Refine
Document Type
- Doctoral Thesis (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- Dirac-Gleichung (2)
- Dirac-Vakuum (2)
- Quantenelektrodynamik (2)
- Teilchenerzeugung (2)
- Conformational transitions (1)
- Dirac vacuum (1)
- Dirac-Operator (1)
- Geladener String (1)
- High Energy Heavy Ion Collisions (1)
- Kernmaterie (1)
Institute
This work is devoted to the description of mechanisms that might be responsible for avian magnetoreception. Two possible theoretical concepts underlying this phenomenon are formulated and their functionality is proven in realistic geomagnetic fields. It has been suggested that the "magnetic sense" in birds may be mediated by the blue light receptor protein- cryptochrome- which is known to be localized in the retinas of migratory birds. Cryptochromes are a class of photoreceptor signaling proteins that are found in a wide variety of organisms and which primarily perform regulatory functions, such as the entrainment of circadian rhythm in mammals and the inhibition of hypocotyl growth in plants. Recent experiments have shown that the activity of cryptochrome-1 in Arabidopsis thaliana is enhanced by the presence of a weak external magnetic field, confirming the ability of cryptochrome to mediate magnetic field responses. Cryptochrome's signaling is tied to the photoreduction of an internally bound chromophore, flavin adenine dinucleotide (FAD). The spin chemistry of this photoreduction process, which involves electron transfer from a chain of three tryptophans, is modulated by the presence of a magnetic field in an effect known as the radical pair mechanism. Cryptochrome was suggested as a possible magnetoreceptor for the first time in 2000. However, no realistic calculations of the magnetic field effect in cryptochrome were performed. One of the goals of the present thesis is computationally to study the electron spin dynamics in cryptochrome and to show the feasibility of a cryptochrome-based compass in birds. In particular, the activation yield of cryptochrome was studied as a function of an external magnetic field and it was shown that the activation of the protein can be influenced by the geomagnetic field. In the work it has also been proven that cryptochrome provides an inclination compass, which is necessary for bird orientation. The evolution of spin densities as a function of time is also discussed. An alternative mechanism of avian magnetoreception discussed in the thesis is based on the interaction of two iron minerals (magnetite and maghemite) which were only recently found in subcellular compartments within the sensory dendrites of the upper beak of several bird species. The iron minerals in the beak form platelets of crystalline maghemite and assemblies of magnetite nanoparticles (magnetite clusters). The interaction between these particles can be manipulated by an external magnetic field inducing a primary receptor potential via strain-sensitive membrane channels that lead to a certain bird orientation effect. Various properties of the magnetite/maghemite magnetoreceptor system have been considered: the potential energy surface of the magnetite cluster has been calculated and analyzed as a function of the orientation of an external magnetic field; the forces acting on the magnetite cluster were calculated and analyzed; the force differences caused by the change of the direction of external magnetic field were established; the probability of opening the mechanosensitive ion channel was calculated. Finally it has been demonstrated that the iron-mineral based magnetoreceptor provides a polarity magnetic compass. Various conditions at which the magnetoreception process is violated are outlined.
In the classical Dirac equation with strong potentials, called overcritical, a bound state reaches the negative continuum. In QED the presence of a static overcritical external electric field leads to a charged vacuum and indicates spontaneous particle creation when the overcritical field is switched on. The goal of this work is to clarify whether this effect exists, i.e. if it can be uniquely defined and proved, in time-dependent physical processes. Starting from a fundamental level of the theory we check all mathematical and interpretational steps from the algebra of fields to the very effect. In the first, theoretical part of this thesis we introduce the mathematical formulation of the classical and quantized Dirac theory with their most important results. Using this language we define rigorously the notion of spontaneous particle creation in overcritical fields. First, we give a rigorous definition of resonances as poles of the resolvent or the Green's function and show how eigenvalues become resonances under Hamiltonian perturbations. In particular, we consider essential for overcritical potentials perturbation of eigenvalues at the edge of the continuous spectrum. Next, we gather various adiabatic theorems and discuss well-posedness of the scattering in the adiabatic limit. Then, we construct Fock space representations of the field algebra, study their equivalence and give a unitary implementer of all Bogoliubov transformations induced by unitary transformations of the one-particle Hilbert space as well as by the projector (or vacuum vector) changes as long as they lead to unitarily equivalent Fock representations. We implement in Fock space self-adjoint and unitary operators from the one-particle space, discussing the charge, energy, evolution and scattering operators. Then we introduce the notion of particles and several particle interpretations for time-dependent processes with a different Fock space at every instant of time. We study how the charge, energy and number of particles change in consequence of a change of representation or in implemented evolution or scattering processes, what is especially interesting in presence of overcritical potentials. Using this language we define rigorously the notion of spontaneous particle creation. Then we look for physical processes which show the effect of vacuum decay and spontaneous particle creation exclusively due to the overcriticality of the potential. We consider several processes with static as well as suddenly switched on (and off) static overcritical potentials and conclude that they are unsatisfactory for observation of the spontaneous particle creation. Next, we consider properties of general time-dependent scattering processes with continuous switch on (and off) of an overcritical potential and show that they also fail to produce stable signatures of the particle creation due to overcriticality. Further, we study and successfully define the spontaneous particle creation in adiabatic processes, where the spontaneous antiparticle is created as a result of a resonance (wave packet) decay in the negative continuum. Unfortunately, they lead to physically questionable pair production as the adiabatic limit is approached. Finally, we consider extension of these ideas to non-adiabatic processes involving overcritical potentials and argue that they are the best candidate for showing the spontaneous pair creation in physical processes. Demanding creation of the spontaneous antiparticle in the state corresponding to the overcritical resonance rather quick than slow processes should be considered, with a possibly long frozen overcritical period. In the second part of this thesis we concentrate on a class of spherically symmetric square well potentials with a time-dependent depth. First, we solve the Dirac equation and analyze the structure and behaviour of bound states and appearance of overcriticality. Then, by analytic continuation we find and discuss the behaviour of resonances in overcritical potentials. Next, we derive and solve numerically (introducing a non-uniform continuum discretization for a consistent treatment of narrow peaks) a system of differential equations (coupled channel equations) to calculate particle and antiparticle production spectra for various time-dependent processes including sudden, quick, slow switch on and off of a sub- and overcritical potentials. We discuss in detail how and under which conditions an overcritical resonance decays during the evolution giving rise to the spontaneous production of an antiparticle. We compare the antiparticle production spectrum with the shape of the resonance in the overcritical potential. We study processes, where the overcritical potentials are switched on at different speed and are possibly frozen in the overcritical phase. We prove, in agreement with conclusions of the theoretical part, that the peak (wave packet) in the negative continuum representing a dived bound state partially follows the moving resonance and partially decays at every stage of its evolution. This continuous decay is more intensive in slow processes, while in quick processes the wave packet more precisely follows the resonance. In the adiabatic limit, the whole decay occurs already at the edge of the continuum, resulting in production of antiparticles with vanishing momentum. In contrast, in quick switch on processes with delay in the overcritical phase, the spectrum of the created antiparticles agrees best with the shape of the resonance. Finally, we address the question how much information about the time-dependent potential can be reconstructed from the scattering data, represented by the particle production spectrum. We propose a simple approximation method (master equation) basing on an exponential, decoherent decay of time-dependent resonances for prediction of particle creation spectra and obtain a good agreement with the results of full numerical calculations. Additionally, we discuss various sources of errors introduced by the numerical discretization, find estimations for them and prove convergence of the numerical schemes.
