobachtet werden, dass die intrazelluläre Konzentration an OtaC in der Mutatne leicht höher war als im Wildtyp. Jedoch stellte sich heraus, dass die intrazelluläre Glycin-Betain-Konzentration bei 400 mM NaCl in der Mutante nicht erhöht war verglichen mit Wildtyp, sondern die Konzentrationen gleich waren. Bei höheren Salzkonzentrationen (800 mM NaCl) zeigte sich jedoch ein anderes Bild: die intrazelluläre Glycin-Betain-Konzentration war in der Mutante um 60% erhöht. Dies könnte auf die erhöhte Transportaktivität von M. mazei otb::pac zurückzuführen sein. Die Konzentration anderer kompatibler Solute wie Glutamat und NE-Acetyl-ß-Lysin waren in diesen Zellen bis zu 48% reduziert. In vorherigen Studien konnte gezeigt werden, dass heterolog überproduziertes Ota von M. mazei in E. coli MKH13, eine E. coli-Mutante, die keine Glycin-Betain-Transporter mehr besitzt, die Aufnahme von Glycin-Betain wieder herstellen konnte [die Daten von ota in E. coli MKH13 wurden in der bereits oben erwähnten Diplomarbeit von Silke Schmidt erhoben]. Zur Klärung der Funktion von Otb wurde der gleiche Versuch mit otb in E. coli MKH13 durchgeführt. Jedoch konnte eine heterologe Produktion von Otb aus M. mazei die Aufnahme von Glycin-Betain in E. coli MKH13 nicht wieder herstellen. Hierbei wurde über Western-Blot Analyse sichergestellt, dass Otb tatsächlich in der Membran vorhanden war. Auch Transportstudien mit der Mutante M. mazei ota::pac zeigten, dass diese Mutante kein [14C]Glycin-Betain mehr aufnehmen konnte. Es konnte auch keine Akkumulation von Glycin-Betain mittels NMR in dieser Mutante gemessen werden. Des Weiteren zeigte sich, dass die intrazellulären Konzentrationen an Glutamat und Nε-Acetyl-ß-Lysin bei 400 mM und 800 mM NaCl in der Mutante unbeeinflusst von der Glycin-Betain-Konzentration im Medium waren. Weitere Transportstudien mit M. mazei ota::pac zur Aufnahme von [14C]Cholin zeigten, dass dieses Molekül weder vom Wildtyp, noch von der Mutante aufgenommen wurde. Dieses Ergebnis wurde durch Messung des Solutepools mittels NMR bestätigt. Somit kann ausgeschlossen werden, dass Otb unter den gemessenen Bedingungen weder ein Glycin- Betain-Transporter noch ein Cholin-Transporter in M. mazei ist. Diese Beobachtungen belegen eindeutig, dass Ota der einzige funktionelle Glycin-Betain-Transporter in M. mazei ist, während die Rolle von Otb bislang noch ungeklärt ist. 7. Nε-Acetyl-ß-Lysin, das dominante kompatible Solut in M. mazei bei 800 mM NaCl, wird durch die Enzyme AblA, einer Lysin-2,3-Aminomutase und AblB, einer ß-Lysin- Acetyltransferase synthetisiert. In dieser Arbeit wurde eine Δabl::pac-Mutante generiert, um die Fragen zu klären, ob die beiden Enzyme vom postulierten abl-Operon kodiert werden und wenn ja, welchen Phänotyp eine Nε-Acetyl-ß-Lysin-freier-Mutante bei Salzstress zeigt. NMR-Analysen zeigten, dass in der abl::pac-Mutante kein Nε-Acetyl-ß-Lysin mehr nachweisbar war. Dies belegt, dass die Gene ablA und ablB und deren Genprodukte für die Synthese von NE-Acetyl-ß-Lysin in M. mazei essentiell sind. Unter Hochsalzbedingungen ist das Wachstum von M. mazei abl::pac im Vergleich zum Wildtyp deutlich verlangsamt. Dieses Ergebnis war unerwartet, da eine abl::pac-Mutante von Methanococcus maripaludis unter Hochsalzbedingungen nicht mehr wachsen konnte. Unter Niedrigsalz und bei intermediären Salzkonzentration war das Wachstum von M. mazei abl::pac nicht eingeschränkt und verhielt sich wie der Wildtyp. In Gegenwart von Glycin-Betain akkumulierte die abl::pac-Mutante von M. mazei unter Hochsalzbedingungen 2,4 mal mehr Glycin-Betain als der Wildtyp, um das Defizit im Solutepool auszugleichen und Wachstum bei Hochsalz zu ermöglichen. Dadurch war sie in der Lage, wieder wie der Wildtyp zu wachsen. 8. Der Verlust von NE-Acetyl-ß-Lysin wurde unter Hochsalzbedingungen durch erhöhte Konzentrationen an Glutamat und einem neuen kompatiblen Solut kompensiert. NMRAnalysen zeigten, dass es sich hierbei um Alanin handelte. Bis jetzt wurde die Verwendung von Alanin als kompatibles Solut noch nie beschrieben. Um sicherzustellen, dass Alanin als kompatibles Solut in M. mazei abl::pac dient, wurde die Konzentration bei verschiedenen Salzkonzentrationen gemessen. Die Konzentration an Alanin nahm mit steigender Salzkonzentration zu. Bei 800 mM NaCl war die Konzentration 12 fach erhöht verglichen mit der Konzentration bei 400 mM NaCl. Außerdem redzierte Glycin-Betain die Alanin- Konzentration bei 800 mM NaCl um 58%. Transportexperimente zeigten, dass M. mazei kein Alanin aus dem Medium aufnehmen kann. 9. Erste Analysen möglicher Synthesewege für Alanin zeigten, dass die Alanin- Dehydrogenase nicht auf Transkriptebene unter Hochsalzbedingungen induziert war und somit keine Rolle in der Synthese von Alanin als kompatibles Solut spielen dürfte. Es könnten jedoch Aminotransferasen eine Rolle bei der Biosynthese von Alanin spielen. Des Weiteren sind die Enzyme, die für die Synthese