• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Böhm, Andreas (1)
  • Dzafic, Enela (1)
  • Eichhorn, Anna Carina (1)
  • Flöck, Dagmar (1)
  • Gorba, Christian (1)
  • Güler, Günnur (1)
  • Haas, Alexander H. (1)
  • Haselbach, Stephanie (1)
  • Hoşafçı, Gamze (1)
  • Kokic, Marco Daniel (1)
+ more

Year of publication

  • 2004 (5)
  • 2003 (4)
  • 2013 (4)
  • 2009 (3)
  • 2012 (3)
  • 2002 (2)
  • 2008 (2)
  • 2007 (1)
  • 2011 (1)

Document Type

  • Doctoral Thesis (24)
  • Bachelor Thesis (1)

Language

  • English (13)
  • German (12)

Has Fulltext

  • yes (25)

Is part of the Bibliography

  • no (25)

Keywords

  • FT-IR-Spektroskopie (3)
  • FT-IR-Spectroscopy (2)
  • H/D Austausch (2)
  • Porin (2)
  • ATR-Perfusionszelle (1)
  • ATR-Spektroskopie (1)
  • ATR-Technik (1)
  • ATR-perfusion cell (1)
  • ATR-spectroscopy (1)
  • BetP (1)
+ more

Institute

  • Physik (21)
  • Biochemie und Chemie (1)
  • Biowissenschaften (1)
  • Extern (1)
  • MPI für Biophysik (1)
  • Medizin (1)