In the present paper we develop the essential theoretical tools for the treatment of the dynamics of High Energy Heavy Ion Collisions. We study the influence of the nuclear equation of state and discuss the new phenomena connected with phase transitions in nuclear matter (pion condensation). Furthermore we investigate the possibility of a transition from nuclear to quark matter in High Energy Heavy Ion Collisions. In this context we discuss exotic phenomena like strongly bound pionic states, limiting temperatures, and exotic nuclei.
In dieser Arbeit wurde ein relativistisches Punktkopplungsmodell und seine Anwendbarkeit auf Probleme in der Kernstrukturphysik untersucht. Der Ansatz ist in der Kernstrukturphysik recht neu. Aus diesem Grund war es ein wichtiges Ziel festzustellen, wie gut sich das Modell zur Beschreibung von Grundzuständen von Kernen eignet. Während sich Modelle wie das Relativistic-Mean-Field-Modell mit Mesonenaustausch und Hartree-Fock-Rechnungen mit Skyrme-Kräften in vielen detaillierten Untersuchungen bewährt haben, musste dies für das relativistische Punktkopplungsmodell erst gezeigt werden. Als erster Schritt war eine sorgfältige Anpassung der Kopplungskonstanten des Modells erforderlich. Um möglichst einen optimalen Satz an Parametern zu erhalten, wurden verschiedene Optimierungsverfahren getestet und angewandt. Die Parameter der effektiven Mean-Field-Modelle sind untereinander stark korreliert. Zusammen mit der Nichtlinearität der Modelle führt diese Tatsache auf die Existenz vieler lokaler Minima der zu minimierenden x2-Funktion, was eine flexible Anpassungsmethode erfordert. Als besonders fruchtbar erwies sich eine Kombination aus der Methode Bevington-Curved-Step mit dem Monte-Carlo-Algorithmus simulated annea/ing. Durch die Anpassung der Kraft PC-F1 an experimentelle Daten in einem x2-Fit ist es gelungen, mit dem Punktkopplungsmodell eine Vorhersagekraft zu erreichen, die der etablierter RMF-FR- und SHF-Modelle gleicht. Dies ist nicht selbstverständlich, da die Modelle eine deutlich unterschiedliche Dichteabhängigkeit der Potenziale besitzen. Weiterhin haben wir gesehen, dass die Anpassungsprozedur der Parameter eine komplizierte Aufgabe darstellt und noch in mancher Hinsicht ausgearbeitet und verbessert werden kann. Das Punktkopplungsmodell mit der Kraft PC-F1 verhält sich für viele Observablen sehr ähnlich wie das RMF-FR-Modell. Dies betrifft die Beschreibung der bulk properties von symmetrischer Kernmaterie, Neutronenmaterie, Bindungsenergien, Spin-Bahn-Aufspaltungen, Observablen des nuklearen Formfaktors, Deformationseigenschaften von Magnesium-Isotopen, die Spaltbarriere von 240Pu sowie die Vorhersage der Schalenstruktur von überschweren Elementen. Dabei werden aber insbesondere Radien besser beschrieben als mit den RMF-FR-Kräften. Oberflächendicken werden, im Einklang mit dem RMF-FR-Modell, als zu klein vorhergesagt. Deutliche Unterschiede treten bei Deformationsenergien einiger Kerne auf (sie sind größer als beim RMF-FR-Modell und oft kleiner als die von dem SHF-Modell vorhergesagten) sowie bei Dichtefluktuationen in Kernen. Die vektoriellen Dichten der Nukleonen oszillieren nicht so stark wie die des RMF-Modells mit Mesonenaustausch, was auf die fehlende Faltung der nukleonischen Dichten zurückgeführt werden kann. Im Vergleich zum Skyrme-Hartree-Fock-Modell ergeben sich deutliche Unterschiede in der Beschreibung von symmetrischer Kernmaterie und Neutronenmaterie. Relativistische Modelle sagen eine höhere Sättigungsdichte und Bindungsenergie vorher. Die vorhergesagte Asymmetrieenergie ist deutlich größer als die Werte des SHF- bzw. Liquid-Drop-Modells. Die Beschreibung von Neutronenmaterie weicht stark von modernen Rechnungen [Fri8 1] und den Vorhersagen von Hartree-Fock-Rechnungen mit der Skyrme-Kraft SLy6 ab. Die Vorhersagen zu überschweren Kernen stimmen in Bezug auf magische Zahlen mit anderen relativistischen Modellen überein: Der doppelt-magische, überschwere Kern besitzt Z = 120 Protonen und N = 172 Neutronen. Im Einklang mit anderen selbstkonsistenten Vorhersagen zeigt seine Baryonendichte eine Semi-Blasenstruktur. Die Spaltbarrieren der Kerne 292 120 und 298 114 sind von ähnlicher Größenordnung wie die von anderen untersuchten RMF-Kräften. Die Lage des isomeren Zustandes im symmetrischen Spaltpfad liegt beim RMF-PC-Modell sehr tief, was auf eine geringe Oberflächenenergie schließen lässt. Die deutlichen Unterschiede zu den Vorhersagen von Hartree-Fock-Rechnungen mit Skyrme-Kräften zeigen, dass sich gewisse Eigenschaften der Modelle besonders stark bei überschweren Elementen auswirken. Überschwere Elemente sind ein sensitives Testfeld für die Modelle. Hier bedarf es dringender Untersuchungen, um längerfristig zuverlässige Vorhersagen machen zu können. Besonders in den Rechnungen von Bindungsenergien in Isotopen- und Isotonenketten sowie für Neutronenmaterie zeigt das Punktkopplungsmodell Schwächen im isovektoriellen Kanal der effektiven Wechselwirkung, die denen des RMF-FR-Modells ähneln. Dies bestätigt den Verdacht, dass dieser Kanal modifiziert werden muss. Deshalb wurden mehrere Varianten des RMF-PC-Modells mit Erweiterungen im isovektoriellen Kanal getestet. Ein interessantes Ergebnis der Untersuchungen zu den erweiterten Parametersätzen des