von Glutamat als kompatibles Solut verantwortlich sind, unbekannt. Dies gilt für alle bis jetzt untersuchten Organismen, die Glutamat als kompatibles Solut nutzen. In dieser Arbeit wurde versucht, mit Hilfe der abl::pac-Mutante, die erhöhte Glutamat-Mengen zum Osmoschutz produziert, der Frage nachzugehen, welche Gene/Enzyme eine Rolle spielen könnten bei der Synthese von Glutamat als kompatibles Solut. Dazu wurden unter Hochsalzbedingungen die Transkriptmengen verschiedener Genen, die an der Glutamat-Synthese beteiligt sein könnten, in der Mutante und im Wildtyp untersucht. Hierbei zeigte sich, dass mehrere Gene verschiedener Enzyme unter Hochsalzbedingungen in der Mutante leicht induziert waren. Eines dieser Enzyme ist die Glutaminsynthetase. Dieses Enzym ist für die Umsetzung von Glutamat zu Glutamin unter Verbrauch von ATP verantwortlich. M. mazei besitzt zwei Gene, die für eine putative Gluaminsynthetase kodieren. In M. mazei abl::pac ist unter Hochsalzbedingungen das Gen glnA2 im Vergleich zum Wildtyp (4,03 ± 1,14) leicht induziert (7,63 ± 2,2). Des weiteren konnte in der Mutante eine leichte Induktion von gltB1, gltB2 und gltB3 unter Hochsalz beobachtet werden. Diese Gene kodieren für die einzelnen Domänen einer Glutamatsynthase. Diese ersten Analysen geben einen Hinweis darauf, dass die Synthese von Glutamat als kompatibles Solut über eine gekoppelte Reaktion der Glutaminsynthetase und der Glutamatsynthase verlaufen könnte.
(1) Die genomweite Expressionsanalyse von salzadaptierten Zellen von M. mazei Gö1 identifizierte eine Reihe von salzregulierten Genen. Neben den beiden Operone ota und abl, die für die Akkumulierung von Glycin-Betain und Ne-Azetyl-b-Lysin verantwortlich sind, konnte ein ABC-Transporter (MM0953), der in seiner Genumgebung weitere Transporter sowie Proteine mit konservierten S-Layer-Domänen aufweist, als salzreguliert erkannt werden. Dies deutet auf ein S-Layer-Exportsystem hin, das eine Rolle in salzadaptierten Zellen spielen könnte. (2) Eine genomweite Expressionsanalyse von Zellen von M. mazei Gö1 zu unterschiedlichen Zeitpunkten nach einem hyperosmotischen Schock auf 400 mM NaCl ermöglichte Einblicke in den Verlauf der Genexpression. Die Erhöhung der externen Osmolarität resultierte in der erhöhten Expression von Genen, die für die Aufnahme und Biosynthese von kompatiblen Soluten verantwortlich sind sowie von Genen deren Produkte regulatorische Funktion haben könnten. (3) Genomweite Expressionsanalysen von Zellen von M. mazei Gö1 nach einem hypoosmotischen Schock zeigten erhöhte Expression von Genen, die an der Regulation und an der generellen Stressantwort beteiligt sind. Gene, deren Produkte im Stoffwechsel wichtig sind – besonders Gene, die für Methylamin-Corrinoid-Methyltransferasen kodieren – erscheinen stark reprimiert. (4) Die Bestimmung der intrazellulären Ionenkonzentrationen zeigte ein unspezifisches Einströmen von den Ionen, die den osmotischen Schock auslösen sofort nach dem Schock, sowie den Ausstrom derselben Ionen im Verlauf von 5 Minuten. Die Ionenkonzentrationen der Ionen, die den Schock auslösten, blieben intrazellulär erhöht. Das Ein- und Ausströmen der Ionen nach einem hyperosmotischen Stress ist nicht energieabhängig. (5) M. mazei akkumulierte nach einem hyperosmotischen Schock kein K+, zeigte aber eine erhöhte intrazelluläre Konzentration dieses Ions, wenn die Zellen in Medium mit erhöhter Osmolarität angezogen wurden. (6) Durch hyperosmotische Schocks mit verschiedenen Salzen und Zuckern konnte gezeigt werden, dass die kurzzeitige Akkumulation von Ionen keine gerichtete Antwort auf den osmotischen Stress ist. (7) Es konnte weiters gezeigt werden, dass Zellen von M. mazei Gö1, die mit dem kompatiblen Solut Betain inkubiert wurden, nach einem hyperosmotischen Schock K+ akkumulieren. Dies bedeutet möglicherweise eine K+-abhängige Regulation des Glycin-Betain-Transporters. (8) Die Funktion der drei im Genom kodierten Na+/H+-Antiporter konnte auf transkriptioneller Ebene nicht geklärt werden. Trotzdem zeigt ein Hydrophobizitätsplot des Proteins eine mögliche Beteiligung von Nha1 (MM0294) an der Osmoregulation durch eine hydrophile C-terminale Domäne. (9) Nach einem hyperosmotischen Schock von 38,5 auf 400 mM NaCl erhöhte sich die intrazelluläre Konzentration an Glutamat, das in M. mazei als kompatibles Solut fungiert, bereits nach drei Stunden. Zellen, die bereits an die erhöhte Salzkonzentration adaptiert waren, enthielten 1,4 μmol Glutamat/mg Protein. (10) Die Glutamin-Synthetase zeigte eine erhöhte Transkription nach einem hyperosmotischen Schock. Das Protein wird aber nicht salzabhängig produziert und zeigt keine Enzymaktivität. Die Biosynthese des Solutes über eine Glutamat-Dehydrogenase ist die wahrscheinliche Alternative. (11) Aufgrund der generierten Expressionsprofile und der physiologischen Daten konnte ein Modell der Osmoadaptation in Methanosarcina mazei Gö1 erstellt werden.