25 search hits

  • 1 to 10
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Zeitaufgelöste Infrarot-Messungen zur Untersuchung der Konformationsdynamik von Peptiden mit Laser-induziertem Temperatursprung (2007)
Krejtschi, Carsten
Die Funktion biologischer Peptide und Proteine hängt wesentlich von deren intakten molekularen Struktur ab. Krankheiten, wie z.B. Alzheimer oder Diabetes, entstehen durch fehlgefaltete, aggregierte Peptidstrukturen. Die Ausbildung einer nativ gefalteten Konformation wird durch die Formierung von Sekundärstrukturelementen - in charakteristischer Weise angeordnete lokale Strukturen - initiiert und bildet einen geschwindigkeitslimitierenden Schritt in der Proteinfaltung. Die Erforschung und Analyse dieser ersten Faltungsprozesse ist deshalb von grundlegender Relevanz in der biophysikalischen Forschung, auch in Hinblick auf pharmazeutisch-medizinische Anwendungen. Bei der Untersuchung des Faltungsmechanismus kommen vor allem kleine Peptide mit eindeutig ausgebildeten Sekundärstrukturmotiven zum Einsatz. Ihre geringe Größe und strukturelle Eindeutigkeit machen diese kleinen Peptide zu idealen Modellsystemen, um diejenigen Faktoren zu untersuchen, die die Proteinfaltung steuern und beeinflussen. Die zur Untersuchung der Faltungsprozesse verwendeten Techniken müssen dabei sowohl eine Spezifität für die unterschiedlichen Strukturelemente, als auch eine der Faltungsdynamik angemessen Zeitauflösung besitzen. Im Rahmen dieser Arbeit wurden CD- und FTIR-Messungen zur Untersuchung der Strukturstabilität von Polypeptiden unter Gleichgewichtsbedingungen durchgeführt. Durch Variation von pH-Wert und Temperatur wurden damit Stabilitätseigenschaften ausgewählter Peptidsysteme analysiert. Um zeitaufgelöste Faltungsdynamiken von Peptiden detektieren zu können, wurde ein Spektrometer mit Laser-induziertem Temperatursprung (DeltaT ca. 10 °C in 10 ns) und IR-Einzelwellendetektion so modifiziert und optimiert, dass Peptiddynamiken im nanosec bis microsec Zeitbereich gemessen werden konnten. Neben der Modifikation der Temperatursprung-Apparatur, bei der optische Komponenten ersetzt und Störsignale reduziert wurden, konnte auch die Auswertung der kinetischen Daten durch die Entwicklung eines geeigneten Algorithmus verbessert werden. Als notwendige Vorarbeit der Faltungsstudien an Peptiden in wässriger Lösung wurden statische FTIR-Absorptionsmessungen am Lösungsmittel D2O durchgeführt. Dadurch wurden die durch Temperaturvariation erzeugten Absorptionsänderungen des Lösungsmittels ermittelt. Diese wurden zudem zur Kalibrierung des Laser-induzierten Temperatursprunges verwendet. Um Lösungsmittelabsorptionen von strukturellen Änderungen des Peptids zu trennen, wurde ein Auswerteverfahren entwickelt, das die temperaturabhängigen Absorptionsänderungen des Lösungsmittels berücksichtigt. Temperatur- und pH-abhängige Konformationsdynamik wurde am alpha-helikalen Peptid Polyglutaminsäure untersucht. Zunächst wurden CD- und FTIR-Messungen zur Thermostabilität und der Reversibilität der Ent- und Rückfaltung unter Gleichgewichtsbedingungen und bei unterschiedlichen pH-Werten durchgeführt. Der thermisch induzierte Strukturübergang von alpha-Helix nach ungeordneter Knäuel-Struktur wurde mit Hilfe der Laser-induzierten Temperatursprung-Technik zeitaufgelöst untersucht und Relaxationsraten bei verschiedenen pH-Werten bestimmt. Weitere Messungen zur Konformationsstabilität und –dynamik wurden an beta- Hairpin-Peptiden durchgeführt, die kleine Modellsysteme für beta-Faltblattstrukturen darstellen. Die in dieser Arbeit untersuchten Trpzip2C Peptide, die aufgrund hydrophober Wechselwirkungen der Tryptophane eine stabile beta-Hairpin-Struktur in wässriger Lösung ausbilden, waren an verschiedenen Positionen innerhalb der Aminosäure-sequenz selektiv isotopenmarkiert. Durch diese Markierungen im Peptidrückgrat werden spezifisch spektrale Änderungen im Infrarotspektrum erzeugt, die Untersuchungen zur Amidbandenkopplung und lokalisierten Strukturdynamik ermöglichen. Diese Ergebnisse stellen die erste Anwendung der Kombination von selektiv isotopenmarkierten alpha-Hairpin-Peptiden und der Temperatursprung-Technik dar, um Konformationsdynamiken ortsaufgelöst zu untersuchen. Für alle untersuchten Trpzip2C-Peptidvarianten konnte gezeigt werden, dass der Faltungsprozess in einem Temperaturbereich unterhalb von ~ 300 K nicht durch ein Zwei-Zustandsmodell beschrieben werden kann, sondern Intermediate gebildet werden. In diesem Temperaturbereich konnten wellenlängenabhängig Unterschiede in Relaxationsraten gemessen werden, die die Hypothese des „hydrophoben Kollaps“ für den Faltungsmechanismus dieser beta-Hairpin-Peptide unterstützen.
Spectroscopic investigation of stability, unfolding and refolding of outer membrane protein porin from Paracoccus denitrificans (2004)
Sukumaran, Suja
Stability, unfolding and refolding of the outer membrane protein porin from Paracoccus denitrificans was investigated using genetic and spectroscopic methods. Structural and functional activity studies on wild type and mutant porins: The site-directed mutants were constructed based on conserved residues and evidences on the role of certain amino acids from previous studies with OmpF. Secondary structure analysis of wild type and mutants E81Q, W74C, E81Q/D148N, E81Q/D148N/W74C by FTIR and CD spectroscopy are in line with the fact that porins are predominantly ß-sheet structure. The functional activity studies by black lipid bilayer techniques showed that the wild type and mutants W74C, E81Q/D148N, E81Q/D148N/W74C have a conductance of 3.25 nS. For mutant E81Q conductance of 1.25nS was more predominant over 3.25 nS. The activity of the mutants was observed to be far less than the wild type. This indicates that structural similarities does not implies