Refine
Year of publication
Document Type
- Doctoral Thesis (24)
Has Fulltext
- yes (24)
Is part of the Bibliography
- no (24)
Keywords
- ADAM10 (1)
- Aktivitätsmuster (1)
- Batten disease (1)
- Bindungsaffinität (1)
- C. elegans (1)
- Clathrin-vermittelte Endozytose (1)
- Ectodomain Shedding (1)
- Exozytose (1)
- G-Protein-gekoppelter Rezeptor (1)
- GLUT4 (1)
Blood vessel formation is a well orchestrated process where multiple components including different cells types, growth factors as well as extracellular matrix proteins act in synergistic and highly regulated manner to support the growth of new blood vessels. During embryonic development this process is marked as vasculogenesis and entails the differentiation of mesodermal cells into angioblasts and their subsequent fusion into a primitive vascular plexus. Angiogenesis, in contrast, describes the formation of new vessels from the pre-existing vasculature and it occurs in the embryo during remodeling of the primitive plexus into a mature vascular network. Furthermore, in the adult, angiogenic processes play a role in various physiological and pathological conditions. Angiogenesis is governed by a set of factors and molecular mechanisms whose identification has been a major focus of cardiovascular research for the past several decades. Most recently, Epidermal growth factor-like domain 7 (EGFL7) has been described as a novel molecular player in this context. This secreted protein is produced by endothelial cells and has been implicated in vessel development. Studies performed in zebrafish revealed an important role for EGFL7 in lumen formation during vasculogenesis although the underlying molecular mechanism has not been elucidated yet. In contrast, the investigation of EGFL7’s functions during angiogenic sprouting has faced several challenges and the role of EGFL7 in angiogenesis remained elusive. The purpose of this thesis was to identify the functions of EGFL7 during angiogenic mode of vessel formation in a systematic fashion using numerous in vitro as well as in vivo approaches.
Previously it has been suggested that EGFL7 might associate with the extracellular matrix from where it could exert its effects. Indeed, we could show that EGFL7 accumulates on the outer surface of endothelial cells in vivo by demonstrating its co-localization with collagen IV, a major constituent of the basal lamina. Furthermore, after its secretion to the extracellular matrix (ECM), EGFL7 seemed to interact with some components of the extracellular matrix including fibronectin and vitronectin, but not collagens and laminin.
A major group of receptors that mediate the interaction between the cells and the ECM are integrin receptors. Our co-immunoprecipitation studies revealed that EGFL7 associated with integrin αvβ3 which is highly expressed in endothelial cells and known to be important for vessel growth. Importantly, this EGFL7-αvβ3 integrin interaction was dependent on Arg-Gly-Asp (RGD) motif present within the second EGF-like domain of EGFL7 protein. Adhesion assays performed with human umbilical vein endothelial cells (HUVEC) revealed that EGFL7 promoted endothelial cell adhesion compared to BSA used as a negative control, however, adhesion seemed to be less efficient as compared to bona fide ECM proteins such as fibronectin and vitronectin. In addition, cultivation of endothelial cells on EGFL7 was characterized by the absence of mature focal adhesions and stress fibers, but was paralleled by increased phosphorylation of kinases typical for integrin activation signaling cascade such as FAK, Src and Akt. This led us to the hypothesis that EGFL7 creates an environment that supports a motile phenotype of endothelial cells by serving as a modulator of existing interactions between the cells and the surrounding matrix. Indeed, EGFL7 increased random migration of HUVEC on fibronectin in an αvβ3 integrin dependent manner as shown using a live cell imaging platform. Most importantly, this was paralleled by a decrease in endothelial cell adhesion to fibronectin which is consistent with previous reports on secreted proteins that support a medium strength of adhesion and such promote cellular migration. To assess the overall effect of EGFL7 on the process of blood formation several in vitro and in vivo approaches were employed. First, the addition of EGFL7 to Matrigel injected subcutaneously into mice significantly increased the invasion of endothelial cells into the plugs. Second, a spheroid-based sprouting assay in three-dimensional collagen matrix clearly demonstrated the ability of EGFL7 to support angiogenic sprouting in an integrin dependent manner. This is consistent with the observed effects of EGFL7 on endothelial cell migration. Third, using in vivo assays such as the chick chorioallantoic membrane (CAM) assay as well as a zebrafish model system we were able to validate the importance of the EGFL7-integrin interaction for the process of angiogenesis in vivo. Taken together, I identified some of the major cellular functions EGFL7 modulates during angiogenesis. In addition, with integrin αvβ3 I unraveled a novel interaction partner of EGFL7 that delivers a mechanistical explanation for EGFL7’s effects on blood vessel formation. Most importantly, data presented in this PhD thesis contribute substantially to the existing literature on EGFL7 unambiguously assigning a role for this protein in the process of angiogenesis.