We found that the HMTase G9a, that catalyzes H3K9me2 in euchromatin, plays a key modulatory role in type I IFN expression. This finding raises the possibility of targeted intervention with type I IFN expression by using small synthetic inhibitors of G9a. Given the overall minimal negative effect of G9a-deficiency on differentiated cells, the short-term suppression of G9a could be used to potentiate type I IFN expression during chronic viral diseases such as hepatitis C. Accordingly, pharmacological enhancement of methylation, for example by inhibition of the H3K9me2 specific demethylases, could be potentially used to attenuate type I IFN expression and help to control chronic inflammatory and autoimmune conditions. The mechanism responsible for canvassing the epigenetic profile of type I IFN expressing cells are not known. It is plausible, that similar to neurons, where G9a is targeted to specific loci with the help of noncoding RNAs, IFN expressing cells possess similar mechanisms to target H3K9me2 demethylating enzymes to type I IFN loci, thus keeping these loci accessible for IFN-inducing transcription factors. Identification of non-coding RNAs that may contribute to the establishment of the epigenetic state of IFN producing cells will provide a further opportunity for targeted manipulation of IFN expression.
In my thesis, I describe the collaborative experiments that show the ability of synthetic compounds that interfere with the histone readers to suppress inflammation. Our results present a novel concept for the regulation of inflammatory gene expression. The diversity of histone readers and the combinatorial nature of regulation of gene transcription may provide an opportunity for highly selective interference with disease associated transcriptional programs by interfering with specific readers. In the future we plan to address the therapeutic potential of BET antagonists in autoimmune and chronic inflammatory conditions.In summary, the experiments described in my thesis provide an example of how the understanding of the basic mechanisms of chromatin control of gene expression can facilitate novel therapeutic approaches that target chromatin.
In der vorliegenden Arbeit wurde erstmals die Interaktion von A. baumannii mit humanem Plasminogen untersucht. Mit dem Translations-Elongationsfaktor TufAb, dem äußeren Membranprotein OmpW sowie dem Lipoprotein p41 konnten insgesamt drei Plasminogen-bindende Proteine von A. baumannii identifiziert werden. Außerdem wurde ein grundlegender Beitrag zur funktionellen Charakterisierung von TufAb sowie p41 von A. baumannii erbracht.
Es konnte nachgewiesen werden, dass gereinigtes TufAb humanes Plasminogen bindet und diese Interaktion teilweise durch Lysin-Reste vermittelt und von der Ionenstärke beeinflusst ist. An TufAb-gebundenes Plasminogen war für den Plasminogen-Aktivator u-PA zugänglich und konnte zu Plasmin aktiviert werden, welches das chromogene Substrat S-2251, das physiologische Substrat Fibrinogen und die zentrale Komplementkomponente C3b proteolytisch spaltete. Schließlich konnte TufAb als „Moonlighting“-Protein auf der Zelloberfläche von A. baumannii identifiziert werden.
Für das Lipoprotein p41 konnte ebenfalls gezeigt werden, dass dieses an Plasminogen bindet. Die Bindung von Plasminogen an p41 erfolgte ebenfalls über Lysin-Reste, zeigte sich allerdings von der Ionenstärke unbeeinflusst. Im Fall von p41 konnte mit Hilfe von C-terminal verkürzten p41-Konstrukten gezeigt werden, dass C-terminale Lysin-Reste an der Bindung von Plasminogen beteiligt sind. Weitere Versuche mit p41-Proteinen, bei welchen vier C-terminale Lysin-Reste durch Alanin-Reste substituiert wurden, ergaben, dass die beiden Lysin-Reste K368 und K369 essentiell für die Bindung von Plasminogen an p41 sind. Zudem konnte gezeigt werden, dass sowohl Kringle-Domäne 1 als auch Kringle-Domäne 4 von Plasminogen bei der Interaktion mit p41 involviert sind. An p41 gebundenes Plasminogen ließ sich durch u-PA zu Plasmin aktivieren, welches Fibrinogen sowie die zentrale Komplementkomponente C3b degradierte. p41 ist außerdem in der Lage, die Komplementkomponenten C3, C3b und C5 zu binden und den alternativen Weg zu inhibieren. Zudem ergaben Untersuchungen im Rahmen dieser Arbeit erste Hinweise darauf, dass zumindest die Plasminogen-bindende Region auf der Zelloberfläche von A. baumannii lokalisiert ist.