similar functional activity. Thermal stability analysis of porin in detergent micelles and reconstituted into liposomes: Thermal stability analysis of wild type and mutants in detergent micelles showed changes in secondary and quaternary structure. It was found that wild type porin unfolds into aggregated structure with a high transition temperature of 86.2 °C. For mutants E81Q, W74C, E81Q/D148N the transition temperature was found to be 84.2 °C, 80.3 °C and 80.2 °C respectively. Functional activity assays at high temperatures revealed that the protein tends to loose its activity on heating up to 50 °C. This shows that structural stability does not imply functionality in the case of porins. Thermal stability analysis of porin reconstituted into liposomes showed that there was no change in the secondary and quaternary structure of the protein up to 100 °C, revealing that the protein becomes more thermostable when it is reconstituted into liposomes. Refolding of aggregated porin: This study shows that disaggregation of ß-sheet membrane protein porin is possible by changing its chemical and thermodynamic parameters. An increase of the solution pH to 12 or above results in opening up of the aggregated protein into unordered structure, as observed by FTIR and CD spectroscopy. This unordered structure could be refolded into native-like structure forming trimers. The secondary structure of the refolded protein deviated slightly from the native one. The thermal stability analysis of the native-like refolded proteins showed that the unfolding pattern is entirely different when compared to the native porins. pH dependent unfolding of porin: Thermal stability of porin at different pH values showed that the protein is stable in a pH range of 1-11. At pH 12 and above the protein unfolds into unordered structure instead of aggregating. The high pH unfolding of porin is a reversible process. The secondary structure of the refolded protein varied slightly from the native-one. Whereas thermal stability was entirely different. This shows that even though the unfolding of porin at high pH is reversible, it results in changes in local interaction between the amino acids resulting in a difference in stability. Unfolding in presence of urea and guanidinium hydrochloride (GuHCl): Denaturation of porin in the presence of chemical denaturants like urea and GuHCl showed that porin unfold into unordered structure. The unfolding is a reversible process. Unfolded protein was refolded into detergent micelles and liposomes. Refolding into detergent micelles was faster compared to refolding into liposomes, as seen by kinetic gel shift assays. The refolding into liposomes showed the presence of intermediates similar to those reported for OmpF. This study shows the difference in thermal stability of the outer membrane protein porin from Paracoccus denitrificans in detergent micelles and native-like liposomes. It suggests various unfolding pathways, which can be further investigated for unfolding and refolding kinetics. This report also suggests that it is possible to refold a heat-aggregated protein.
New methods towards the prediction of the structure of transmembrane proteins and the simulation of helix-dynamics on large time-scales (2004)
Staritzbichler, René
Transmembrane proteins play crucial roles in biological systems as active or passive channels and receptors. Experimentally only few structures could be determined so far. Gaining structural insights enables besides a general understanding of biological mechanisms also further processing such as in drug design. Due to the lack of experimental data, reliable theoretical predictions would be of high value. However, for the same reason, missing data, the knowledge-based class of prediction methods that is well established for soluble proteins can not be applied. The goal of predicting transmembrane protein structures with ab initio methods demands locating the free energy minimum. Main difficulties here are, first, the computational costs of explicitly calculating all involved interactions and, second, providing an algorithm that is capable of finding the minimum within an extremely complex and rugged energy landscape. We have developed promising energy functions that describe the interactions of amino acids on a residue level, reducing computational costs while still containing most information on the atomistic level. We have also found a way to describe the interaction of the residues with its surrounding in a realistic manner by distinguishing residues exposed to the environment from those buried within helices using a sphere algorithm. The sphere algorithm can also be applied for a different purpose: one can measure how densely sidechains are packed for certain helical conformations, and thereby get an estimate of the sidechain entropy. In addition, overcrowding effects can be identified which are not well-described by the energy functions due to the pairwise calculation. To determine the absolute free energy minimum, we assume the helices to be located on an equidistance grid with slightly larger distances than to be expected. Optimizing the helices on the grid provides a starting point that should enable common minimizing algorithms, gradient-based or not, to find the absolute minimum beyond the grid. To simulate the dynamics of the helices on large time scales, we split them into rigid body dynamics and internal dynamics in terms of the dihedrals. The former one is well-known with its inherent problem of numerical drift and plenty of approaches to it, among which we have chosen the quaternions to represent the rotation of the rigid bodies. The latter one requires a detailed analysis of the torque size exerted on the dihedrals caused by the forces acting on the residues.