Punktkopplungsmodells ist, dass sich eine Anpassung zusätzlicher Terme im isovektoriellen Kanal der Wechselwirkung mit den in dieser Arbeit verwendeten Fitstrategien nicht bewerkstelligen lässt. Andererseits zeigen die Modelle gerade in dieser Hinsicht noch unverstandene Schwächen. Dies zeigt, dass in der Zukunft eine Erweiterung der Fitstrategie wichtig wird. Kerne mit großem Isospin und z.B. Neutronenmaterie könnten hier Verwendung finden. Neue experimentelle Daten zu exotischen Kernen werden hierbei von großem Nutzen sein. Untersuchungen zur Natürlichkeit der angepassten Kopplungskonstanten mit Hilfe der naiven dimensionalen Analyse haben gezeigt, dass die Kraft PC-F1 dieses Kriterium erfüllt. Dies ist besonders interessant, da bei dieser Kraft alle Kopplungskonstanten frei im Fit variierbar waren. Die Kopplungskonstanten des Modells bzw. die korrespondierenden Terme absorbieren auch Vielkörpereffekte, weshalb es interessant ist, dass dieses Kriterium anwendbar ist. Parametersätze für erweiterte Punktkopplungsmodelle erfüllen bisher nicht das Kriterium der Natürlichkeit, was noch einmal ihre ungenügende Fixierungsmöglichkeit in den verwendeten Fitstrategien unterstreicht. Die Struktur des relativistischen Punktkopplungsmodells ermöglicht es, die Austauschterme der 4-, 6- und 8-Fermionen-Terme als direkte Terme umzuschreiben. Diese Möglichkeit ebnet den Weg für relativistische Hartree-Fock-Rechnungen für endliche Kerne, die numerisch kaum aufwendiger sind als die Rechnungen mit der Hartree-Version des Modells. Dabei bedürfen die Ableitungsterme gesonderter Behandlung. Allerdings muss dazu auch der Modellansatz erneut überdacht werden: das Pion bzw. die dazu korrespondierenden Terme sollten Bestandteil dieser Formulierung sein und durch die Austauschterme Beiträge zu den mittleren Potenzialen liefern. Relativistische Hartree-Fock-Rechnungen mit dem Punktkopplungsmodell werden es ermöglichen, den Zusammenhang zwischen relativistischen und nichtrelativistischen Hartree-Fock-Modellen systematisch und im Detail zu studieren. Längerfristig können diese Studien zu einer quantitativen Verbesserung der Modelle und damit einhergehend zu ihrem klaren Verständnis führen. Die mikroskopische und selbstkonsistente Beschreibung von Atomkernen ist eine faszinierende und spannende Herausforderung, sie anzunehmen war Ziel und Aufgabe dieser Arbeit.
Die Theorie der Quantenelektrodynamik (QED) starker Felder sagt vorher, dass sich unter dem Einfluss sehr starker elektromagnetischer Felder der Vakuumzustand verändert. Überschreitet das äußere (im einfachsten Fall elektrostatische) Feld eine gewisse kritische Stärke, dann kommt es zur spontanen Erzeugung von Elektron-Positron-Paaren und im Gefolge zur Ausbildung eines geladenen Vakuums. Charakteristisch dafür sind gebundene Elektronenzustände mit einer Bindungsenergie von mehr als der doppelten Ruhenergie. Dieser Effekt wurde bisher meist für sphärisch symmetrische Systeme untersucht, insbesondere für das Coulombpotential eines schweren Kerns. In der vorliegenden Arbeit wird erkundet, wie sich das überkritische Phänomen beim Übergang von sphärischer zu zylindrischer Geometrie verhält. Dazu werden die Lösungen der Dirac-Gleichung für Elektronen im elektrostatischen Potential eines langen dünnen geladenen Zylinders ("geladener String") berechnen und darauf aufbauend das überkritische Phänomen untersucht. Da das logarithmische Potential eines unendlich langen Strings unbegrenzt anwächst, sollten alle Elektronzustände überkritisch sein (Möglichkeit des Tunnelns durch den Teilchen-Antiteilchen-Gap). Die Zentralladung sollte sich dann mit einer entgegengesetzt geladenen Hülle aus Vakuumelektronen umgeben und damit neutralisieren. Um diese Phänomene quantitativ zu beschreiben untersuchen wir die Lösungen der Poisson-Gleichung und der der Dirac-Gleichung in Zylindersymmetrie. Zunächst wird eine Reihenentwicklung für das elektrostatische Potential in der Mittelebene eines homogen geladenen Zylinders von endlicher Länge und endlichem Radius hergeleitet. Anschließend benutzen wir den Tetraden- (Vierbein-) Formalismus zur Separation der Dirac-Gleichung in Zylinderkoordinaten. Die resultierende entkoppelte radiale Dirac-Gleichung wird in eine Schrödinger-artige Form transformiert. Die gebundenen Zustände werden mit der Methode der uniformen Approximation, einer Variante der WKB-Näherung, berechnet und ihre Abhängigkeit von den Parametern Stringlänge, Stringradius und Potentialstärke wird studiert. Die Näherungsmethode wird auch benutzt, um den überkritischen Fall zu untersuchen, bei dem sich die gebundenen Zustände in Resonanzen im Antiteilchen-Kontinuum verwandeln. Der zugehörige Tunnelprozess wird studiert und die Resonanz-Lebensdauer abgeschätzt. Schließlich wird das Problem der Vakuumladung und Selbstabschirmung angegangen. Die Vakuumladung wird durch Aufsummation der Ladungsdichten aller überkritischen (quasi-)gebundenen Zustände berechnet. Die Vakuumladung tritt als Quellterm in der Poisson-Gleichung für das elektrostatische Potential auf, welches wiederum die Wellenfunktionen bestimmt. Auf die volle selbstkonsistente Lösung dieses Problems wird verzichtet. Wir zeigen jedoch dass die Vakuumladung wie erwartet gross genug ist, um eine Totalabschirmung des geladenen Strings zu bewirken.