Induktion verschiedener Aktivitätsmuster über differentielle Rezeptor-Rekrutierung von Typ I IFN
(2006)
Für die grundlagenorientierte Forschung sowie für die Entwicklung neuer Wirkstoffe spielt der Mechanismus der interzellullären Kommunikation über Botenstoffe, wie Cytokine, eine einflussreiche Rolle. Cytokine sind Proteine, welche von Leukozyten sekretiert werden und von großer Bedeutung für die Stimulierung des angeborenen Immunsystems sind. Hierbei bewirken die Typ I Interferone (Interferone, IFN) durch ihre antivirale, immunmodulatorische, antiproliferative und antiflammatorische Wirkung. Zudem stellen sie eine Verbindung zu der zellulären Immunantwort dar, wirken bei antionkogenen Prozessen mit und aktivieren eine Vielzahl an weiteren Funktionen in der Zelle. Bekannt sind bisher eine Vielzahl verschiedener humaner Interferone (verschiedene IFNa-Subtypen, b, w und e), die über einen gemeinsamen Rezeptor wirken, der sich aus den Untereinheiten ifnar1 und ifnar2 zusammensetzt. Auffallend ist, dass verschiedene Interferone unterschiedliche zelluläre Aktivitätsmuster induzieren. Mit dieser Arbeit sollte daher ein möglicher Zusammenhang zwischen der differentiellen Rezeptor-Rekrutierung verschiedener Interferone und der Induktion verschiedener Aktivitäten geklärt werden. Voraussetzung hierfür war die Aufreinigung verschiedener Interferone (IFNa1, IFNa2, IFNa8, IFNa21, IFNb), Mutanten sowie Cystein-Mutanten zur selektiven Fluoreszenzmarkierung in ausreichender Menge und Reinheit. Um den Einfluss der Bindungsaffinität auf die Aktivität zu untersuchen, wurden Aminosäuren innerhalb der Bindungsstellen zu den Rezeptoruntereinheiten ausgetauscht. Die Änderung der Bindungsaffinität sowie deren Effekt auf die Aktivität wurden überprüft. Mit Hilfe der Cystein-Mutanten an der Position a2S136C / a/wS137C konnte eine ortsspezifische Fluoreszenzmarkierung durchgeführt werden. Für die Untersuchung der Interaktion wurden die extrazellulären Domänen von ifnar1 (ifnar1-EC) und ifnar2 (ifnar2-EC) über einen Deka-Histidin-tag immobilisiert wurden. Die Interaktion wurde in Echtzeit mit der markierungsfreien reflektometrische Interferenzspektroskopie (RIfS) und der totalinternen Reflektions-Fluoreszenzspektroskopie (TIRFS) detektiert. Hierzu wurden die Stöchiometrie, die Kinetik der Interaktion sowie die Bindungsstelle durch Kompetition zu den Rezeptoruntereinheiten charakterisiert. Dabei zeigten sich in der Stöchiometrie (binärer/ternärer Komplex), den Bindungsstellen oder der Konformationsänderung durch ifnar1 keine Unterschiede zwischen den IFN. Als einziges Unterscheidungsmerkmal konnten signifikant unterschiedliche Bindungsaffinitäten an die Rezeptoruntereinheiten ifnar1 und ifnar2 nachgewiesen werden. Dabei war die Rezeptoruntereinheit ifnar2 gegenüber ifnar1 stets die höher affine Komponente mit deutlichen Affinitätsunterschieden von bis zu drei Größenordnungen. Ebenfalls wurde die Assemblierung eines ternären Komplexes untersucht, für den eine 1:1:1-Stöchiometrie für alle IFN beobachtet wurde. Für Assemblierung ternärer Komplexe konnte ein Einfluss durch die Bindungsaffinitäten sowie den relativen sowie absoluten Konzentration der Rezeptoruntereinheiten nachgewiesen werden. Für die Untersuchung verschiedener zellulärer Aktivitäten, die durch die IFN induziert werden, wurde die Assemblierung des Transkriptionsfaktors ISGF3 (Interferon stimulierten Genfaktors 3), die antivirale Aktivität gegen vesikuläre Stomatitis Viren (VSV) sowie die antiproliferative Aktivität überprüft. Für die ISGF3-Aktivität konnten große Unterschiede für die effektiven Konzentrationen (EC50) zwischen den IFN beobachtet werden (pM- bis nM-Bereich). Für eine antiproliferative Aktivität wurde Konzentrationen im nM-Bereich benötigt. Insbesondere konnten Unterschiede zwischen den Aktivitätsmustern beobachtet werden. Durch die Korrelation der Bindungsaffinitäten mit den jeweiligen Aktivitäten konnte ein deutlicher Zusammenhang beobachtet werden. So wurde für die Induktion der ISGF3-Assemblierung eine Abhängigkeit zu der ifnar2-Affinität nachgewiesen. Bei niedrigen IFN-Konzentrationen wird über die ifnar2-Affinität die Verweildauer der Interferone auf der Oberfläche beeinflusst, wodurch Einfluss auf die Anzahl an ternären Komplexen genommen wird. Im Gegensatz hierzu zeigte sich für die antiproliferative Aktivität eine Korrelation zu der Affinität an ifnar1. Auffällig war zudem die Korrelation der differentiellen antiproliferativen Aktivität zu der relativen Bindungsaffinität von ifnar1 zu ifnar2. Dies lässt sich durch eine mögliche Adaption der Zellen gegenüber IFN erklären, die eine Regulation der Rezeptorkonzentration auf der Membran bewirkt. Durch die Modulation der Bindungsaffinität zu ifnar2 und ifnar1 konnte der Einfluss auf die Aktivität bestätigt werden. In der Medizin könnte dies für eine verbesserte therapeutische Anwendung von Bedeutung sein, da der Einsatz von Interferonen zurzeit durch eine Vielzahl an Nebenwirkungen eingeschränkt ist.