Brownian dynamics simulations of protein equilibria in the presence of a charged surface (2004)
Gorba, Christian
Results were presented from Brownian dynamics simulations for cyt c molecules approximated as spherical particles with diameter 2R ' 3.3 nm interacting with a charged planar membrane surface. Using the well-known Ermak-McCammon algorithm of ref. [36, 37] for solving the Langevin equations (see Chapter 2), a new computer program in C++ was developed. An overview of the way it is implemented is given in Chapter 3. The program in its current state is able to compute the trajectories (translation and rotation) of hundreds of spherical particles in systems with typical dimensions of 103 − 1003 nm3 . As explained in the introductory Chapter 1 the motivation for studying the dynamics of cyt c molecules in such systems came from the progress in the research of photosynthetic bacteria, e.g. While the internal processes of energy transduction (light harvesting, channelling to RC, charge separation) are quite well understood, the dynamics of soluble cyt c as an electron transporter in this context is not yet clear. In many textbooks one can find illustrations where a single cyt c is responsible for the electron transport between two integral membrane proteins (the reaction centre RC and the bc1 complex). But as pointed out in publications like refs. [49], [59], [60], [61] or [62] biological cells are crowded with different molecules. Consequently, one can assume that the electron transport between two integral membrane proteins is not simply taken on by one single cyt c molecule. Instead it is likely that many of these particles are located in a cyt c pool above the membrane and that they perform the electron transport in turns. Thus, it is desirable to have a simulation package that is able to compute the trajectories of many proteins. Note that the detailed processes of electron transfer and binding to membrane proteins are not modelled here. The details of these processes are quite complicated so that we refrained from including them in the coarse-grained simulations. Here, the actual binding is simply defined by a particle distance zb from the membrane which marks the beginning of the attractive potential. ...
Structure-function analysis of membrane proteins by infrared spectroscopy : Porin OmpF, Porin OmpG and Betaine transporter BetP (2009)
Korkmaz, Filiz
This study addresses the structure-function relationships of three essential membrane proteins: Porin from Paracoccus denitrificans, Porin OmpG from Eschericia coli and BetP from Corynobacterium glutamicum using Fourier transform infrared (FT-IR) spectroscopy and Attenuated Total Reflection (ATR) techniques. The structure of porin from P. denitrificans is known for more than a decade; however, the mechanism for loss of functionality together with the monomerization was not clear. In this study we have addressed the role of lipids for the functionality of porin using FT-IR. OmpF porin was found to interact with the lipid molecules via the aromatic girdles surrounding the protein for functionality. In this study, molecular bonds and groups of the lipids were established as reporter groups probing at different depths of the bilayer in order to understand the interaction partner of the aromatic girdles of porins. Monomerization of the trimeric assembly of OmpF porin reconstituted in lipids is induced by increasing the temperature. Porin (OmpF) was found to be extremely stable: The secondary structure of the protein was unaltered up to the temperature-induced main transition, around 80-90 °C, above which it is denatured. However, the interaction of the aromatic girdle with the lipid molecules exhibited distinct changes at much lower temperature values (40 - 50°) where, according to the previous functional studies, monomerization and the loss of function occurs. The results are compared with OmpG porin from E.coli, for which the functional unit is a monomer. The aromatic girdle-lipid interaction was monitored by the tyrosine aromatic ring C=C vibrational mode, a universal marker for the protein stability and interaction. We have also found that the aromatic girdles of porins are interacting with the interfacial region of the lipid bilayer instead of lipid headgroups. Lipid-protein interaction was found to be not only essential for the structural stability, but also for the functionality of OmpF porin. We have also studied the structural properties of OmpG from E.coli. The structure of OmpG at two pH values has been resolved using X-ray crystallography and the channel has been proposed to attain different states at different pH values as closed (pH < 5.5) and open (pH >7.5). This study, using IR spectroscopy, revealed that the pH-induced opening and closing of the channel is reflected by the frequency shifts of the ? sheet structure. OmpG has more rigid ? barrel properties upon opening of the channel. IR spectral analysis revealed multiple ? sheet signals with different hydrogen bond strengths. This enabled us to monitor the formation of hydrogen bridges between the extracellular loops upon opening of the channel. The conclusion that OmpG porin having two states at different pH values was also confirmed by the three mutants where the role of the histidine pair (H231 & H261) and loop 6 has been addressed. Temperature-profiling of the wild type (WT) protein and the mutants did not show pH dependent structural stability differences in detergent solution. However, the WT protein was found to be more stable in the open form in 2D crystals than the closed form. Reconstitution into lipids has increased the transition temperature value by ~20 °C in the closed state and ~25 °C in the open state. Therefore we conclude that the open and closed state of OmpG has structural stability differences that are only revealed in the lipid environment. A comparison of the transition temperature values of OmpG WT and the mutants suggested that the hydrogen bond network among S218-H231-H261-D267, together with the formation of 12 residue-long ?