In the present work, the problem of protein folding is addressed from the point of view of equilibrium thermodynamics. The conformation of a globular protein in solution at common temperatures is quite complicated without any geometrical symmetry, but it is an ordered state in the sense of its biological activity. This complicated conformation of a single protein molecule is destroyed upon increasing the temperature or by the addition of appropriate chemical agents, as is revealed by the loss of its activity and change of the physical properties, and so on. Once the complicated native structures having biological activity are lost, it would be natural to suppose that the native structure could hardly be restored. Nevertheless, pioneers, such as Anson and Mirsky, recognized as early as in 1925 that this was not always the case. If one defines the folded and unfolded states of a protein as two distinct phases of a system, then under the variation of temperature the system is transformed from one phase state into another and vice versa. The process of protein folding is accompanied by the release or absorption of a certain amount of energy, corresponding to the first-oder-type phase transitions in the bulk. Knowing the partition function of the system one can evaluate its energy and heat capacity under different temperatures. This task was performed in this work. The results of the developed statistical mechanics model were compared with the results of molecular dynamic simulations of alanine poylpeptides. In particular, the dependencies on temperature of the total energy of the system and heat capacity were compared for alanine polypeptides consisting of 21, 30, 40, 50 and 100 amino acids. The good correspondence of the results of the theoretical model with the results of molecular dynamics simulations allowed to validate the assumptions made about the system and to establish the accuracy range of the theory. In order to perform the comparison of the results of theoretical model and the molecular dynamics simulations it is necessary to perform the efficient analysis of the results of molecular dynamics simulations. This task was also addressed in the present work. In particular, different ways to obtain dependence of the heat capacity on temperature from molecular dynamics simulations are discussed and the most efficient one is proposed. The present thesis reports the result of molecular dynamic simulations for not only alanine polypeptides by also for valine and leucine polypeptides. In valine and leucine polypeptides, it is also possible to observe the helix↔random coil transitions with the increase of temperature. The current thesis presents a work that starts with the investigation of the fundamental degrees of freedom in polypeptides that are responsible for the conformational transitions. Then this knowledge is applied for the statistical mechanics description of helix↔coil transitions in polypeptides. Finally, the theoretical formalism is generalized for the case of proteins in water environment and the comparison of the results of the statistical mechanics model with the experimental measurements of the heat capacity on temperature dependencies for two globular proteins is performed. The presented formalism is based on fundamental physical properties of the system and provides the possibility to describe the folding↔unfolding transitions quantitatively. The combination of these two facts is the major novelty of the presented approach in comparison to the existing ones. The “transparent” physical nature of the formalism provides a possibility to further apply it to a large variety of systems and processes. For instance, it can be used for investigation of the influence of the mutations in the proteins on their stability. This task is of primary importance for design of novel proteins and drug delivering molecules in medicine. It can provide further insights into the problem of protein aggregation and formation of amyloids. The problem of protein aggregation is closely associated with various illnesses such as Alzheimer and mad cow disease. With certain modifications, the presented theoretical method can be applied to the description of the protein crystallization process, which is important for the determination of the structure of proteins with X-Rays. There many other possible applications of the ideas described in the thesis. For instance, the similar formalism can be developed for the description of melting and unzipping of DNA, growth of nanotubes, formation of fullerenes, etc.
Fullerene, Nanoröhren und auch anderen hohlen Strukturen können Atome oder Moleküle in ihrem Inneren einschliessen. In solchen Systemen beeinflussen sich die einschliessenden und eingeschlossenen Strukturen gegenseitig, und es existiert eine Vielzahl unterschiedlicher Effekte: Änderungen der Energieeigenwerte, Änderungen der Elektronenstruktur sowie Ladungsaustausch zwischen den beiden Teilen des Systems. All diese Effekte beeinflussen die Absorbtionsspektren beider Systembestandteile. In dieser Arbeit liegt der Schwerpunkt auf einem dieser Effekte: Dem dynamischen Abschirmungseffekt. Den dynamischen Abschrimungseffekt findet man insbesondere bei solchen Systemen, bei denen die einschliessende Struktur viele delokalisierte Elektronen besitzt. Zu solchen Systemen gehören zum Beispiel endohedrale Komplexe sowie "Nano Peapods" (Nanoröhren mit eingeschlossenen Atomen oder Molekülen). Ursächlich für den dynamischen Abschirmungseffekt ist die Tatsache, dass die Elek- tronen des umschliessenden Käfigs die eingeschlossene Struktur gegen elektromagentische Wellen abschirmen. Mit anderen Worten: Dass das elektrische Feld sowohl innerhalb als auch ausserhalb der einschliessenden Struktur wird vom polarisierenden Feld der einschliessenden Struktur beein°usst. Klassisch betrachtet ist die Photoabsorbtionsrate eines Objektes proportional zu der Intensität eines elektrischen Feldes. Somit unterscheidet sich die Photoabsorbtionsrate (und auch der Wirkungsquerschnitt) der gleichen elektromagnetischen Welle einer Struktur innerhalb eines Einschlusses von der Photoabsorbtionsrate eines freien Atoms oder Moleküls. Der dynamische Abschirmungsfaktor dient als Beschreibung des Verhältnisses dieser beiden Wirkungsfaktoren. Darüber hinnaus können, da die Käfigstruktur viele delokalisierte Elektronen besitzt, Elektronen gemeinsam angeregt werden und somit Plasmons hervorrufen. Wenn sich die Frequenz der anregenden elektromagentischen Strahlung der Resonanzfrequenz dieser Plasmonen annähert, wird das polarisierende Feld besonders gross. Im Endeffekt beobachtet man nahe der Plasmon-Frequenz einen starken Anstieg des Wirkungsquerschnittes der eingeschlossenen Struktur. Der Schwerpunkt in dieser Arbeit liegt auf einer spezifischen Art von System: Endo- hedrale Komplexe. Diese Strukturen wurden mit einem klassichen Ansatz untersucht. Die Fullerene wurden, da sie viele delokalisierte Elektronen besitzen als dielektrische Schalen modelliert, mit der dielektrischen Funktion eines freien Elektronengases. Dabei ist der dynamische Abschrimfaktor durch Auswertung des gesamten elektrischen Feldes am Ort des Atoms im Vergleich zur Stärke des externen elektrischen Feldes definiert. Der dynamische Abschrimungsfaktor wurde für eine Vielzahl unterschiedlicher Situationen untersucht. Im einfachsten Fall, bei dem die Polarisierbarkeit des