Tumor hypoxia and nutrient starvation are common phenomena in cancerous tissue. Cells that resist this hostile environment are selected for a more aggressive phenotype, usually accompanied by therapy resistance. The hypoxia inducible factors HIF-1a and HIF-2a play a key role in the adaptive homeostatic responses to these challenging conditions inducing a number of target genes that are involved in the regulation of a variety of cellular processes such as angiogenesis, proliferation, metabolism, self-renewal and cell death/cycle arrest. Thus, the HIF pathway encompasses opposing adaptive responses on tumor growthgrowth promoting abilities on the one hand and growth inhibiting on the other. A recent study in our lab uncovered that this switch between cell death and cell survival critically depends on HIF-2a protein levels. Since PHDs (HIF prolyl hydroxylases) are the main regulators of HIF protein abundance and hypoxia drives the malignant phenotype of tumors, we wanted to characterize HIF regulatory functions of PHDs under hypoxic conditions. Our intention was to reveal the importance of PHD contribution to the opposing functions of HIFs under hypoxia. Characterization of PHD1-4 mRNA and protein expression levels under normoxic and hypoxic conditions in glioblastoma cell lines led to the identification of PHD2 and PHD3 as hypoxia inducible PHD isoforms and highlighted their predominant function under hypoxia. Mechanistically, we demonstrated that HIF mediates the hypoxic induction of PHD2 and 3 within a negative feedback loop, promoting its own degradation during prolonged hypoxia. The functional impact of PHD2 and 3 abundance on cell viability under hypoxic conditions was analyzed by disrupting PHD2 and PHD3 function either through a siRNA mediated approach or by application of the PHD inhibitor DMOG. These experiments uncovered that PHD2 and 3 are protective under hypoxic conditions and that PHD inhibition expedites cell death. Combined HIF and PHD suppression under hypoxic conditions abrogated this increased susceptibility to cell death, clearly showing that PHD2 and 3 act in a negative feedback regulatory loop to limit the HIF response under prolonged hypoxia. With respect to possible future therapeutical applications we co-treated cells with a PHD inhibitor and pro-apoptotic agents staurosporine or TRAIL. Co-challenging tumor cells even potentiated the cell death response, indicating a more widespread protective function of PHD. Taken together PHD2 and 3 protect tumor cells from cell death induction, functioning in a negative feedback regulatory loop to constrain the HIF dependent cell death responses under hypoxia. Interestingly, however, when assessing the role of PHD2 and PHD3 in in vivo tumor growth using an intracranial tumor model, we identified an exclusive tumor suppressor function for PHD3. Loss of PHD3 function enhanced tumor growth whereas increased PHD3 expression diminished the tumor burden. The accelerated tumor growth following PHD3 loss could be attributed to a decrease in the induction of apoptosis and an increase in proliferation. Tumor cells are frequently exposed to temporary and spatial depletion of nutrients. Interestingly, PHD3 loss conferred a growth advantage under growth factor deprivation. The growth regulatory function of PHD3 was isoform specific, HIF independent and importantly, did not require the hydroxylase function of PHD3. Previous reports have uncovered a regulatory function of the PHD system in NF-kB signaling. However, our results demonstrated that NF- kB signaling remained unaffected by alteration in the PHD3 status of the cell. Additionally, the PHD3 tumor suppressor function proved to be independent of two putative PHD3 downstream effectors, ATF4 and KIF1Bb. Mechanistically, PHD3 suppression reduced EGFR internalization, enhancing the amount of EGFR expressed on the cell surface. We further showed that the impaired EGFR internalization during PHD3 loss resulted in receptor hyperactivation under stimulated and growth factor deprived conditions. Importantly, PHD3 physcially associated with the EGFR complex as evidenced by co-immunoprecpitation. Consequently, this extended EGFR activation in PHD3 deficient cells resulted in enhanced downstream activation of EGFR signaling and increased proliferation. Consistent with the interpretation that PHD3 loss is beneficial for tumor growth, we found PHD3 promoter methylation in glioblastoma cell lines, hinting at a epigenetic mechanism to finetune PHD3 expression on top of the hypoxic driven gene regulation. Finally, we demonstrated that PHD3 tumor suppressor function is not restricted to glioblastomas since PHD3 suppression in lung adenocarcinoma accelerated subcutaneous tumor growth. With these findings, we expand the knowledge of PHD3 action from its oxygen sensing role to a regulatory function in growth factor signaling. This clearly discriminates PHD3 from the other isoforms and supports the exclusive tumor suppressor function in glioblastoma. Taken together our results identify a complex role of PHD signaling in cancer and delineate HIF dependent and HIF independent functions of the PHD system. We think that the HIF dependent protective effect of PHD2 and 3 and the HIF independent PHD3 tumor suppressor function are not mutually exclusive, but might be activated according to the heterogeneous intra-tumoral conditions. However, PHD3 hydroxylase activity is dispensable for its HIFindependent tumor suppressor function in glioma. This uncouples PHD3 function from co-factor and co-substrate requirements and allows it to act over a broader physiological range, since its influence on cellular processes is not constrained by the availability of rate limiting factors. It might explain, why the enzymatic independent functions of PHD3 predominate in vivo. Thus, therapeutic modulation of the PHD system to inhibit tumor growth has to be based on these contrasting functions of the PHD system. However, their differential dependence on the hydroxylase activity may facilitate a therapeutic strategy to specifically inhibit or promote the protective versus suppressive functions of the PHD system.