-sheet contributes to the structural stability of the open channel. In the process of closing and opening of the channel, the globular structure of the protein remains mainly unchanged, while there are changes in the side chain moieties. In addition to the role of the histidine pair and the loop L6, in situ opening/closing experiments showed that the negatively charged amino acids, i.e. Asp and Glu, and Arg residues also play an active role; possibly by interacting with each other inside the pore lumen. Therefore it could be concluded that the closure of the channel at acidic pH values is not only via closing the channel entrance by loop 6, but also via changing the electric potential inside the lumen due to the different states of charged amino acids in order to effectively block the gateway. BetP from C.glutamicum attains an active and inactive state in order to adjust its glycine betaine uptake rate to the osmotic conditions that the cell encounters. The structure of BetP is not yet available. The WT protein exhibited structural differences in the presence of excess K+, which is one of the activation conditions. In 2D crystals, increasing the ionic strength to 700 mM K+ was shown to induce changes in the ?-helical moiety with contributions from the ester groups and one Tyr residue using ATR-FTIR. An increase in ionic strength to 220 mM K+ was found to be the threshold value of potassium concentration ([K+]) where the protein exhibits structural alterations in detergent solution. The determined [K+] values are in good agreement with the previous functional studies. However, there are differences in the activation profile of BetP in 2D crystals and in detergent solution, which points out that the lipids are involved in the conformational transition from the inactive to the active state and their absence can lead to different structural properties. BetP WT was found to have ~65% alpha-helix, ~25% random coil and ~10% turn structure in detergent solution. In the presence of excess K+, the WT protein is found to adapt more unordered structure. Secondary structure analysis of the mutants revealed that both the N- and C-terminus are in ?-helical conformation. Reconstitution of WT protein in 2D crystals increased the main transition (denaturation) temperature value from ~62 °C to ~85 °C, a clear indication that the protein is more stable in lipid environment. Temperature-profiling of the two forms of the WT protein revealed that the structural breakdown is preceeded by monomerization of the trimeric assembly. Comparing the two forms of the WT protein and the mutant BetA, we conclude that the oligomeric status is stabilized via the interactions among hydrophilic regions involving the N terminus. H/D exchange and activation with excess K+ in D2O-buffer revealed that activation of the protein involves the interaction of Arg and Asp/Glu residues in the cytoplasmic region of the protein. BetP WT and the two mutants tested, i.e. BetA and BetP?C45, showed differences in protein packing upon activation. The WT protein and BetP?C45 mutant also show changes in the hydrogen bonding properties of turns. Since BetA does not show such a property in activation, we conclude that the N-terminus interacts with the loops in the inactive state via the interaction of charged amino acids for the WT protein and that this interaction is altered during the activation. It could be argued that the protein packing is affected via the changes in turns upon activation. We also have found experimental evidence that one Tyr residue has different orientations in the active and inactive state of BetP. Based on the previous functional studies, it could be one of the five Tyr residues in the cytoplasmic region of the protein (in loop 3, 6, 7 or C-terminus). The mutant BetP?C45, on the other hand, showed fewer differences between the active and inactive state conditions and based on the H/D exchange rates, the mutant shows the properties of an active WT protein, proving that the C-terminal truncation impairs the conformational transition between the active and inactive states.
Nichtinvasive Messung von Blutparameter mit Infrarot-Quantenkaskadenlaser und photoakustischer Detektion (2008)
Xhelaj, Arjan
Diese Arbeit beschreibt wie mit physikalischen Methoden die Glukosekonzentration gemessen werden kann. Die Infrarot-Spektroskopie bietet eine Möglichkeit da die Energie der meisten Molekülschwingungen Photonenenergien im infraroten Spektralbereich entspricht. Hier zeigen Glukosemoleküle charakteristische Absorptionsspektren, die mit spektroskopischen Methoden gemessen werden. Um nicht invasiv zu messen, wurde eine photoakustische Messmethode gewählt. Die Grundidee ist, dass die durch Licht angeregten Moleküle ihre Anregungsenergie teilweise in Form von Wärme abgeben. Da die anregende Strahlung intensitätsmoduliert ist, wird auch die Wärmeentwicklung periodisch verlaufen wodurch periodische Volumenänderungen hervorgerufen werden, die eine Druckwelle erzeugen, die sich durch empfindliche Mikrofone oder Schallwandler erfassen lässt. So kann im MIR auf Grund der hohen Spezifizität, der Glukosegehalt mit sehr hoher Genauigkeit bestimmt werden. Die Wellenlänge der Glukoseabsorptionsbanden im MIR Bereich sind im Wesentlichen gekoppelte C=O Streck- und O–H Biegeschwingungen. Im MIR-Bereich zeigen Spektren zwischen 8,3µm bis 11,1µm fünf glukoserelevanten Banden. Der photoakustische Effekt wird durch die Rosencwaig-Gersho Theorie beschrieben. Die Absorption des Lichtes in