eingeschlossenen Atoms vernachlässigbar klein ist, ist der dynamische Abschirmfaktor unabhängig von der Position des Atoms innerhalb des Fullerens. Die Veranderung des elektrischen Feldes wird vollständig von der dynamischen Reaktion des Fullerens auf das externe Feld bestimmt. Da das Fulleren von endlicher Dicke ist (definiert duch die räumliche Ausdehnung der Elektronenwolke), besitzt es zwei Oberflächen. Die Wirkung der elektromagnetischen Welle induziert oszillierende Oberflächen-Ladungs-Dichten. Die Oberflächen-Ladungs-Dichten wechselwirken und erzeugen somit zwei Plasmon Eigenmoden: eine symmetrische Mode bei der beide Ladungsdichten in Phase oszillieren und eine antisymmetrische bei denen sie gegen-phasig oszillieren. Der dynamische Abschirmfaktor eines solchen eingeschlossenen Atoms zeigt zwei ausgeprägte Peaks, welche eine Manifestation dieser beiden Oberflächen-Plasmone sind. Die Wechselwirkung zwischen diesen Plasmon-Moden wurde untersucht. Darüber hinnaus wurde der Einfluss der Grösse des Käfigs untersucht; mit Fallbeispielen für C20, C60, C240 und C960 [2, 3]. Im Grenzfall eines unendlich dünnen Fulleren-Käfigs ist nur ein einelnes Oberflächen-Plasmon zu beachten. Als nächstes wurde der Einfluss des eingeschlossenen Atoms untersucht [3{5]. Wenn dessen Polarisierbarkeit gross ist, wird ein reziproker Einfluss des Dipol-Moments des Atoms auf das Fulleren messbar. Dies wurde zunächst unter der Annahme eines zentral angeodneten Atoms für die folgenden drei Fälle untersucht: Ar@C60, Xe@C60 and Mg@C60. Der dynamische Abschirmfaktor verÄanderte sich dabei nur wenig. Der stärkste Einfluss auf das Verhalten des Abschirmfaktors ensteht durch Unstetigkeiten in der Polarisierbarkeit des Atoms nahe dessen Ionisierungs-Schwelle. Die Wahl dieser drei Fallstudien ist durch die quantenmechanischen Berechnungen von [7-9] motiviert. Der Vergleich mit diesen Berechnungen zeigt hohe Übereintismmungen für Ar@C60 und Xe@C60. Allerdings fanden sich auch grosse Unterschiede für Mg@C60, vor allem bei niedriger Photonen-Energie. Das Fulleren besitzt zwei Arten von Valenzelektronen: Die ¼-Elektronen und die stärker gebundenen ¾-Elektronen. Dies führt zum Auftreten zweier Oberflächen-Plasmons in Fullerenen. Dabei ist allgemein bekannt, dass das Buckminster-Fulleren ein Plasmon nahe 8 eV, sowie ein deutlich größeres nahe 20 eV besitzt. Diese sind mit den ¼-Elektronen, respektive den ¾-Elektronen verknüpft (auch wenn ¼-Elektronen zusÄatzlich zu dem ¾-Plasmon beitragen). Aufgrund dieser Tatsache wäre es angemessener, die Valenzelektronen nicht als Ein-, sondern als Zwei-Komponenten-Elektronen-Gas zu behandeln. Um dies miteinzubeziehen, passten wir unser Modell dahingehend an, dass wir das Fulleren als zwei unabhängige kozentrische dielektrische Schalen simulieren. Die Valenzelektronen wurden so auf die zwei Schalen aufgeteilt, dass eine Schlale alle Elektronen enthielt, die Teil des ¼{Plasmons sind, und die andere alle Beteiligten am ¾{Plasmon [4, 5]. Der Vergleich dieses modifizierten Modelles mit den quanten{mechanischen Berechnungen zeigte eine deutlich verbesserte Übereintismmung der Ergebnisse. Alle Merkmale der Berechnungen, vor allem das deutliche Maximum nahe 10 eV bei Mg@C60, konnten reproduziert und damit erklärt werden. Bedingt durch die endliche Dicke der Fulleren-Schale spalten jeder der beiden Plasmonen in jeweils zwei Plasmon Eigenmoden auf. Daher zeigt der dynamische Abschirm-Faktor nun vier Haupt{Eigenschaften welche die vier Plasmon-Moden abbilden. Nichtsdestotrotz zeigen sich immer noch quantitative Unterschiede im Falle von Mg@C60. Fürr Ar@C60 und Xe@C60, bei welchen das ursprÄungliche Modell bereits gute Fits zeigte, werden diese Fits durch die Anpassungen im Modell sogar noch verbessert. Interessanterweise zeigen sich die größten Veränderungen des dynamischen Abschirm-Faktors bei niedrigen Photonen{Energien, also im Bereich des ¼-Plasmons. Betrachtet man den Querschnitt dieses Fulleren Modells, so zeigt der Querschnitt Eigenschaften die den vier Ober°Äachen{Plasmon{Moden des Fullerens zugeordnet werden. Vergleicht man dies mit anderen theoretischen Arbeiten [12] und einer Sammlung verschiedener experimenteller Messungen [10], so zeigt sich, dass alle SchlÄussel{Eigenschaften des Querschnittes in unserem Modell vorhanden sind. Abschlie¼end wurde die Abhängigkeit des dynamische Abschirm-Faktors von der Position des endohedralen Atoms innerhalb des Fullerens anhand zweier Fallstudien, Ar@C60 und Ar@C240 [3, 4], untersucht. Die Ergebnisse zeigen, dass der dynamische Abschirmfaktor relativ unempfindlich gegenüber Veränderung des Positions-Winkels des Atoms ist. Die radiale Position hingegen stellte sich als sehr wichtig heraus. Je mehr sich das Atom der Fulleren-Hülle nähert, desto grösser wird der dynamische Abschirmfaktor. Diese Studien zeigen, dass es notwendig ist, eine Art räumlichen Mittelwertes für den dynamische Abschirmfaktor zu bestimmen, um sichtbare Resultate zu erhalten. Im Rahmen dieser Arbeit wurde daher eine Methode für solch einen Mittelwert entwickelt [3, 4]. Neben der Untersuchung des dynamische Abschirm-Faktors wurde auch ein Vergleich mit experimentellen Messungen erarbeitet. Im Falle von Ce@C82 war die Photon{Energiespanne sehr hoch, weit über der Plasmon-Energie des Fullerens. Das Fulleren sollte daher für eine solche Bestrahlung durchlässig sein, und daher würde man keinen dynamischen Abschirmungs-Effekt finden können. Der Vergleich für Sc3N@C80 ist komplizierter. Da es sich dabei um ein rein klassisches Modell handelt, muss man achtgeben, es nicht mit dem vollständig freien Komplex zu vergleichen, sondern zusätzlich quanten{mechanische Effekte aus Confinements, wie zum Beispiel Elektronen{Transfers, miteinzubeziehen. Zudem ist das aktuelle Modell zu dynamischer Abschirmung nicht für Moleküle, sondern nur für einzelen Atomeentwickelt worden. Ein erster naiver Vergleich, in welchem der Endohedrale Komplex als Pseudo{Atom modelliert wurde, konnte die breite Struktur der experimentellen Ergebnisse nicht wiedergeben. Berechnungen des dynamischen Abschirmfaktors und des daraus resultierenden Querschnittes für ein einzelnes Scandium{Ion zeigte, dass auch räumliches Mitteln nicht ausreicht um die experi-mentellen Beobachtungen erklären zu können. Die Anwesenheit des Fullerens führt zur Öffnung eines neuen Kanals innerhalbdes Auger Prozesses [6, 11] und damit zur Verbreiterung der atomaren Spektrallinienweite. Berücksichtigt man diesen Effekt, so kann die ÄAhnlichkeit zu den experimentellen Ergebnissen deutlich erhöht werden. Allerdings ist es wichtig dabei auch die räumlichen Abhängigkeiten des Effekts, wie auch die der dynamischen Abschirmung, zu beachten. Erste vorläufige Ergebnisse deuten an, dass die beiden genannten Effekte, zumindest teilweise, dabei helfen können, die experimentell gefunden Ergebnisse zu erklären. Unser Modell zur Berechnung des dynamischen Abschirmfaktors liefert eine detaillierte Beschreibung und mögliche Erklärungen der diskutierten Phänomene, welche über die bisherige Arbeiten in der theoretischen Literatur hinausgehen. Die wichtigen Eigenschaften der experimentellen Arbeiten konnten mit dem Modell reproduziert werden, und mit der Verbreiterung der atomaren Spektrallinienweite und der dynamischen Abschirmung konnten wir zwei Effekte als mögliche bisher nicht berücksichtigete Erklärungen für einige dieser Eigenschaften herausarbeiten.