Die Inaktivierung des p41-kodierenden Gens führte zu einer signifikanten Abnahme im Überleben von A. baumannii-Zellen in der Gegenwart von NHS. Zudem zeigte die Mutante Δp41 einen Defekt in der Plasmin-abhängigen Transmigration durch einen Endothelzell-Monolayer. Beide Versuche untermauern die physiologische Relevanz für die Interaktion von A. baumannii mit Plasminogen.
Vascular tumors associated with chronic B. henselae infections are unique examples of infection-associated pathological angiogenesis. The chaotic vascular architecture and prominent myeloid infiltrate of B. henselae induced vascular lesions show many similarities with malignant tumors.
In human cancers infiltrating myeloid cells play a decisive role in tumor progression and vascularization. In particular, tumor associated macrophages (TAMs) transform the tumor microenvironment, drive tumor invasion and vascularization through secretion of pro-angiogenic and immune modulatory cytokines and participation in matrix remodeling processes.
Myeloid angiogenic cells (MACs) are a subset of circulating myeloid progenitors with important roles in regenerative and pathological angiogenesis and a critical involvement in tumor vascularization. The phenotypic plasticity and importance of MACs in pathological angiogenic processes, position these cells as key potential players in B. henselae associated vascular tumor formation.
To investigate the possible role of MACs in B henselae induced pathological angiogenesis, the objective of this study was to examine the interaction of B. henselae with MACs and determine how this may affect their angiogenic capacity.
Building on previous work by Mӓndle (2005) this study has demonstrated that MACs are susceptible to infection with B. henselae and reside in intracellular vacuoles. As in endothelial cells, infection of MACs with B. henselae was associated with inhibition of apoptosis and activation of endogenous angiogenic programs including activation of the angiogenic transcription factor HIF-1.
In addition to angiogenic re-programming on a molecular level B. henselae infection increases MAC functional angiogenic capacity. B. henselae infected MACs were found to integrate into growing endothelium and increase the rate of angiogenic sprouting in a paracrine manner.
When cultured in a Matrigel capillary formation assay, infected MACs were also found to form networks of capillary-like structures that were stable over long periods of time. The B. henselae pathogenicity factor BadA was essential for the induction of this vascular mimicry phenotype as well as the activation of HIF-1 in infected MACs indicating that this factor may play an important role in MAC angiogenic re-programming.
Examination of infected MACs via FACS analysis, cytospin immunohistochemistry and qRT-PCR revealed that endothelial differentiation does not play a role in the B. henselae induced pro-angiogenic phenotype. Instead, MACs were shown to be myeloid in phenotype displaying typical macrophage markers which were upregulated upon B. henselae infection and maintained over long-term culture.
The increased angiogenic activity of B. henselae infected MACs was found to be associated with a broad phenotypic reprogramming in infected cells. In particular, gene expression programs related to angiogenesis, structural organization, apoptosis, sterol metabolism and immune regulation, were upregulated. Further examination of microarray gene expression profiles revealed that B. henselae infected MACs display a predominantly M2 anti-inflammatory macrophage activation status.
Finally, examination of the paracrine microenvironment created by B. henselae infected MACs revealed a diverse cytokine secretion profile dominated by inflammatory-angiogenic cytokines and matrix remodeling elements and lacking expression of some of the most important cytokines involved in the expansion of the inflammatory response. This B. henselae induced activation status was demonstrated to be distinct from the general inflammatory response induced by E. coli LPS treatment.
Comparison of B. henselae infected MACs to TAMs revealed many parallels in functional and phenotypic characteristics. Both TAMs and B. henselae infected MACs demonstrate increased angiogenic capacity, invasive, and immune modulatory phenotypes and the ability to participate in the formation of vascular mimicry phenotypes under angiogenic pressure. Furthermore, the pro-angiogenic paracrine microenvironment created by B. henselae infected MACs shows many similarities to the TAM-created tumor-microenvironment.
In conclusion, these investigations have demonstrated that the infection of MACs with B. henselae results in the phenotypic re-programming towards TAM-like cells with increased pro-angiogenic, invasive and immune-modulatory qualities. The results of this study elucidate new aspects of B. henselae pathogenicity in myeloid cells and highlight the role of these cells as paracrine mediators of B. henselae induced vascular tumor formation. In addition, these findings demonstrate that manipulation of myeloid cells by pathogenic bacteria can contribute to microenvironmental regulation of pathological tissue growth and suggest parallels underlying bacterial infections and cancer.