In der vorliegenden Arbeit wurde das Insektenzellen /Baculovirus-System für die heterologe Expression der NTPDase6 etabliert. Nach der Herstellung und Selektion des NTPDase6-positiven Baculovirus wurden drei Insektenzelllinien hinsichtlich der optimalen Expressions-bedingungen für die NTPDase6 analysiert. In Sf9(+Serum)-, Sf9(-Serum)- und High FiveTM-Zellen wurde eine Expression und Sekretion des aktiven Enzyms nachgewiesen. Ferner konnte durch die Analyse mit PNGaseF eine partielle N-Glykosilierung experimentell gezeigt werden. Die Aktivität im Kulturüberstand übertraf generell die Aktivität in der löslichen Zellfraktion. Die höchste GDPase-Aktivität war mit 22,96 nmol Pi /(106 Zellen x min) nach 6 Tagen im Kulturüberstand der SF9(-Serum)-Zellen zu verzeichnen. Nachdem die Erntequelle sowie der Erntezeitpunkt feststanden, wurden in den folgenden Experimenten verschiedene chromatographische Verfahren für eine Reinigung der NTPDase6 analysiert. Eine Bindung der NTPDase6 konnte für die Chromatographie mit Con A-Sepharose 4B, Q Sepharose Fast Flow, Reactive Red 120-Agarose, Reactive Green 19-Agarose, Cibacron Blue 3GA-Agarose und die Reactive Brown 10-Agarose verzeichnet werden. Hingegen wurde eine nur partielle Bindung der NTPDase6 für die Reactive Yellow 86-Agarose, Reactive Blue 4-Agarose und die Ni2+-NTA-Agarose nachgewiesen. Nicht oder kaum NTPDase6-bindend waren die CM Cellulose, GDP-Agarose, Protino Ni-TED und BD TALON. Ebenfalls analysiert wurde die Größenausschluss-Chromatographie mit Sephacryl S-100 HR unter verschiedenen Bedingungen. Für das finale Reinigungsschema wurde die Con A-Sepharose 4B-Chromato-graphie aufgrund der geringen Kosten und des großen Volumens als erster Reinigungsschritt eingesetzt. Als zweite Phase der sequentiellen Reinigung wurde die Cibacron Blue 3GA-Agarose ausgewählt, da in der Pilotstudie über die Reaktivfarbstoffe mit diesem Material die höchste Elution der GDPase-Aktivität beobachtet werden konnte. Für den dritten Schritt wurde aufgrund der hohen Trennschärfe die Ni2+-NTA-Agarose verwendet. Insgesamt wurde mit diesen drei Schritten eine 180 fache, partielle Reinigung der NTPDase6 erreicht. Es erwies sich, dass die erhaltene Proteinmenge für die geplanten Röntgenstrukturanalyse und die Elektronenspin-Resonanz-Spektroskopie nicht ausreichte. Als weitere Möglichkeit für die Untersuchung des angereicherten Enzyms stand die MALDI-TOF-Analyse zur Verfügung. In diesen Untersuchungen wurde die Aminosäuresequenz zu 43,9 % verifiziert und es ergaben sich Hinweise darauf, dass die potenzielle N256-Glykosilierungssstelle bei der heterologen Expression in Insektenzellen nicht genutzt wird. Weiterhin wurden die potenziellen N-terminale Signalpeptide und Spaltstellen der NTPDase6 in silico mit Hilfe des SignalP 3.0-Algorithmus analysiert. Diese Untersuchungen ergaben putative Spaltstellen an den Aminosäurepositionen L25 und A40 mit einer Wahrscheinlichkeit von 37 % und 7 %. Mit Triton X-114-Separationen wurde ferner nachgewiesen, dass 60,7 % der NTPDase6 in der Zelle in löslicher Form und 39,3 % in membrangebundener Form vorliegen. Die hier erbrachten Nachweise einer putativen N-terminalen Spaltstelle und der intrazellulären Spaltung des hydrophoben Signalpeptides deuten darauf hin, dass es sich bei der Sekretion des Proteins um einen physiologischen Vorgang handelt. Es ist wahrscheinlich, dass die gleichzeitige Lokalisation des Enzyms im Golgi-Apparat und im Kulturüberstand einen physiologisch relevanten Mechanismus darstellt und das Enzym extra- sowie intra-zellulär für die Hydrolyse von 5’-Nukleosid-Diphosphaten verantwortlich ist. Im zweiten Teil der Arbeit wurde die Lokalisation der NTPDase6 in vivo untersucht. Dazu wurden NTPDase6-Antikörper hergestellt und mit Hilfe von Immunoblots sowie in der Immunzytologie charakterisiert. Es konnte gezeigt werden, dass die NTPDase6-Antikörper nur in der Immunzytologie verwendet werden können. Zur Untersuchung der zellspezifischen Expression der NTDPase6 wurden anschließend immunhistologische Analysen am adulten Rattengehirn durchgeführt. Markierte Zellen präsentierten sich z.B. im gesamten Kortex des Gehirns, im Gyrus dentatus des Hippokampus, im Corpus striatum und im Septum. Die markierten Zellen zeigten eine organelläre Fluoreszenz im Bereich des Zellkerns, die eine Markierung von Golgi-Stapeln vermuten lässt. Nur in Zellen mit einem großen Nukleus, bei welchen es sich um große Nervenzellen handeln dürfte, konnte die beschriebene Fluoreszenz nachgewiesen werden. Diese Markierungen als NTPDase6-spezifisch zu beurteilen ist jedoch schwierig, da die Präimmunkontrollen eine schwache, organelläre Fluoreszenz im Bereich des Zellkerns von Zellen mit einem großen Nukleus aufwiesen. Insgesammt liefern die Untersuchungen einen neuen Beitrag zum Verständnis der Struktur und der Prozessierung der NTPDase6 sowie ein Verfahren zur heterologen Expression und zur anschließenden partiellen Aufreinigung des Enzyms.