In der vorliegenden Arbeit wurden die Eigenschaften heißer dichter Kernmaterie in relativistischen Schwerionenkollisionen mit Hilfe transporttheoretischer Methoden untersucht. Dabei wurden über einen weiten Energiebereich von 1 A GeV am GSI/SIS18 über BNL/AGS und GSI/SIS200 bis hin zu 160A GeV Einschußenergie am CERN/SPS verschiedene Observablen diskutiert und mit eigenen Modellrechnungen verglichen. Zunächst wurden in Kapitel 1 in die theoretischen Grundlagen der mikroskopischen Transporttheorie eingeführt und die wichtigsten semiklassischen mikroskopischen Transportmodelle vorgestellt. Das unter eigener Mitwirkung am Institut für Theoretische Physik entstandene Transportmodell, das UrQMD-Modell, wurde im Rahmen dieser Arbeit bis zur Versionsnummer 1.3 verbessert und erweitert. Das Modell und ein Überblick verschiedener Observablen im Modell wurden bereits früher gemeinsam publiziert. Die ausführliche Diskussion dieses Modells in der jetzigen Fassung findet sich in Kapitel 2. Besonders der komplexe Kollisionsterm wird detailliert und systematisch beschrieben. Wo vorhanden, werden die implementierten Kanäle und Wirkungsquerschnitte den experimentellen Daten gegenübergestellt. In Kapitel 3 wurde eine Methode zur relativistisch korrekten Berechnung von Baryon und Mesonendichten sowie von Energiedichten entwickelt. Mit dieser Methode konnten Zeitentwicklungen und Ortsraumverteilungen von Dichten im Bereich von 1 bis 160 A GeV erstellt werden. Im Vordergrund der Analysen stand die Fragestellung, welches Raum-Zei-tVolumen die Hochdichtephase in Abhängigkeit von der Einschuß energie einnehmen kann. Bemerkenswertes Ergebnis dieser Untersuchungen war, daß die maximal erreichbare Dichte zwar mit der Einschußenergie monoton ansteigt, je doch eine besonders ausgedehnte und langlebige Phase hoher Baryonendichte bei Einschußenergien zwischen 5 und 10 GeV/Nukleon erreicht wird. Auch wurde am Beispiel des Systems Uran-Uran bei 23 A GeV untersucht, inwieweit durch den Einsatz deformierter Kerne die Hochdichtephase intensiviert werden kann. Die Rechnungen haben gezeigt, daß die vorhergesagte Steigerung der Baryondichte um 30% bei Verlängerung der Hochdichtephase um 50% nicht realistisch ist. In weiteren Analysen wurden die in Schwerionenkollisionen erreichbaren Energiedichten diskutiert, sowie eine Interpretation der nichtformierten Hadronen als ein "partonischer" Freiheitsgrad vorgestellt. Es hat sich gezeigt, daß der partonische Beitrag zur Energiedichte vor allem in der Frühphase der Kollision bei weitem überwiegt. Im Kapitel 4 wurde ein Modell zur Produktion von Kaonen in der Nähe der Produktionsschwelle vorgestellt. Die elementaren Produktionskanäle wurden hier über hoch massige Resonanzen modelliert, im Gegensatz zu anderen vorgeschlagenen Modellen, die direkte Parametrisierungen vornehmen. Desweiteren wurden alle implementierten Produktions und Streukaäale von seltsamen Hadronen im Vergleich mit experimentellen Daten diskutiert. Das Kapitel 5 widmete sich ausschließlich der Produktion von Mesonen bei SIS18 Energien. Zunächst wurde ausführlich auf den Produktions und Absorptionsprozeß von Pionen im System Pi-N-Delta eingegangen. Sowohl Spektren als auch Multiplizitäten in Abhängigkeit von der Anzahl an Partizipanten im UrQMD wurden mit experimentellen Daten von TAPS und FOPI verglichen. Die Ergebnisse legen nahe, daß die Pionproduktion bis 2 A GeV im Rahmen der mikroskopischen Transporttheorie vollständig verstanden werden kann, wenn neben dem Delta1232 auch alle höheren Resonanzzustände sowie multiste-pAnregungen in die Rechnung einbezogen werden. Auch die Produktion von Kaonen in Abhängigkeit von der Anzahl an Partizipanten und der Systemgröße wurde diskutiert. Auch hier können die gemessenen Zusammenhänge qualitativ im Rahmen des mikroskopischen Modells verstanden werden. Zum Abschluß des Kapitels wurden Ausfrierzeiten, radien und dichten für einzelne Baryonen und Mesonenspezies analysiert. Zentrales Ergebnis dieser Untersuchungen ist, daß es bei einer Schwerionenreaktion keineswegs zu einem simultanen Ausfrieren aller Hadronspezies bei gleicher Dichte und gleichem Radius kommt, sondern daß die Ausfrierverteilungen eine komplexe Zeit und Ortsraumstruktur aufweisen, die u.a. von den Wirkungsquerschnitten und Produktionsmechanismen für die einzelnen Spezies abhängt. In Kapitel 6 wurden die erst kürzlich publizierten Daten der NA49Kollaboration bei 40, 80 und 160 A GeV einer detaillierten Analyse mit dem UrQMD-Modell unterzogen, sowie Vorhersagen für die geplanten Messungen bei 20 A GeV gemacht. Es konnte gezeigt werden, daß es für den Vergleich von Modellrechnung mit dem Experiment notwendig ist, genau die gleiche Zentralitätsbestimmung wie im Experiment zu benutzen. Eine einfache Beschränkung auf ein festes Stoßparameterintervall führt zur Selektion einer falschen Gruppe von Ereignissen. Ein Vergleich des Abstoppverhaltens von Protonen, Hyperonen, Antiprotonen und Antihyperonen hat gezeigt, daß zwar die Dynamik der Baryonen im Rahmen des UrQMD-Modells gut verstanden werden kann, jedoch die Produktion der Antibaryonen um ein mehrfaches unterschätzt wird. Verschiedene