Bartonella Adhäsin A (BadA), das zur Gruppe der TAAs gehört, ist ein essentieller Pathogenitätsfaktor von B. henselae und übernimmt während des Infektionsverlaufs wichtige Funktion wie Autoagglutination, Adhärenz an ECM-Proteine und Endothelzellen. BadA weist die für die für die Proteinklasse der TAAs charakteristische modulare Architektur bestehend aus N-terminaler Kopf-Domäne, Stiel-Domäne, Hals-Domäne und C-terminaler Membrananker-Domäne auf. Der modulare Aufbau des Proteins deutet daraufhin, dass bestimmte Domänen mit bestimmten biologischen Funktionen des Proteins verknüpft sind. Zur Untersuchung dieser Hypothese wurden Deletionsmutanten des BadA generiert.
Die Generierung weiterer BadA-Deletionsmutanten wird durch das langsame Wachstum des Erregers und die geringe Auswahl an molekularbiologischen Werkzeugen zur genetischen Manipulation von B. henselae erschwert. Daher sollte in ersten Teil dieser Arbeit ein Expressionsmodell für Deletionsmutanten des BadA etabliert und charakterisiert werden. Dies sollte am Beispiel des trunkierten BadA, BadA HN23, durchgeführt werden. Hierzu sollten drei Hybrid-Varianten des BadA HN23 erstellt werden: (i) Austausch der BadA-Signalsequenz gegen die E. coli OmpA-Signalsequenz, (ii) Austausch der BadA-Membrananker-Domäne gegen die YadA-Membrananker-Domäne sowie (iii) Austausch von sowohl der BadA-Signalsequenz als auch der BadA-Membrananker-Domäne gegen die bereits genannten Elemente. Danach sollten die konstruierten BadA HN23 Hybride und das BadA HN23 in induzierbare Expressionsvektoren kloniert und spezielle E. coli-Expressionsstämme mit diesen Plasmiden transformiert werden. Bei erfolgreicher Expression sollten die optimalen Bedingungen für die Expression (Temperatur, Induktorkonzentration) ermittelt werden und an-schließend die biologische Funktion der heterolog exprimierten BadA HN23 Hybride überprüft werden.
Der erste Abschnitt der hier vorliegenden Arbeit zeigte folgende Ergebnisse:
1) Die beschrieben BadA HN23 Hybrid Konstrukte wurden durch Austausch von: (i) BadA-Signalsequenz gegen E. coli OmpA-Signalsequenz im BadA HN23,
(ii) BadA-Membrananker-Domäne gegen YadA-Membrananker-Domäne im BadA HN23 und
(iii) Austausch von BadA-Signalsequenz und BadA-Membrananker-Domäne gegen E. coli OmpA-Signalsequenz und YadA-Membrananker-Domäne im BadA HN23 generiert.
Die BadA HN23 Hybride und BadA HN23 wurden in Expressionsvektoren kloniert und E. coli Omp2, E. coli Omp8 und E. coli Omp8ΔdegP transformiert.
2) Alle BadA HN23 Hybrid-Konstrukte und BadA HN23 lagen in einer monomeren und trimeren Form vor.
3) Durch IFT und - Durchflusszytometrie-Untersuchungen wurde die Oberflächenexpression der einzelnen Konstrukte quantifiziert. Es zeigte sich, dass es deutliche Unterschiede in der Menge des auf der Zelloberfläche befindlichen jeweiligen BadA HN23 Proteins gab. Dabei wiesen die Konstrukte, die die YadA-Membrananker-Domäne besaßen (BadA HN23 Hybrid 2 und 3), die stärkste Oberflächenexpression auf.
4) Die biologische Funktion des BadA HN23 wurde mittels des E. coli Omp2 BadA HN23 Hybrid 3 charakterisiert. Heterolog exprimiertes BadA HN23 vermittelt Autoagglutination, die Adhärenz des Expressionsstammes an Kollagen G und Endothelzellen.
5) Die Expression des BadA HN23 führt zur signifikant verstärkten in-vivo-Pathogenität im Galleria mellonella-Infektionsmodell.
6) Das E. coli-Expressionsmodell lieferte keine Aussage über eventuelle immunodominate Funktionen des heterolog exprimierten BadA HN23, da auch mit im IFT als anti- B. henselae negativ eingestuften Patientenseren im WB ein BadA HN23 spezifisches Bandensignal detektiert wurde. Dot Blot-Experimente ermöglichten ebenfalls keine Aussage über eventuelle immunodominate Funktion des nativen BadA HN23, da das verwendete anti-B. henselae-positive Patientenserum unspezifische Reaktion gegenüber dem Kontrollstamm zeigte.
Für verschiedene TAAs ist beschrieben worden, dass sie die Serumresistenz der exprimierenden Spezies vermitteln. Daher sollte im zweiten Teil dieser Arbeit der Einfluss von BadA auf eventuelle Serumresistenz zweier B. henselae-Isolate untersucht werden. Dieser Teil lieferte folgende Ergebnisse:
1) B. henselae zeigte Sensitivität gegenüber normalem humanem Serum.
2) Sowohl BadA-positive als auch BadA-negative B. henselae-Isolate können Komplementinhibitoren wie Faktor H binden. Die dabei gebundene Menge ist relativ klein.