der Probe bewirkt eine Temperaturerhöhung, die als Wärme an Umgebung abgegeben wird. Da das eingestrahlte Licht gepulst ist, wird auch die Wärme periodisch abgegeben. Durch die Absorption eines Laserpulses in der Haut entsteht ein Temperaturgradient, die abhängig vom Absorptionskoeffizienten und der Glukosekonzentration ist. Der führt zu einer Diffusion von Wärme im Absorptionsvolumen. Die Hautoberfläche und damit eine dünne Luftschicht über der Hautoberfläche werden durch die Diffusionswärme periodisch mit der Modulationsfrequenz der Laser aufgeheizt, was als Druckschwankungen in Messkammer mit Mikrofon detektiert wird. Im Mitteinfrarot geben Quantenkaskadenlaser die beste Lichtquelle, wegen ihre gute Strahlqualität und hohe optische Leistung. Die verwendete photoakustische(PA) Resonanzzelle ist nach dem Prinzip des Helmholtz-Resonators konzipiert. Der Vorteil des Verstärkungsverhaltens einer resonanten PA-Zelle kann unter Umständen durch Verwendung Volumenreduzierten und mit empfindlichen Mikrofonen ausgestatteten nicht-resonanten PA-Zelle erreicht werde. Zum Erfassung der PA Signale wird eine Kombination aus einen Analog-Digital Wandlerkarte verwendet, die eine gemeinsame Zeitbasis mit der synchronen Lasersteuerung und der Datenerfassung liefert und phasenechte Fourieranalyse der photoakustischen Signale ermöglicht. Es wurde ein Modellsystem entwickelt um photoakustischen Glukosemessungen in vitro zu testen. Dieses „Phantommodell“ besteht aus einer dünnen Polymermembran befestigt in eine Gefäß von nur paar ml Volumen die mit verschiedenen Glukosekonzentrationen gefüllt wurde. Die modulierte Laserstrahlung passiert die Messzelle und dringt durch die Folie in die wässerige Glukoselösung ein. Das Folienmaterial und Dicke wurde so gewählt, dass keineAbsorption im verwendeten MIR-Bereich entsteht. Als Lösung für die jeweiligen Glukosekonzentrationen wurde ein Wasser-Albumin Gemisch verwendet mit einen 10%igen Albuminanteil, die verwendet wurde, um den Proteingehalt der Haut zu imitieren und zu zeigen, dass Eiweiß keinen Störeinfluss im Glukosefingerprintbereich hat. Messungen wurden bei steigenden und fallenden Glukosekonzentration durchgeführt damit gezeigt könnte, dass das Messsignal in der PA- Zelle nicht von der Lufterwärmung in der Zelle stammt, sondern vom PA-Signale der Glukose. Die Glukoseschwankungen in der extrazellulären Flüssigkeit der Epidermis spiegeln die Glukoseschwankungen im Blut gut wider, bei einer Messung am Arm entsteht eine Verzögerung von paar Minuten. Im Daumenballenbereich findet aufgrund der guten Durchblutung ein schneller Austausch der Glukosekonzentration der von uns gemessenen interstitiellen Flüssigkeit mit der Blutzuckerkonzentration statt. Deshalb wurden die in-vivo Messungen am Daumenballen durchgeführt. Das Stratum spinosum ist für uns von Bedeutung, da dies das interstitielle Wasser enthält, in dem der Glukosegehalt mit dem Glukosegehalt im Blut gut übereinstimmt. Die photoakustische Messmethode wird nicht-invasiv durchgeführt. Probanden wird Zucker verabreichet und danach in Abständen von 5 Minuten der Blutzucker konventionell bestimmt und gleichzeitig mittels der photoakustischen Messung am Daumenballen durchgeführt. Mit diesen Daten kann die Korrelation zwischen beiden Methoden bestimmt werden. In vielen in vivo Messreihen zeigen sich bereits in direkter Korrelation zu invasiv genommenen Blutzuckerwerten Korrelationskoeffizienten bis zu R=0,8 und eine damit deutliche Evidenz für einen glukoserelevanten Effekt. Trotz der versprechenden Ergebnisse wird deutlich, dass weitere Entwicklungen notwendig sind, damit das System zu einer direkten Konkurrenz zu der vorhandenen invasiven Meßsystemen werden kann.
Molecular dynamics simulations and hydrogen-bonded network dynamics of cytochrome c oxidase from Paracoccus denitrificans (2003)
Olkhova, Elena
Cytochrome c oxidase is the terminal enzyme in the respiratory chain of mitochondria and aerobic bacteria. This enzyme ultimately couples electron transfer from cytochrome c to an oxygen molecule with proton translocation across the inner mitochondrial and bacterial membrane. This reaction requires complicated chemical processes to occur at the catalytic site of the enzyme in coordination with proton translocation, the exact mechanism of which is not known at present. The mechanisms underlying oxygen activation, electron transfer and coupling of electron transfer to proton translocation are the main questions in the field of bioenergetics. The major goal of this work was to investigate the coupling of electron transfer and proton translocation in cytochrome c oxidase from Paracoccus denitrificans. Different theoretical approaches have been used to investigate the coupling of electron and proton transfer. This thesis presents an internal water prediction scheme in the enzyme and a molecular dynamics study of cytochrome c oxidase from Paracoccus denitrificans in the fully oxidized state, embedded in a fully hydrated dimyristoylphosphatidylcholine lipid bilayer membrane. Two parallel molecular dynamics simulations with different levels of protein hydration, 1.125 ns each in length, were carried out under conditions of constant temperature and pressure using three-dimensional periodic boundary conditions and full electrostatics to investigate the distribution and dynamics of water molecules and their corresponding hydrogen-bonded networks inside cytochrome c oxidase. The average number of solvent sites in the proton conducting K- and D- pathways was determined. The highly fluctuating hydrogen-bonded networks, combined with the significant diffusion of individual water molecules provide a basis for the transfer of protons in cytochrome c oxidase, therefore leading to a better understanding of the mechanism of proton pumping. The importance of the hydrogen bonding network and the possible coupling of local structural changes to larger scale changes in the cytochrome c oxidase during the catalytic cycle have been shown.