Active neurogenesis continuously takes place in the dentate gyrus of the adult mammalian brain. The dentate gyrus of the adult rodent hippocampus contains an astrocytelike cell population that is regarded as residual radial glia. These cells reside with their cell bodies in the subgranular layer (SGL). Radial processes traverse the granule cell layer (GCL) and form bushy ramifications in the inner molecular layer (IML). The residual radial glial cells apparently represent neuronal progenitor cells that can give rise to functionally integrated granule cells. To date the cellular and molecular events driving a subpopulation of these cells into neurogenesis as well as the cellular transition states are poorly understood. The present study shows, that in the mouse dentate gyrus, this cell type selectively expresses surfacelocated ATPhydrolyzing activity and is immunopositive for nucleoside triphosphate diphosphohydrolase 2 (NTPDase2). NTPDase2 is an ectoenzyme and hydrolyzes extracellular nucleoside triphosphates such as ATP or UTP to their respective nucleoside diphosphates. The enzyme becomes expressed in the hippocampus during late embryogenesis from E17 onwards, and is thus not involved in early brain development. Its embryonicpattern of expression mirrors dentate migration of neuroblasts and the formation of the primary and finally the tertiary dentate matrix. NTPDase2 is also expressed by a transient population of cortical radial glia from late embryonic development until postnatal day 5. NTPDase2 can be employed as a novel markerfor defining cellular transition states along the neurogenic pathway. It is associated with subpopulations of GFAP and nestinpositive cells. These intermediate filaments are typically expressed by the progenitor cells of the dentate gyrus. In addition there is a considerable overlap with doublecortinand PSANCAM positive cells. The expression of the microtubuleassociated protein doublecortin and of PSANCAM which are expressed by migrating neuroblasts is indicative of a transition of progenitors to a neural phenotype or an immature form of granule cell. NTPDase2 is no longer associated with young neurons and with maturegranule cells, as indicated by the lack of doubleimmunostaining for III tubulin and NeuN, respectively. Furthermore, β S100positive astrocytes do not express NTPDase2 validating that NTPDase2 is also not associated with later stages of gliogenesis. Experiments with the Sphase marker bromodeoxyuridine (BrdU) demonstrate that NTPDase2positive cell proliferate. Postmitotic BrdU-labeled cells preferentially acquire an NTPDase2positive phenotype. Many of these cells were also positive for GFAP. The contribution of BrdUlabeled cells positive for NTPDase2 increased with time from 2 h to 72 h, validating a strong association of NTPDase2 with proliferating cells of the dentate gyrus. The colocalization studies with various markers and the results of the experiments suggestthat NTPDase2 is associated with cell types of varying maturation states but not with mature neurons or astrocytes. Studies on the formation of neurospheres from the dentate gyrus validate previous data suggesting that the hippocampal progenitors have little capacity for self renewal in vitro. In situ hybridization results indicate the presence of one of the metabotropic purinergic receptor subtypes (the P2Y1 receptor) within the adult neurogenic regions, the dentate gyrus and the lateral walls of the lateral ventricles. A patchclamp analysis demonstrates the presence of functional ionotropic nucleotide receptor (P2X receptors) in progenitor cells expressing nestin promotordriven GFP. They suggest that the signaling pathway via extracellular nucleotides and nucleotide receptors may play a role in the control of adult hippocampal neurogenesis.
Studies in particular of the last decade showed that active neurogenesis continuously takes place in the subventricular zone (SVZ) of the lateral ventricles of the adult rodent brain. Neurogenesis in the SVZ leads to migration of neuroblasts within the rostral migratory stream (RMS) and mature neuron formation mainly in the olfactory bulb (OB). According to present understanding, glial cells with astrocytic properties represent the actual adult neural stem cells. The cell types representing the various cellular transition states leading to the formation of mature neurons as well as the mechanisms controlling adult neurogenesis and neuroblast migration are poorly understood. A previous study from this laboratory demonstrated that the ATP-hydrolyzing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) is associated with type B cells, the presumptive neural stem cells. NTPDase2 is a protein of the plasma membrane with its catalytic site facing the extracellular space. It hydrolyzes extracellular nucleoside triphosphates to their respective nucleoside diphosphates. This raises the possibility that the signaling pathway via extracellular nucleotides is involved in the control of adult neurogenesis. Neurons as well as glial cells express several subtypes of receptors (P2 receptors) that are responsive to the nucleotides ATP, ADP, UTP, or UDP. P2X receptors are ATP-gated Na+, K+ and Ca2+ permeable ion channels, P2Y receptors are coupled to trimeric G-proteins. In order to probe for a functional role of nucleotides in adult neurogenesis, the present study referred to an in vitro system (neurospheres). Neurospheres produced from isolates of the mouse SVZ and cultured in the presence of EGF and bFGF expressed the neural stem cell marker nestin and also GFAP, S100β, NTPDase2 and tissue non-specific alkaline phosphatase. Neurospheres generated from the cells of the subventricular zone were multipotenital. This was revealed by immunostaining of differentiated cells with markers for astrocytes, neurons and oligodendrocytes. The presence of ecto-nucleotidase was verified by analyzing the free phosphate released from nucleotides. The tissue non-specific form of alkaline phosphatase was the predominant enzyme. Both NTPDase2 and TNAP could be identified by immunocytochemistry and Western blotting. Hydrolysis was not observed for p-nitrophenyl thymidine monophosphate, a substrate of members of the ectonucleotide pyrophosphatase/phosphodiesterase family (NPP1 to NPP3). Since ecto-nucleotidases control the availability of extracellular nucleotide agonists, neurospheres were studied for the potential expression and functional role of nucleotide receptors. Neurospheres responded to extracellular nucleotides with a transient rise in Ca2+ (ATP = ADP > UTP). The rise in Ca2+ was due to P2Y receptors. The Ca2+ response was unaltered in the absence of extracellular Ca2+ and strongly reduced by thapsigargin, a blocker of internal Ca2+ stores. The P2Y1 antagonist MRS2179 strongly reduced the ATP- or ADP-induced increase in Ca2+, suggesting the involvement of a P2Y1 receptor. In addition, suramin and PPADS, non-selective antagonists for P2 receptors, inhibited most of the Ca2+ response. The agonistic activity of UTP and the lack of response to UDP implied the additional presence of a P2Y2 and/or a P2Y4 receptors and the absence of a functional P2Y6 receptor. RT-PCR experiments demonstrated that neurospheres expressed P2Y1 and P2Y2 receptors but not P2Y4 receptor. That the majority of the Ca2+ response to ATP was mediated via P2Y1 receptors was also confirmed by analysis of P2Y1 knockout mice and by application of the P2Y1 receptor-specific antagonist MRS2179. In addition, agonists of P2Y1 and P2Y2 receptors and low concentrations of adenosine augmented cell proliferation inspite of the presence of mitogenic growth factors. Neurosphere cell proliferation was attenuated after application of MRS2179 and in neurospheres from P2Y1 receptor knockout mice. These results infer a nucleotide receptor-mediated synergism that augments growth factor-mediated cell proliferation. Taken together these results suggest that P2Y-mediated nucleotidergic signalling is involved in neurosphere function and possibly also in adult neurogenesis in situ.