Die Expression von Deletionsmutanten des BadA in E. coli ist ein vielversprechendes Modell zur Analyse der Domänen-Funktionsbeziehung des BadA, da die meisten biologischen Funktionen einer homolog exprimierten BadA-Deletionsmutante reproduziert werden konnten und es sich bei E. coli um ein schnell wachsendes Bakterium, das sich leicht genetisch manipulieren lässt, handelt. Allerdings stellt das zytotoxische LPS des E. coli sowie das schnelle Wachstums der Bakterien eine Limitation des Expressionssystems dar, indem es Untersuchungen zum Einfluss der jeweiligen BadA-Deletionsmutante auf die Induktion der proangiogenetischen Wirtszellantwort verhindert oder Untersuchungen zum Einfluss der jeweiligen BadA-Deletionsmutante auf die Adhärenz an Endothelzellen deutlich erschwert. Außerdem kann eine mögliche Interaktion zwischen BadA bzw. BadA-Deletionsmutanten und dem TIVSS und zwischen BadA bzw. BadA-Deletionsmutanten und weiteren Adhäsinen (wie z.B. dem FHA) mit Hilfe dieses Expressionssystems nicht untersucht werden. Dies wäre nur im B. henselae Wildtyp-Stamm möglich.
Ribosomes are the central cellular assembly lines for protein synthesis. To cope with the translational needs, a proliferating mammalian cell can produce up to 7500-ribosomes per minute. However, under growth limiting conditions, such as nutrient depletion, ribosome synthesis is rapidly shut down exemplifying the importance of a tight coordination between ribosome supply and cellular energy status. In addition to the quantitative regulation, a strict quality control of ribosome synthesis is equally important, because alterations in the composition or function of ribosomes can lead to a variety of pathologies. To cope with these challenges a highly regulated, multi-step pathway of ribosome biogenesis has evolved. In mammals this pathway generates the mature 80S ribosomes that comprise the large 60S and the small 40S subunits. Together they contain around 80 ribosomal proteins and the 28S, 18S, 5.8S and 5S rRNAs. The 28S, 5.8S and 5S rRNAs are assembled into the large subunit, while the 18S rRNA is part of the small subunit. The pathway of ribosome biogenesis is a multi-step cellular process, where specific stages occur in distinct subcellular compartments. Transcription of the 47S rRNA, which is the precursor for the 28S, 18S and 5.8S species, occurs in the nucleolus. Modification of distinct bases and early processing of this precursor also take place in the nucleolus. Subsequently, the 40S and 60S pre-ribosomes take separate maturation routes through the nucleoplasm before their export and final assembly in the cytoplasm. The various stages of preribosomal maturation require the constant and sequential action of a large number of non-ribosomal proteins, known as trans-acting factors. These factors coordinate the delicate remodeling of the pre-ribosomal intermediates and thereby ensure proper progression of the maturation process. The remodeling events largely depend on the dynamics of post-translational modifications, such as phosphorylation or SUMOylation. This requires that the enzymes controlling these modifications are properly targeted to their sites of activity as they fulfill their functions within specific compartments. Here we studied the regulatory principles that govern the subcellular partitioning of the SUMO-specific isopeptidase SENP3 and its associated factor PELP1. Previous work from our laboratory has delineated the importance of the SUMO system for proper ribosome biogenesis in mammalian cells. In particular, we have shown that SENP3 is critically involved in 28S rRNA formation, which is a key step for pre-60S subunit maturation. A critical involvement of SENP3 at this stage of the maturation process is in agreement with the observed enrichment of SENP3 in the nucleolus, since 28S rRNA processing is considered to occur in the nucleolus. Our subsequent work identified the nucleolar scaffold protein NPM1 and the ribosomal trans-acting factor PELP1 as bona fide substrates of SENP3. For both proteins we could demonstrate modification by SUMO2/3 and define SENP3 as the demodifying enzyme. Depletion of SENP3 enhanced the conjugation of SUMO to both proteins and concomitantly reduced conversion of the 32S pre-rRNA to the mature 28S rRNA. PELP1 is part of a larger protein complex consisting of the core components PELP1, TEX10 and WDR18. We could show that the balanced SUMOylation/deSUMOylation of PELP1 controls the nucleolar/nucleoplasmic distribution of this complex. Enhanced SUMOylation, which is observed in the absence of SENP3, triggers the nucleolar release of the complex suggesting that SENP3-mediated deSUMOylation controls the dynamics of nucleolar trans-acting factors. Based on these findings we first wanted to understand, in which cellular compartment(s) SENP3 exerts its function on 28S maturation. Next, we wanted to tackle the question how the subcellular distribution of SENP3 is controlled. Finally
we addressed the question how the SUMOylation of PELP1 determines the subnuclear distribution of the PELP1 complex. This work initially revealed that the nucleolar localization of SENP3 is crucial for proper 28S rRNA formation and 60S ribosome maturation. Importantly, we could demonstrate that the nucleolar compartmentalization of SENP3 depends on its direct physical interaction with NPM1. Further, we could show that the amino-terminal region of SENP3 is necessary for its binding to NPM1 and nucleolar recruitment. Strikingly, this interaction requires the phosphorylation of SENP3, which is brought about by the mTOR kinase. By in-vitro kinase assays and mass-spectrometric approaches we identified five serine/threonine residues within the amino-terminal region of SENP3 that are targeted by mTOR (S/T 25, 26, 141, 142, 143). We could further demonstrate by mutagenesis that these sites in SENP3 are in fact critical for the phospho-dependent binding of SENP3 to NPM1 and its nucleolar recruitment.