Erklärungsmodelle, wie screening oder die Verletzung des detaillierten Gleichgewichts bei Stringzerfällen wurden diskutiert. Auch der starke Einfluß der Implementierung von Annihilationskanälen konnte aufgezeigt werden. Zum Schluß des Kapitels wurde die Produktion von Kaonen und Antikaonen im Modell und im Experiment einer genauen Analyse unterzogen. Die Modellrechnungen legen nahe, daß bei SPS-Energien weder Kaonen noch Antikaonen als direkte Signael der frühen Phase der Kollision betrachtet werden können. Zwar wird die Gesamtseltsamkeit des Systems im wesentlichen in den ersten, harten Kollisionen erzeugt, jedoch finden hinterher noch zahllose Kollisionen mit Seltsamkeitsaustausch statt, bevor Kaonen und Antikaonen endlich ausfrieren. Im letzten Kapitel schließlich wurden die Analysen auf die Daten vom BNL/AGS ausgedehnt und ein vergleichender Überblick über den gesamten Energiebereich von SIS18 bis SPS vorgenommen. Um die Robustheit sowohl der Observablen als auch der mikroskopischen Transporttheorie zu testen, wurden bei acht Energien die Form der Spektren von Protonen, Pionen, Kaonen, Lambdas und Sigmas in Rechnungen mit zwei unabhängigen Transportmodellen und den experimentellen Daten verglichen. Desweiteren wurden für alle Spektren sowohl die 4-Pi -Daten als die Werte bei Mittrapidität ermittelt und als Funktion der Einschußenergie mit den experimentellen Daten verglichen. Schließlich wurden aus den Multiplizitäten Hadron-Hadron-Verhältnise gebildet und diese wiederum mit den Daten verglichen. Neben vielen interessanten Detailerkenntnissen konnte das folgende grobe Bild entwickelt werden: Die korrekte Produktion von Seltsamkeit, sowohl in Hyperonen als auch in Kaonen, gelingt beiden hadronischen Modellen, ohne daß besondere nichthadronische Effekte angenommen werden müßten, über den gesamten Energiebereich. Die Pionproduktion wird bei den verschiedenen Energien mal von dem einen, mal von dem anderen Modell besser beschrieben, nie jedoch sind die Abweichungen größer als etwa 20%. Die Teilchenverhältnisse, deren qualitativer Verlauf ein mögliches Signal für einen Phasenübergang sein soll, werden trotz guter Beschreibung der Pionen und sehr guter Beschreibung der Kaonen von beiden Modellen qualitativ völlig unterschiedlich vorhergesagt. Die im Rahmen dieser Arbeit durchgeführten Rechnungen legen also nahe, daß zum einen die Rolle der Seltsamkeitsproduktion als Indikator für nichthadronische Physik überdacht werden sollte, und zum anderen der qualitative Verlauf des K +/Pi -Verhältnisses aufgrund der geringen Fehlertolleranz nicht als belastbarer Beweis eines Phasenübergangs gesehen werden sollte.
Im Rahmen dieser Arbeit werden verschiedene Modellsysteme untersucht, die Metriken der klassischen Allgemeinen Relativitätstheorie mit Erweiterungen vergleichen, in denen Ereignishorizonte nicht existieren müssen. Die untersuchten Korrekturterme sind durch Schwachfeldmessungen, wie sie zum Beispiel in unserem Sonnensystem durchgeführt werden, nicht überprüfbar. Es ist deshalb nötig solche Systeme zu betrachten, in denen die vollständigen Gleichungen berücksichtigt werden müssen und keine Entwicklungen für schwache Felder gemacht werden können. Es gibt eine Reihe von astrophysikalischen Systemen, die diese Bedingungen erfüllen, wie das Galaktische Zentrum oder Doppelsternsysteme.
Im zweiten Kapitel der Arbeit werden Testteilchenorbits in einem Zentralpotential beschrieben und Unterschiede zwischen der klassischen und einer modifizierten Kerr-Metrik herausgearbeitet. Drei neue Phänomene der modifizierten Metrik gegenüber der Klassischen treten hier in Erscheinung. Zum einen haben Teilchen, die sich auf prograden Bahnen um den Zentralkörper drehen, ein Maximum in ihrer Winkelgeschwindigkeit. Zum anderen ist das Phänomen des frame-draggings deutlich schwächer ausgeprägt. Schließlich tritt ein letzter stabiler Orbit für entsprechend schnell rotierende Zentralkörper nicht mehr auf. Gleichzeitig sind die Unterschiede in den beiden Metriken für große Abstände (r > 10m) nahezu vernachlässigbar. In Kapitel 3 werden diese Ergebnisse auf zwei unterschiedliche Modelle zur Beschreibung von Akkretionsscheiben angewendet. Untersucht wird zum einen das Verhalten der Eisen-Kα-Emissionslinie und zum anderen der Energiefluss aus einer Akkretionsscheibe.
In der Form der Eisen-Kα-Emissionslinie gibt es eine deutliche Zunahme des rotverschobenen Anteils der Strahlung in der modifizierten Kerr-Metrik gegenüber der klassischen Kerr-Metrik. Die Akkretionsscheibe nach Page und Thorne zeigt unter Verwendung der modifizierten Kerr-Metrik eine signifikante Erhöhung der abgestrahlten Energie, wenn der Zentralkörper so schnell rotiert, dass kein letzter stabiler Orbit mehr auftritt. Zusätzlich gibt es hier in der Scheibe einen dunklen Ring im Vergleich zu den Bildern höherer Ordnung, die in der klassischen Kerr-Metrik auftreten. Erklärbar sind diese Phänomene dadurch, dass sich Teilchen auf stabilen Bahnen in der modifizierten Kerr-Metrik näher an den Zentralkörper heran bewegen können, als es in der klassischen Kerr-Metrik der Fall ist. Die Rotverschiebung ist für beide Fälle annäherend gleich.