Im Mittelpunkt der vorliegenden Arbeit stand die Untersuchung von Faktoren, die eine physiologische Funktion bei der VIP-Induktion cholinerger sympathischer Neuronen des Huhns besitzen. Die essentielle Bedeutung von neuropoietischen Zytokinen bei diesem Differenzierungsprozess wurde bereits durch Geissen et al. (1998) gezeigt. Eine weitere Eingrenzung der in vivo beteiligten Mitglieder dieser Zytokinfamilie sollte nun durch Klärung des beteiligten Rezeptorkomplexes vorgenommen werden. Hierzu wurde zunächst die Klonierung des 5'-Bereiches der Huhn-LIFRb-cDNA unter Verwendung der 5'-RACE-Technik abgeschlossen. Anschließend wurde ein antisense Ansatz etabliert, der es ermöglicht, in vivo die Signaltransduktion über die Rezeptoruntereinheit LIFRb zu blockieren. Unter Verwendung eines retroviralen Expressionsvektors RCAS(B) wurde LIFRb antisense RNA im sich entwickelnden Hühnerembryo exprimiert. Dies bewirkte eine spezifische Reduzierung der endogenen LIFRb-Expression in den infizierten Geweben, die über In situ-Hybridisierung und Immunfärbungen nachweisbar war. Die Reduktion der LIFRb hatte keinen Einfluß auf die allgemeine Entwicklung des sympathischen Ganglions. Sie führte jedoch zu einer selektiven Reduktion der VIP-Expression, wohingegen die frühe cholinerge (ChAT), noradrenerge (TH) und panneuronale (SCG10) Genexpression unbeeinflußt bleibt. Damit ist eindeutig gezeigt, daß neuropoietische Zytokine, die über LIFRb wirken, essentiell sind für bestimmte Aspekte der terminalen Differenzierung (VIP-Expression) cholinerger sympathischer Neuronen. In Anlehnung an die vorangegangene Studie sollten unbekannte Zytokine, die an den Komplex aus LIFRb- und gp130-Rezeptoruntereinheiten binden, über eine Expressionsklonierung identifiziert werden. Hierzu konnten funktionelle LIFRb-Fc/gp130-Fc Rezeptorfusionsproteine hergestellt werden, die in der Lage sind, VIP-induzierende Faktoren in HCM, RCM und AMG zu blockieren. Über Kontrollexperimente wurde ein Expressionsklonierungsprotokoll erarbeitet, das geeignet ist auf Einzelzellebene Zytokin-exprimierende Zellen zu detektieren und aus diesen die Plasmid-Information zu ermitteln. Somit wird das Verfahren als prinzipiell durchführbar erachtet. In der bisher durchgeführten Suchrunde in einer HCM-Bank gelang es jedoch nicht, neuropoietische Zytokine zu identifizieren.
Die Zusammensetzung der Plasmamembran tierischer Zellen kann unter anderem durch regulierte Exozytose und durch hydrolytische Abspaltung von Ektodomänen membran-assoziierter Proteine (Ectodomain Shedding) modifiziert werden. Regulierte Exozytose spezialisierter Vesikel, den sogenannten GSVs (GLUT4 containing small vesicles), dient der intrazellulären Speicherung des Glucosetransporters4 (GLUT4) sowie seinem insulin-abhängigen Einbau in die Plasmamembran. Die proteolytische Abspaltung der Ektodomänen von Zelloberflächenproteinen wie z.B. des Heparin-bindenden epidermalen Wachstums-faktors (heparin binding-epidermal growth factor = HB-EGF) führt zur Modifikation der Plasmamembranzusammensetzung. Wir zeigten, dass GSVs in vielen Säugerzellen für die intrazelluläre Speicherung spezifischer Plasmamembranproteine und deren stimulations-abhängigen Transfer in die Plasmamembran zuständig sind. Um GSVs eindeutig identifizieren zu können, wurden Rat1-Zellen stabil mit GLUT4myc als heterologem Marker für dieses spezifische Speicherkompartiment transfiziert. Die intrazelluläre GLUT4-Lokalisation in den als positiv identifizierten Rat1/GLUT4myc-Klonen entsprach dem für CHO/GLUT4-Zellen beschriebenen Verteilungsmuster. In der Folge wurden mehrere potentiell vesikel-assoziierte Membranproteine in die Untersuchungen zur Membran-zusammensetzung einbezogen: eine endogene proHB-EGF hydrolysierende Proteaseaktivität und die Metalloproteasen ADAM10 und TACE. Es zeigte sich, dass GSVs eine Proteaseaktivität enthielten, die VSVG-proHB-EGF hydrolysierte. Eine Colokalisation der beiden endogenen Metalloproteasen ADAM10 und TACE mit GLUT4 in GSVs konnte gezeigt werden. Untersuchungen zeigten, dass beide endogenen Proteasen ADAM10 und TACE in Rat1/GLUT4myc-Zellen mit einer Subpopulation von GSVs assoziiert zu sein scheinen. Die Stimulation des G-Protein-gekoppelten Thrombinrezeptors löste in diesen Zellen eine regulierte Exozytose der GSVs aus. Die Metalloproteasen-enthaltenden GSVs reagierten jedoch nicht auf diese Art der Stimulation. Sie bildeten möglicherweise eine Reservepopulation von GSVs, die erst bei stärkerer Stimulation mobilisiert werden kann. Unter Ruhebedingungen schien auch diese Vesikelpopulation über andere intrazelluläre Kompartimente, nicht jedoch über die Plasmamembran, zu rezirkulieren.