Consistent with these data, we found that chemical inhibitors of the mTOR kinase trigger the nucleolar release of SENP3 and impair its interaction with NPM1. Strikingly, this goes along with severe 28S rRNA maturation defects demonstrating the physiological importance of mTOR signaling in the regulation SENP3 function and rRNA processing. By specifically depleting components of the either mTORC1 or mTORC2, we could attribute the observed effects to signaling by mTORC1 rather than mTORC2. In an attempt to find the negative regulators of SENP3 phosphorylation, we identified PP1-γ as the candidate phosphatase in this pathway. We found a strong physical interaction of SENP3 with PP1-γ and observed a loss of SENP3 nucleolar localization upon ectopic expression of PP1-γ. Thus we could define mTOR/PP1-γ mediated phosphorylation/dephosphorylation of SENP3 as an important
mechanism in the control of ribosome maturation. Given that mTOR activity is controlled by nutrient availability, SENP3 functions as a sensor that couples ribosome synthesis with nutrient availability. The second part of this work delineated the role of SUMOylated PELP1 in nucleoplasmic partitioning of the SENP3-PELP1 complex. It was revealed that the AAA-ATPase MDN1 binds preferentially to SUMO modified PELP1 and likely segregates SUMOylated PELP1 from nucleolar pre-60S particles. We initially found that the PELP1 complex associates with MDN1, a factor known to be involved in the 28S rRNA maturation. Notably, depletion of MDN1 led to an enhanced accumulation of the PELP1 complex in the nucleolus and a strong association of PELP1 with pre-60S particles, suggesting that MDN1 is required for the release of this complex from the pre-ribosomes. Intriguingly, the interaction of PELP1 with MDN1 requires SUMO2/3 and SUMOylated PELP1 shows enhanced binding to MDN1 when compared to unmodified PELP1. Taken together this work provides new insights in the control of the SENP3-PELP1 complex dynamics. We could define several layers for the coordinated spatial regulation of SENP3 and the PELP1 complex. This work therefore underscores the crucial importance of dynamic post-translational modifications for the control of ribosome maturation.
1. Das Genom von A. woodii konnte sequenziert und annotiert werden. Der Organismus besitzt ein Chromosom von 4050521 Bp und keine Plasmide. Es sind 3495 ORFs kodiert. 2. Die Gene, die die Enzyme des Wood-Ljungdahl-Weges kodieren, konnten identifiziert werden. Sie sind hauptsächlich in drei Clustern organisiert, wobei für Cluster II gezeigt werden konnte, dass es ein Operon bildet und dort ungewöhnlicherweise ein RnfC-ähnliches Protein kodiert ist. 3. Gene für Proteine der Hexose-Verwertung konnten ebenfalls identifiziert werden. A. woodii besitzt sowohl PTS-Systeme als auch einen Na+/Zucker-Symporter zur Aufnahme von Hexosen. Die Enzyme der Glykolyse sind vollständig im Genom vorhanden und liegen im gesamten Genom verstreut vor. 4. Neben den Genen für die bereits charakterisierte Hydrogenase existieren im Genom weitere Gene, die potentielle Hydrogenasen oder Untereinheiten dieser kodieren. 5. Lange wurde für Methyltransferasen in A. woodii vermutet, dass es sich um energiekonservierende Enzyme handelt. Die Genomsequenz zeigte, dass das Genom Gene für 20 Methyltransferasen 1, 10 Methyltransferasen 2 und 22 Corrinoid-Proteine enthält. Die Methyltransferase und das Corrinoid-Protein des Wood-Ljungdahl-Weges konnten identifiziert werden. Allerdings konnte für keines der korrespondierenden Proteine eine Membranständigkeit vorhergesagt werden, was eine Beteiligung der Methyltransferasen an der Energiekonservierung ausschließt. Die Vielzahl der Methyltransferasen passt aber zu der Vielzahl von methylierten Verbindungen, die der Organismus verstoffwechseln kann. 6. Neben den gut charakterisierten etf-Genen aus dem car-Operon, das bei der Caffeat-Reduktion eine wichtige Rolle spielt, gibt es ein weiteres etf-Paar, welches mit den Genen für eine Laktat-Dehydrogenase und eine Laktat-Permease kolokalisiert ist. Welche Rolle die Proteine spielen bleibt noch aufzuklären. 7. Außer den Genen für die gut charakterisierte F1F0-ATP-Synthase finden sich Gene für eine V-Typ ATPase. Diese Gene bilden ein Operon. Desweiteren konnte gezeigt werden, dass die Untereinheit VatA auch produziert wird. Die physiologische Rolle konnte allerdings noch nicht geklärt werden. 