Mapping the interactions between ATP and the sarcoplasmic reticulum Ca 2 + -ATPase with ATP and ATP analogs studied by Fourier transform infrared spectroscopy (2003)
Liu, Man
Die Infrarotspektroskopie in Verbindung mit photoaktivierbaren Substraten wurde zur Untersuchung von Substrat-Protein-Wechselwirkungen eingesetzt. Dabei wurden Konformationsänderungen der Ca2+-ATPase des Sarkoplasmatischen Retikulums bei Bindung des Nukleotids, der Phosphorylierung der ATPase und der Hydrolyse des Phosphoenzyms beobachtet. Verwender wurden das native Substrat ATP und seine Analoga ADP, AMPPNP, 2'-deoxyATP, 3'-deoxyATP, ITP, AMP, Pyrophosphat, Ribosetriphosphat und TNP-AMP beobachtet. Diese Analoga waren an spezifischen funktionellen Gruppen des Substrats ATP modifiziert. Modifikation der 2'- und 3'-OH Gruppe des Ribosetriphosphats, der beta- und gamma-Phosphatgruppe und der Aminogruppe des Adenins reduzieren das Ausmaß an bindungsinduzierten Konformationsänderungen. Ein besonders starker Effekt wird für die 3'-OH Gruppe und die Aminogruppe des Adenins beobachtet. Dies zeigt die strukturelle Empfindlichkeit des Nukleotid-ATPase Komplexes auf einzelne Wechselwirkungen zwischen dem Nukleotid und der ATPase. Die Wechselwirkungen einer bestimmten Ligandengruppe mit der ATPase hängen von Wechselwirkungen anderer Ligandengruppen mit die ATPase ab. Die TNP-AMP Bindung verursacht teilweise gegenläufige und kleinere Konformationsänderungen verglichen mit ATP. Die Bindungweise von TNP-AMP ist unterschiedlich zu der von ATP, AMPPNP und anderen Tri- und Diphosphat Nucleotiden. Die Phosphorylierung der ATPase wurde mit ITP und 2'-deoxyATP beobachtet. Ca2E1P wurde in gleichem Ausmaß mit ITP und 2'-deoxyATP wie mit ATP akkumuliert, obwohl das Ausmaß der Konformationsänderungen bei Ca2E1P-Bildung geringer ist. Änderungen der 2'- und 3'-OH des Ribosetriphosphats und der Aminogruppe des Adenins beeinflussen die Reaktionsgeschwindigkeit der Phosphorylierung der ATPase. Es gibt keine direkte Verbindung zwischen dem Ausmaß der Konformationsänderung bei Nukleotid- Bindung und der Rate der Phosphorylierung. Das volle Ausmaß der ATP-induzierten Konformationsänderung ist nicht zwingend für die Phosphorylierung. Die Konformationen von Ca2E1N und Ca2E1P hängen vom Nukleotid ab. Dies weist darauf hin, dass die Struktur von ATPase Zuständen heterogener ist, als bisher erwartet. Die Aussagekraft und der Reichtum an Informationen in den Infrarotspektren zeigen, dass hiermit eine leistungsfähige Methode für die Untersuchung von Enzym-Substrat-Wechsel-Wirkungen und das räumliche Abtasten von Bindungstaschen zur Verfügung steht.
Cytochrom bc 1 : eine Studie zum Elektronentransfer der bc 1-Komplexe des Bakteriums Paracoccus denitrificans und der Hefe Saccharomyces cerevisiae mittels elektrochemisch induzierter Differenzspektroskopie (2004)
Ritter, Michaela
Ziel der vorliegenden Arbeit war die Untersuchung der elektrochemischen und spektroskopischen Eigenschaften der bc1-Komplexe aus dem Bodenbakterium Paracoccus denitrificans und der Hefe Saccharomyces cerevisiae im sichtbaren und infraroten Spektralbereich. Das redoxaktive Protein ist Bestandteil der Atmungskette und trägt entscheidend zum Aufbau eines Protonengradienten bei, der zur Bildung des universellen Energieträgers ATP genutzt wird. Der bakterielle P. denitrificans-Komplex besteht aus den drei katalytischen Untereinheiten Cytochrom b, Cytochrom c1 und Rieske-Protein. Der mitochondriale Hefe-bc1-Komplex besitzt neben diesen drei noch acht weitere Untereinheiten, die anscheinend für die Stabilität des Enzyms bedeutsam sind. Um Konformationsänderungen des Proteins infolge von Elektronen- und daran gekoppelten Protonentransferreaktionen zu dokumentieren, wurde der Komplex elektrochemisch in definierte Redoxzustände versetzt. Aus den in diesen Zuständen aufgenommenen Absorptionsspektren berechnen sich Differenzspektren, deren Banden auf die Redoxreaktion zurückzuführende Veränderungen im Protein widerspiegeln. Durch Vergleiche mit Modellspektren isolierter Proteinbestandteile, Spektren ähnlicher Proteine und Informationen aus Kristallstrukturen konnten Beiträge der verschiedenen Kofaktoren, des Proteinrückgrates und einzelner Aminosäuren zu diesen Banden zugeordnet werden. Die elektrochemisch induzierten FTIR-Differenzspektren des P. denitrificans-bc1-Komplexes zeigten vor allem Beiträge der im Komplex gebundenen Chinone, die durch den Vergleich mit Differenzspektren isolierter Chinone identifiziert werden konnten. Ein wichtiges Ergebnis war die Abschätzung der Chinonkonzentration im Protein anhand einer charakteristische Bande bei 1262 cm-1 resultierend aus Schwingungen der Chinon-Methoxygruppen. Das Ergebnis von durchschnittlich 3 Molekülen Chinon pro Protein-Monomer unterstützt das zur Zeit für die Qo-Bindestelle diskutierte double-occupancy-Modell. Interessanterweise konnte die Protonierung einer Glu/Asp-Aminosäureseitenkette in Abhängigkeit vom Chinongehalt beobachtet und daraus abgeleitet Signale eines an der Qo-Bindestelle gebundenen Chinons differenziert werden. Die Beiträge der Cytochrom b und c-Untereinheiten relativ zum Gesamtspektrum des P. denitrificans-bc1-Komplexes wurden mittels Differenzspektren der einzelnen Kofaktoren unterschieden. Anhand ihrer Mittelpunktpotentiale, die zuvor durch Potentialtitrationen im sichtbaren Spektralbereich bestimmt wurden (Häm bL: Em7=-292 mV vs. Ag/AgCl, Häm bH: -144 mV, Häm c1: 89 mV), konnten die Differenzsignale des jeweiligen Kofaktors und seiner durch die Redoxreaktion beeinflußten Umgebung durch Wahl geeigneter Potentialschritte separiert werden. Die