ATP ist ein weit verbreitetes Signalmolekül im ZNS. Seine Hauptfunktionen betreffen die präsynaptische Modulation der Transmitterfreisetzung und die schnelle exzitatorische Transmission. Die Aktivierung ionotroper P2X-Rezeptoren durch ATP beinhaltet den Einstrom von Kalzium in die Zelle. Unter pathologischen Bedingungen, wie bei Epilepsie oder Ischämie, ist die ATP-Freisetzung erhöht und könnte einen neuronalen Zelltod induzieren. Eine anhaltender Aktivierung von NMDA-Rezeptoren und der dadurch erhöhte Einstrom von Kalzium in die Zelle stellt dabei den primären Effektor der Neurotoxizität dar. Dieses, als Exzitotoxizität bezeichnete Phänomen, ist an vielen neurologischen Krankheiten beteiligt. In der vorliegenden Arbeit wurde die Wirkung von ATP und anderen Purin- und Pyrimidin-Nukleotiden und von Adenosin auf die Überlebensrate von Neuronen bei induzierter Toxizität in hippokampalen Primärkulturen untersucht. Neurotoxizität wurde durch die Applikation der Glutamat-Rezeptor-Agonisten NMDA (30 μM) oder Kainat (300 μM) und durch Applikation von KCl (30 mM) induziert. Purin- und Pyrimidin-Nukleotide wurden in verschiedenen Konzentrationen von 10 μM – 1000 μM koappliziert. Nach 24 Stunden wurde die Überlebensrate der Neurone mit der Methode des Neuronen-spezifischen zellulären ELISA quantifiziert. Applikation von NMDA reduzierte den Anteil lebender Zellen auf 56 ± 3%. Der NMDARezeptor-Antagonist MK-801 verhinderte die NMDA-induzierte Toxizität. Die Koapplikation von ATP (0,01-1 mM) schwächte die zytotoxischen Wirkung von NMDA konzentrationsabhängig ab. Die Purine ITP und GTP zeigten ebenfalls eine protektive Wirkung und reduzierten die NMDA-induzierte Toxizität, wohingegen die Pyrimidin-Nukleotide UTP und CTP keinen protektive Wirkung zeigten. Weitere getestete P2-Rezeptor-Agonisten, wie ADP, AMP, Adenosin, α,β-meATP, 2MeSATP, das Dinukleotid Ap4A, α,β-meADP und BenzoylATP waren unwirksam. Der P2-Rezeptor-Antagonist Reactive Blue 2 (100 μM) inhibierte die Wirkung von ATP. Suramin und PPADS (100 μM) verhinderten die protektive Wirkung von ATP nicht. Applikation von Kainat reduzierte den Anteil lebender Zellen auf 37 ± 0,3%. Der Antagonist CNQX (100 μM) verhinderte die Kainat-induzierte Toxizität. Weder ATP noch GTP zeigten eine protektive Wirkung nach Kainat-induzierter Toxizität. Dies steht im Gegensatz zu ihrer protektiven Wirkung nach NMDA-vermittelter Toxizität. Applikation von KCl reduzierte den Anteil lebender Zellen auf 61 ± 4%. Die Purin- und Pyrimidin-Nukleotide (1 mM) zeigten bei K+-Depolarisation ein völlig anderes Wirkungsspektrum als bei Applikation von NMDA: GTP > ITP > ATP > ADP > CTP > α,β-meATP > UTP > AMP. 2MeSATP, α,β-meADP, Ap4A, BenzoylATP und Adenosin veränderten die Überlebensrate der Zellen nach KCl-induzierter Toxizität nicht. Weder Suramin noch PPADS (100 μM) inhibierten die protektive Wirkung von ATP. Diese Ergebnisse lassen vermuten, daß die protektive Wirkung von ATP, GTP und ITP weder P2- noch Adenosin-Rezeptor-vermittelt war. Zudem schienen sie spezifisch für eine NMDARezeptor-vermittelte Toxizität, da ATP und GTP nach Kainat-Applikation keine Wirkung erzielten und die alleinige Applikation der verwendeten P2-Rezeptor-Agonisten und Antagonisten (Kontrollen) keine Wirkung auf das Überleben von Neuronen hatte. Deshalb wurde eine direkte Inhibition des NMDA-Rezeptors durch ATP postuliert. In einer Kooperationsarbeit führte Dr. Bodo Laube vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main elektrophysiologische Messungen an Oozyten und hippokampalen Neuronen zur Bestätigung dieser Hypothese durch. ATP inhibierte in Oozyten NMDA-induzierte Einwärtsströme kompetitiv durch Bindung an die NR2B-Rezeptor-Untereinheit. ITP, GTP, AMP waren an dieser rekombinanten NR1/NR2BRezeptorkombination ebenso effektiv, wohingegen UTP, CTP, ADP und Adenosin nur schwache inhibitorische Wirkungen zeigten. In kultivierten hippokampalen Neuronen inhibierte ATP auch NMDA-induzierte Ströme, nicht jedoch Kainat-induzierte Ströme. Die Expression der beiden NMDA-Rezeptor-Untereinheiten NR1 und NR2B wurde durch immunzytochemische Untersuchungen in den hippokampalen Neuronen bestätigt. Die Resultate zeigten, daß ATP direkt NMDA-Rezeptoren mit einer bestimmten Untereinheitenzusammensetzung inhibierten. Zusammenfassend zeigen die Ergebnisse der vorliegenden Arbeit, daß ATP und andere Purinund Pyrimidin-Nukleotide durch Inhibition des NMDA-Rezeptors neuroprotektive Wirkungen vermitteln können. Dies ist eine neue Funktion von ATP zu der bereits beschriebenen direkten Aktivierung von postsynaptischen P2X-Rezeptoren und zu seiner Rolle als eine extrazelluläre Quelle des synaptischen Modulators Adenosin an glutamatergen Synapsen.