8. Basierend auf den genomischen Daten konnte ein Modell des Flagellums erstellt werden. Desweiteren wurde eine Vielzahl von Genen für chemotaktische Proteine identifiziert. Zur Verarbeitung von Umweltsignalen besitzt A. woodii Komponenten des Che-Systems, die zum einen aus E. coli und zum anderen aus B. subtilis bekannt sind. 9. In Proteomanalysen konnte festgestellt werden, dass die Enzyme des Wood- Ljungdahl-Weges beim Wachstum auf H2 + CO2 im Vergleich zum Wachstum auf Fruktose induziert werden, die Enzyme der Glykolyse werden dagegen reprimiert. Desweiteren ist die Hydrogenase (HydAB) auf H2 + CO2 induziert. Das am stärksten induzierte Protein ist eine Alanin-Dehydrogenase, deren Rolle im Stoffwechsel unbekannt ist. 10. Die Untersuchung des genomischen Kontextes der für die Na+-translozierende Ferredoxin:NAD+-Oxidoreduktase (Fno/Rnf) kodierenden Gene rnfCDGEAB ergab keine weiteren Gene, die mit Rnf in Verbindung stehen. Experimentelle Befunde zeigen, dass die Gene rnfCDGEAB ein Operon bilden. 11. Nach der Generierung von Antikörpern gegen die Untereinheiten des Rnf-Komplexes, die große lösliche Anteile besitzen, konnte nachgewiesen werden, dass RnfB, C und G in der Membran lokalisiert sind. Desweiteren wurde nachgewiesen, dass deren Produktion unabhängig von der An- oder Abwesenheit von Caffeat und den getesteten C-Quellen ist. 12. RnfG konnte in E. coli überproduziert und anschließend gereinigt werden, allerdings fehlte der vorhergesagte, kovalent gebundene Flavin-Cofaktor. 13. RnfC konnte ebenfalls in E. coli überproduziert und anschließend gereinigt werden. Nach Rekonstitution mit Eisen und Schwefel konnte ein Fe-Gehalt von 8 nmol/ nmol Protein und ein Schwefel-Gehalt von 5 nmol/nmol Protein bestimmt werden. Die im UV/Vis-Spektrum sichtbaren Maxima wiesen auf die Anwesenheit von FeS-Zentren hin. EPR-Analysen deuten darauf hin, dass die FeS-Zentren nur unvollständig assembliert sind. 14. Im Genom von A. woodii ist ein Cluster von Genen, das Proteine zur Umsetzung von 1,2-Propandiol kodiert, zu finden. Elektronenmikroskopisch konnte nachgewiesen werden, dass der Organismus in Gegenwart von 1,2-Propandiol Mikrokompartimente bildet. 15. In Zellsuspensionsversuchen konnte nachgewiesen werden, dass 1,2-Propandiol nicht zu Propionat und Acetat, sondern zu 1-Propanol und Propionat über das Intermediat Propionaldehyd umgesetzt wird. 16. Rohextrakte 1,2-Propandiol-gezogener Zellen katalysierten die Reduktion von NAD+ mit Propionaldehyd als Reduktant. Die Reaktion benötigte CoA, NAD+ (Km 0,35 mM) und Propionaldehyd (Km 1,3 mM). Das Temperaturoptimum betrug 30°C und das pH-Optimum lag zwischen pH 8 und 10. 17. Ein Antikörper gegen die Propionaldehyd-Dehydrogenase (PduP) aus S. enterica reagierte mit einem ca. 50 kDa-Protein 1,2-Propandiol-gezogener Zellen. Dies zeigt, dass PduP aus A. woodii und PduP aus S. enterica immunologisch verwandt sind. Western-Blot-Analysen zeigten, dass PduP nur in 1,2-Propandiol-, 2,3-Butandioloder Ethylenglykol-gezogenen Zellen nachweisbar war, aber nicht in Zellen die auf Fruktose, Ethanol oder H2 + CO2 gezogen waren. 18. Die Aktivität der Propionaldehyd-Dehydrogenase war in Zellen gezogen auf 1,2-Propandiol am höchsten. Nach Wachstum auf Fruktose oder H2 + CO2 war die Aktivität sehr niedrig. Genau gegensätzlich verhielten sich die Aktivitäten der Formiat-Dehydrogenase, einem Enzym des Wood-Ljungdahl-Weges, der ATPHydrolyse und des Rnf-Komplexes. 19. In Gegenwart von Caffeat und 1,2-Propandiol konnte A. woodii nicht wachsen. Das Wachstum auf 2,3-Butandiol oder Ethylenglykol in Gegenwart von Caffeat war möglich.
This thesis is based on the following publications (in chronological order): 1. Biegel, E., S. Schmidt & V. Müller (2009) Genetic, immunological and biochemical evidence for a Rnf complex in the acetogen Acetobacterium woodii. Environ. Microbiol. 11: 1438-1443. My contribution: Amplification, sequence determination and analysis of Rnf homologues, enrichment of the Rnf complex 2. Biegel, E. & V. Müller (2010) Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc. Nat. Acad. Sci. U. S. A. 107: 18138-18142. My contribution: I designed and performed all experiments shown and interpreted the data. 3. Biegel, E., S. Schmidt, J. Gonzáles & V. Müller (2010) Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell. Mol. Life Sci., in press. DOI: 10.1007/s00018-010-0555-8. My contribution: I was involved in writing all chapters except chapters: „phylogenetic analyses of rnf genes“ and „distribution of rnf genes“. 4. Biegel, E. & V. Müller (2010) A Na+-translocating pyrophosphatase in the acetogenic bacterium Acetobacterium woodii. J. Biol. Chem., in press. DOI: 10.1074/jbc.M110.192823. My contribution: I designed and performed all experiments shown and interpreted the data.