Kapitel 4 gibt eine kurze Einführung in die Beschreibung von Gravitationswellen im Rahmen der linearisierten Allgemeinen Relativitätstheorie. Hier wird als Modell ein Binärsystem, wie etwa der Hulse-Taylor-Pulsar, betrachtet. Die Unterschiede zwischen der klassischen Theorie und einer Beschreibung unter Hinzunahme von Zusatztermen sind hier erwartungsgemäß sehr gering, da die Linearisierung der Gleichungen dazu führt, dass Starkfeldeffekte vernachlässigt werden. Für große Abstände, was in diesem Fall auch schwache Felder impliziert, sind die Erweiterungen der Gleichungen vernachlässigbar. Hier werden zum Teil auch Effekte in der klassischen ART vernachlässigt.
In Kapitel 5 befindet sich ein kurzer Ausblick in die 3+1-Formulierung der Einsteingleichungen für die numerische Beschreibung von Gravitationsphänomenen. Diese Beschreibung ermöglicht es auch komplexe Systeme ohne viele nähernde Annahmen genau beschreiben zu können. Diese Systeme können zum einen Akkretionsscheiben um kompakte Objekte sein, aber auch die Verschmelzung von zwei massiven Objekten und die damit verbundenen Gravitationswellensignale. Dadurch lassen sich die Vorhersagen der ART oder etwaiger Erweiterungen präziser modellieren.
Die vorgestellten Ergebnisse liegen innerhalb der Einschränkungen durch aktuelle Messungen. Zukünftige Messungen wie genauere Beobachtungen des Galaktischen Zentrums durch das Event Horizon Telescope sind aber voraussichtlich dazu in der Lage zwischen den untersuchten Metriken zu unterscheiden.
Die Dissertation ist in den Bereichen der semiklassischen Quantengravitation und der pseudokomplexen Allgemeinen Relativitätstheorie (pk-ART) anzusiedeln. Dabei wird unter semiklassischer Quantengravitation die Untersuchung quantenmechanischer Phänomene in einem durch eine klassische Gravitationstheorie gegebenen gravitativen Hintergrundfeld verstanden und bei der pk-ART handelt es sich um eine Alternative zu der aktuell anerkannten klassischen Gravitationstheorie, der Allgemeinen Relativitätstheorie (ART), die die reellen Raumzeitkoordinaten der ART pseudokomplex erweitert. Dies führt zusammen mit einer Veränderung des Variationsprinzips in führender Ordnung auf eine Korrektur der Einstein- Gleichung der ART mit einem zusätzlichen Quellterm (Energie-Impuls-Tensor), dessen exakte Form jedoch bisher nicht bekannt ist.
Die Beschreibung der Gravitation als Hintergrundfeld ergibt sich zwangsläufig daraus, dass auf Basis der ART bisher keine quantisierte Beschreibung für sie gefunden werden konnte. Jedoch wird erhofft, dass die Untersuchung semiklassischer Phänomene Hinweise auf die korrekte Theorie der Quantengravitation gibt. Zudem motiviert der Mangel einer quantisierten Gravitationstheorie die Verwendung alternativer Theorien, da sich dadurch die Frage stellt, ob die ART die korrekte Beschreibung klassischer Felder ist.
Das Ziel der vorliegenden Dissertation war die grundlegenden Unterschiede zwischen der ART und der pk-ART für gebundene sphärisch symmetrische Zustände der Klein-Gordon- und der Dirac-Gleichung zu identifizieren und ein qualitatives Modell der Vakuumfluktuationen in sphärisch symmetrischen Materieverteilungen zu bestimmen, wobei der Zusammenhang der pk-ART mit den Vakuumfluktuationen in der Annahme besteht, dass ein Zusammenhang zwischen ihnen und dem zusätzlichen Quellterm der pk-ART existiert. Dafür wurden die gebundenen Zustände der Klein-Gordon- und der Dirac-Gleichung für drei verschiedene Metrikmodelle (zwei ART-Modelle und ein pk-ART-Modell) mit konstanter Dichte systematisch numerisch berechnet, einige repräsentative Grafiken erstellt, anhand derer die grundlegenden Unterschiede der Ergebnisse der ART-Modelle und des pk-ART-Modells erörtert wurden, und die ART Ergebnisse der Dirac-Gleichung soweit wie möglich mit Ergebnissen der Literatur verglichen. Insbesondere wurde dabei festgestellt, dass die Energieeigenwerte in der pk-ART im Gegensatz zu denen in der ART in Abhängigkeit der Ausdehnung des Zentralobjekts ein Minimum aufweisen. Zudem wurden die Energieeigenwerte der Klein-Gordon-Gleichung teilweise sowohl über das Eigenwertproblem einer Matrix als auch über ein Anfangswertproblem berechnet und es wurde festgestellt, dass die Beschreibung als Eigenwertproblem deutlich uneffektiver ist, wenn dafür die Basis des dreidimensionalen harmonischen Oszillators genutzt wird. Für die Entwicklung des qualitativen Vakuumfluktuationsmodells wurden zwei Näherungen für den Erwartungswert des Energie-Impuls-Tensors in führender Ordnung für die Schwarzschildmetrik (ART) verglichen und die Verwendung eines qualitativen Modells durch die dabei auftretende Diskrepanz gerechtfertigt. Danach wurden die Vakuumfluktuationen für Metriken konstanter Materiedichte mit Hilfe einer der Näherungen in führender Ordnung berechnet und ein Modell gesucht, das den gleichen qualitativen Verlauf aufweist. Im Anschluss wurde dieses Modell noch für einfache Metriken mit variabler Materiedichte verifiziert.
Die Dissertation leistet mit der Analyse der gebundenen Zustände einen Beitrag in der Identifikation der Unterschiede zwischen der pk-ART und der ART und führt somit auf weitere mögliche Messgrößen, die der Unterscheidung der beiden Theorien dienen könnten. Weiterhin ermöglicht das abgeleitete Modell eine Verfeinerung der schon publizierten Ergebnisse über Neutronensterne und die für die Erstellung nötigen Vorarbeiten leisten einen Beitrag zur Identifikation des
pk-ART Quellterms.