In der vorliegenden Arbeit konnte das Subkompartiment der synaptischen aktiven Zone erstmals in der für Proteomstudien erforderlichen Qualität aufgereinigt werden. Nach Präparation des Gesamthirns der Ratte wurden über verschiedene Homogenisations- und Zentrifugationschritte Synaptosomen gewonnen, die durch einen hypoosmotischen Schock zum Platzen gebracht wurden. Der Inhalt, vornehmlich synaptische Vesikel, wurde in einem Saccharosedichtegradienen aufgetrennt. Die Analyse dieses Gradienten bestätigte, dass sich in den unteren, dichteren Fraktionen (Fraktionen 28-34) Elemente synaptischer Vesikel und auch der Plasmamembran befanden. Damit war eine wichtige Grundvoraussetzung für eine nachfolgende Proteomuntersuchung gedockter synaptischer Vesikel erfüllt. Die Analyse dieser Fraktionen durch Western-Blot und mittels Transmissionselektronenmikroskopie zeigte aber auch, dass sie diverse Organellmarker enthielten und insgesamt eine heterogene Zusammensetzung von membranären Strukturen zeigten. Daher folgte als weiterer Aufreinigungsschritt eine immunmagnetische Trennung mit monoklonalen Antikörpern gegen das ubiquitäre integrale Protein synaptischer Vesikel, SV2. Die hohe Reinheit der resultierenden Fraktion gedockter synaptischer Vesikel konnte durch elektronenmikroskopische Analysen und proteinchemische Methoden (2D BAC-/SDS-PAGE und Western Blot) nachgewiesen werden. Die Optimierung der Integrität der verwendeten Proben erlaubte eine funktionelle Zuordnung der durch die hochsensensitiven massenspektrometrischen Analysen identifizierten Proteine. Zur Proteinidentifikation wurden zwei verschiedene Methoden herangezogen: die zweidimensionale BAC-/SDS-PAGE mit anschliessender MALDI-TOF Analyse und die eindimensionale SDS-PAGE mit nachfolgender nanoLC ESI MS/MS. Beide Methoden ergänzten sich; generell wurde über die zweite Methode eine größere Anzahl von Proteinen identifiziert. Durch die Verwendung und Kombination der verschiedenen massenspektrometrischen Methoden und unterstützt durch eine Western Blot Analyse konnten insgesamt 245 Proteine identifiziert werden. Dabei handelte es sich um (i) integrale synaptische Vesikelproteine, (ii) transient mit synaptischen Vesikeln assoziierte Proteine, (iii) Proteine der Plasmamembran und Zelloberfläche, (iv) Signalkaskadenproteine und kleine GTPasen, (v) Proteine des Zytoskeletts, (vi) glykolytische und andere metabolische Enzyme, sowie (vii) Chaperone und (viii) mitochondriale Proteine. Im zweiten Teil der Arbeit wurden ausgewählte Proteine genauer untersucht. Die Analyse der löslichen Proteine WK1 und WK2 zeigten in Genexpressionsstudien eine ubiquitäre Gewebeverteilung. Rekombinante Proteine wurden in Zelllinien exprimiert, um einen Einblick in deren subzelluläre Lokalisierung zu erhalten. Die Expressionsanalyse der integralen Transmembranproteine zeigte für alle Kandidaten eine neuronale Expression der mRNA. Für jeden der Kandidaten wurden individuelle Genexpressionsmuster im Hirn beobachtet. Gegen zwei der Kandidatenproteine konnten funktionelle Antikörper erzeugt werden. Die Immunomarkierung mit anti-Ttyh1-Antikörpern zeigt eine hochspezifische Färbung der Fasertrakte in verschiedenen Hirnarealen sowie eine neuronale Lokalisation in Primärkulturen des Hippokampus und des Neokortex der Ratte. Lingo1-Immunfärbungen markierten selektiv Nervenzellen des limbischen Systems und Mitralzellen des Bulbus olfactorius. Diese Studie führt konsequent die Idee der spezifischen Aufreinigung von Vesikelkompartimenten der Synapse weiter: Mit der Einführung eines hochaffinen immunchemischen Anreicherungsschrittes in dem Aufreinigungsprozess wird dem bisherigen Methodenarsenal zur Spezifizierung der Probe über physiko-chemische Parameter eine neue Dimension hinzugefügt: Die molekulare Identität.