Refine
Document Type
- Doctoral Thesis (2)
Language
- German (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Adaptronik (1)
- Intelligente Konstruktion (1)
- Regler (1)
Institute
- Physik (2)
In der vorliegenden Arbeit wird untersucht, inwieweit sich quantenoptische Zufallsgeneratoren, bei denen die "Welcher-Weg-Entscheidung" einzelner Photonen am Strahlteiler bzw. Faserkoppler zur Zufallsgenerierung verwendet wird, zur Erzeugung von Zufallsbitströmen eignen. Es werden hierbei im wesentlichen vier verschiedene Varianten aufgebaut, die sich durch die eingesetzte Lichtquelle und die Realisierung des optischen Aufbaus unterscheiden, um zu erkennen, welche Detailprobleme sich beim Aufbau solcher Generatoren zeigen. Als Lichtquellen werden eine Einphotonenquelle auf Basis der parametrischen Fluoreszenz und eine Quelle, die stark abgeschwächte, gepulste Poisson-Lichtfelder abstrahlt, eingesetzt. Bei der optischen Realisierung wird jeweils einmal Freistrahl- und einmal Faseroptik für das Zufall generierende Element verwendet. Die Rohdaten-Bitströme der verschiedenen Varianten werden mit Hilfe von statistischen Verfahren untersucht, die für Tests von physikalischen Zufallsgeneratoren geeignet sind. In der Diskussion werden die verschiedenen Testverfahren hinsichtlich ihrer Eignung zum Aufdecken tieferliegender Defekte bewertet. Thermische Einflüsse auf die Rohdaten-Ströme werden dargelegt, Methoden zur Verringerung der Einflüsse angegeben und gezeigt, wie mit Hilfe von mathematischen Regularisierungsverfahren ideale Bitströme aus den Rohdaten erzeugt werden können. Anhand von (mehrstufigen) Autokorrelationskoeffiziententests werden die Auswirkungen von Problemen mit verschiedenen Datenaufnahme-Elektroniken auf die Rohdaten- Ströme analysiert. Die Ursachen der Probleme werden diskutiert, mögliche Lösungen, wie sich die Probleme stark verringern bzw. vermeiden lassen, werden vorgeschlagen und experimentell untersucht. Die Einflüsse der Eigenschaften der verwendeten Photonenquellen im Zusammenspiel mit den verwendeten optischen Komponenten und Detektoren werden analysiert und ihre Auswirkungen auf die Zufallsgenerierung diskutiert. Zur Erhöhung der Ausgangbitrate quantenoptischer Zufallsgeneratoren werden verschiedene Ausführungen von Mehrfachzufallsgeneratoren vorgeschlagen, insbesondere für den quantenoptischen Zufallsgenerator auf Basis der parametrischen Fluoreszenz. Als weitere, interessante Variante eines quantenoptischen Zufallsgenerators wird das theoretische Konzept für den "HOM-Generator" präsentiert, bei dem beide Photonen eines Photonenpaares bei einer gemeinsamen "Welcher-Weg-Entscheidung" zur Zufallsgenerierung verwendet werden. Die vorgeschlagenen Varianten quantenoptischer Zufallsgeneratoren werden hinsichtlich ihrer Eignung für einen praktischen Einsatz diskutiert und bewertet. Für den Dauereinsatz quantenoptischer Zufallsgeneratoren als Komponente in Sicherheitsinfrastrukturen, wie z.B. Trustcentern, werden Optimierungen, Möglichkeiten der Kostenreduzierung und weitere Aufbauvarianten vorgeschlagen. Die Optimierungen werden hinsichtlich ihrer Praxistauglichkeit diskutiert und gewertet. Mögliche Angriffe auf quantenoptische Zufallsgeneratoren werden diskutiert und zur Erkennung von Manipulationen an physikalischen Zufallsgeneratoren werden verschiedene Möglichkeiten vorgestellt, um künstliche Signaturen einzufügen, sie vor Verwendung der Zufallsdaten zu verifizieren und aus dem Zufallsstrom zu entfernen.
In der vorliegenden Arbeit beschäftigen wir uns mit der Frage, wie ein Regler für ein hochdimensionales physikalisch/technisches System strukturiert und optimiert werden soll. Diesbezüglich untersuchen wir einen neuen Ansatz, welcher versucht, Regel-Mechanismen des ökonomischen Marktes und Lern-Prozesse mit in den Regler einzubauen. Um eine anschauliche Vorstellung von der Wirkung des Reglers zu erhalten, wenden wir diesen auf ein einfaches physikalisches Model an, eine an ihren Enden eingespannte eindimensionale Federkette. Wir implementieren das Model auf einem Rechner und simulieren den Einfluß des Regelverfahrens auf die Bewegung der Kette. Dabei beschränken wir uns auf den Grenzfall kleiner Amplituden, um das System im Rahmen einer näherungsweise linearen Dynamik beschreiben zu können. Mit Hilfe eines schwachen destabilisierenden Zusatzpotentials erreichen wir, daß die niedrigen Eigenmoden der schwingenden Kette instabil werden und die ausgestreckte Kette eine instabile Gleichgewichtslage darstellt. Wir stellen uns die Aufgabe, diese unter Verwendung des Reglers zu stabilisieren. Anhand des Modells untersuchen wir den Einfluß verschiedener Anfangsbedingungen der Kette, den Einfluß der Markt-Regelung, den Einfluß verschiedener Kommunikationsstrukturen und den Einfluß des Lernverfahrens auf die Wirksamkeit und die Robustheit des Regelprozesses. Als wichtigstes Ergebnis erkennen wir, daß die Regelung mit dem Markt robuster im Vergleich mit der Regelung ohne Markt ist, aber im allgemeinen einen höheren Regel-Energieaufwand aufweist. Untersuchungen anhand des Lernverfahrens ergeben, daß sich das Lernen der Markt- und der Kommunikationsstruktur kombinieren läßt und dadurch die Wirksamkeit der Regelung gegen über der Verwendung von nur einem der beiden Lern-Ansätze erhöht werden kann. Unsere Ergebnisse zeigen, daß sich das Markt-Konzept vollständig auf den gegebenen technischen Regelprozeß übertragen läßt. In der Diskussion der Ergebnisse führen wir die erhöhte Robustheit und den erhöhten Energieaufwand der Markt-Regelung auf eine indirekte, nichtlineare Kopplung der Regeleinheiten zurück, die der Markt-Mechanismus in den Regelprozeß einführt. Die Nichtlinearität bewirkt, daß die von dem Regler bestimmten Regelkräfte bei kleinen Kontrollfehlern relativ größer sind als bei großen Kontrollfehlern. Daduch ist der Energieaufwand der Markt-Regelung bei kleinen Kontrollfehlern gegenüber der Regelung ohne Markt erhöht. Der Regler ist damit in der Lage, die Kette auch bei dem Ausfall einer Regeleinheit zu stabilisieren, da ausreichend große Regelkräfte durch die verbleibenden Regeleinheiten ausgeübt werden. Die Kopplung von benachbarten Massenpunkten durch Federn unterstützt die Robustheit der Regelung in dem untersuchten Ketten-Modell, da die Kopplung dazu führt, daß die Massenpunkte eine zur instabilen Gleichgewichtslage rücktreibende Kraft erfahren und dadurch in den Bereich von kleinen Kontrollfehlern und relativ hohen Regelkräften gelangen. Am Ende der Diskussion gehen wir kurz auf mögliche Anwendungen der gewonnen Ergebnisse ein. Dabei haben wir besonders technische Regelprozesse im Sinne von Smart Matter (intelligente Bauteile) im Auge.