Zuordnungen der Signale des Cytochrom c1 und des Rieske-Proteins, die spektroskopisch nicht getrennt werden können, wurden durch Messungen an wasserlöslichen Fragmenten dieser Untereinheiten abgesichert. In allen Spektren konnten typische Beiträge des Proteingrundgerüstes, Schwingungen der Häme und ihrer Substituenten sowie einzelner Aminosäuren vorläufig zugeordnet werden. Die Bindung von Inhibitoren führte zu deutlichen Veränderungen im FTIR-Differenzspektrum. Der Qi-Inhibitor Antimycin A zeigt eigene Differenzsignale im Bereich oberhalb 1734 cm-1, an denen die Bindung des Inhibitors im Protein nachvollzogen werden konnte. Sie führte zur Abnahme der Signalintensität einer Bande, die die Beeinflussung eines protonierten Hämpropionates oder Arginin-bzw. Asparaginseitenketten vermuten lassen. Die Bindung des Qo-Inhibitors Stigmatellin, der selbst redoxaktiv ist, äußerte sich in Veränderungen im Amid I-Bereich des Differenzspektrums. Die Deprotonierung einer Glu/Asp-Seitenkette infolge der Stigmatellinbindung wurde diskutiert. Die FTIR-Differenzspektren des S. cervisiae-bc1-Komplexes gleichen denen des bakteriellen Komplexes in Bezug auf die Bandenpositionen weitestgehend. Die Signalintensitäten sowie die Größenverhältnisse der Banden zueinander unterscheiden sich jedoch. Dies wird durch den geringeren Chinongehalt des Hefeproteins nach der Präparation bedingt. Der Einfluß fünf verschiedener Inhibitoren der Qi- und Qo-Bindestelle auf die Differenzspektren wurde untersucht. Dabei standen von zwei Substanzen isotopenmarkierte Varianten zur Verfügung, die tieferen Einblick in die genaue Wechselwirkung bei der Inhibitorbindung bringen sollte. Die Bindung der Inhibitoren führte zu Veränderungen in den Spektren. Sie wurden vor dem Hintergrund der Kristallstruktur betrachtet, die aufgrund ihrer Auflösung keine exakten Aussagen über den Protonierungszustand einzelner Proteinbestandteile liefern kann. Der Schwerpunkt der Studien lag auf den Vergleich der Qo- Inhibitoren Stigmatellin und HHDBT. Die Bindung von Stigmatellin führte wie im P. denitrificans-Komplex zur Deprotonierung einer Glu/Asp-Seitenkette. Die Inhibierung mit HHDBT resultierte in der Protonierung vermutlich der gleichen Glu/Asp-Seitenkette. Die Auswirkungen des unterschiedlichen Protonierungszustandes der Aminosäure in Anwesenheit dieser beiden Inhibitoren wurde im Kontext eines vermuteten Chinoloxidations-Mechanismus beleuchtet.
Charakterisierung der Photoreaktion der lichtgetriebenen Protonenpumpe Proteorhodopsin mit IR-Spektroskopie und die Entwicklung einer Methodik zur Untersuchung von Carboxylierungsreaktionen am Beispiel von RuBisCO (2009)
Schäfer, Gabriela
In dieser Arbeit wurden zwei Systeme der biologischen Energiewandlung mit verschiedenen spektroskopischen Methoden untersucht und es wurden neue Erkenntnisse über die Funktion und Aktivierung der Proteine Proteorhodopsin und RuBisCO gewonnen. Zusätzlich konnte eine neue methodische Herangehensweise zur Untersuchung von Carboxylierungsreaktionen etabliert werden. Dieser Ansatz bietet in Zukunft breite Anwendungsmöglichkeiten zur Studie dieser biologisch so bedeutenden Reaktionsklasse. Mit Hilfe der Infrarotspektroskopie und vor allem durch den Einsatz von Tieftemperaturmessungen konnte der bisher kontrovers diskutierte Photozyklus von Proteorhodopsin (PR) eingehend charakterisiert werden. Jenseits des gut verstandenen aktiven Transports bei pH 9,0 wurde vor allem der pH 5,1 Photozyklus untersucht. Erstmals konnte auch in Infrarotspektren das M-Intermediat bei pH 5,1 nachgewiesen werden. Dieses Intermediat ist von entscheidender Bedeutung für den aktiven Transport über die Zellmembran und seine Existenz wurde bisher vielfach angezweifelt. Zudem konnte Glu-108 als ein möglicher Protonenakzeptor des Photozyklus bei pH 5,1 identifiziert werden. Durch einen pH-Indikator ließ sich der Nachweis erbringen, dass auch im sauren pH-Bereich Protonen freigesetzt werden. Damit steht fest, dass ein aktiver Protonentransport bei pH 5,1 möglich ist. Zusammen mit Informationen zu protonierbaren Aminosäureseitenketten (vornehmlich Asp und Glu) lässt sich zudem mit Einschränkungen die These unterstützen, dass PR ober- und unterhalb des pKa-Werts von Asp-97 in verschiedene Richtungen Protonen pumpt. Damit ergibt sich ein differenziertes Bild für den pH-abhängigen Photozyklus von PR mit drei pH-Bereichen (pH 9,0, 8,5 bis 5,5 und 5,1) in denen PR unterschiedliche Protonentransportwege zeigt. Als weiteres biologischen System wurde RuBisCO genauer untersucht. Im Fokus der Arbeit war dabei die Aktivierung durch die Bildung eines Lysin-Carbamats im aktiven Zentrum. Obwohl RuBisCO das am häufigsten vorkommende Enzym unseres Planeten ist, in der Kohlenstofffixierung eine bedeutende Rolle spielt und obwohl mehrere Dutzend Kristallstrukturen existieren, gibt es noch immer genügend offene Fragen zur Aktivierung. Mit Hilfe eines Käfig-CO2 konnte die Carbamatbildung im Enzym direkt verfolgt und der Einfluss von Magnesiumionen auf die Aktivierung beobachtet werden. Damit ließ sich ganz klar ausschließen, dass Magnesium bereits für die Carbamatbildung erforderlich ist. Die Koordination von Mg2+ ist erst für die Endiol-Bildung im weiteren Reaktionszyklus essentiell. Zusätzlich wurde gezeigt, dass Azid eine Inhibierung des Enzyms durch die Konkurrenz mit CO2 um die Bindungsstelle auslöst, allerdings verdrängt CO2 das Azidion im Laufe der Zeit. Mit den Ergebnissen für RuBisCO konnte klar gezeigt werden, dass die Kombination aus Käfig-CO2 und Rapid-Scan IR-Spektroskopie ein völlig neues Feld für die Untersuchung von Carboxylierungsreaktionen eröffnet. Gerade die offenen Fragen zu Biotin bindenden Carboxylasen bieten ein breites Anwendungsgebiet für diese Methodik.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks