Refine
Year of publication
Document Type
- Doctoral Thesis (17)
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- BTEX (2)
- Grundwasserverschmutzung (2)
- bank filtration (2)
- degradation (2)
- 1,4-dioxane (1)
- Abbau (1)
- Albaner See (1)
- Alkylphenole (1)
- Anoxie (1)
- Atmospheric transport (1)
Institute
- Geowissenschaften (16)
- Biowissenschaften (1)
Zur Erkundung der Depotfunktion von quellfähigen Tonmineralen für organische Umweltchemikalien und der möglichen Verdrängung dieser Chemikalien durch biogene Tenside wurden kinetische Untersuchungen mit Hilfe von Batch-Experimenten durchgeführt. Dabei wurde zunächst das Adsorptions- und Desorptionsverhalten von ausgesuchten Umweltchemikalien an mineralische Festphasen und danach die Verdrängung dieser Chemikalien durch biogene Tenside untersucht. Als Umweltchemikalien dienten in den Experimenten Di-(n-butyl)phthalat (DBP) und Di-(2-ethylhexyl)phthalat (DEHP), die in industriellem Maßstab hauptsächlich als Weichmacher in Kunststoffen verwendet werden und fünf ausgewählte polycyclische aromatische Kohlenwasserstoffe (PAK), die bei pyrolytischen Prozessen sowie der unvollständigen Verbrennung organischen Materials entstehen. In den durchgeführten Versuchsreihen dienten ein smektitreicher Bentonit, Quarzsand und Gemische aus diesen beiden Stoffen mit verschiedenen Gewichtsanteilen der Bentonit- und Sandphase sowie Seesand als Adsorbermedium für die Umweltchemikalien. Diese Variationen sollten das unterschiedliche Verhalten der verschiedenen Festphasen bezüglich der drei untersuchten Prozesse (Adsorption, Desorption und Austausch) mit den Chemikalien verdeutlichen. Untersuchungen am verwendeten Bentonit ergaben, daß sein Hauptbestandteil ein Calcium- Montmorillonit war. Der Montmorillonit ist ein quellfähiges, dioktaedrisches Tonmineral aus der Gruppe der Smektite. Die Quellfähigkeit dieses Smektits wurde in Quellversuchen mit Ethylenglykol und Glycerin mittels Röntgendiffraktometrie festgestellt. Die chemische Zusammensetzung des Minerals wurde mit Röntgenfluoreszenzmessungen analysiert. Mit dem Greene-Kelly-Test wurde der Montmorillonit als smektitischer Anteil im Bentonit identifiziert. Im Laufe einer jeden Versuchsreihe sind nacheinander drei Prozesse mit jeder Probe im Labor untersucht worden: 1. Adsorption von Umweltchemikalien (Phthalate und PAK) an Sandproben mit unterschiedlichen Tongehalten und an reinen Tonproben. 2. Desorption der adsorbierten Umweltchemikalien aus den Sand/Ton-Gemischen und Tonproben in vier Schritten. 3. Austausch dieser Chemikalien aus den Sand/Ton-Gemischen und Tonproben gegen biogene Tenside. Im ersten Schritt der Batch-Experimente wurden die beiden Phthalate bzw. die PAK (Naphthalin, Acenaphthen, Fluoren, Phenanthren und Fluoranthen) aus einer wässrigen Lösung an die mineralischen Festphasen adsorbiert. Die Phthalate wurden in einem 1:1 Verhältnis in den Experimenten eingesetzt, die fünf PAK als ein Gemisch oder auch einzeln. Für die PAKAdsorption wurde auch eine Wasser-Aceton-Mischung beim Adsorptionsversuch verwendet, da sich dadurch ihre Löslichkeit erheblich verbessern ließ und die kinetischen Reihenversuche bezüglich der Gleichgewichtseinstellung wesentlich gleichmäßiger verliefen. Die Proben wurden 20 Stunden lang bis zur Einstellung des Gleichgewichts im Überkopfmischer geschüttelt. Die festen Phasen wurden danach von den wässrigen Phasen getrennt und zur Ermittlung der Einstellung des Desorptionsgleichgewichts weiterverwendet. Die wässrigen Phasen wurden mit organischen Lösemitteln extrahiert und der Gehalt an Umweltchemikalien gaschromatographisch quantifiziert. Die verbliebenen Festphasen wurden jeweils viermal mit frischem, destilliertem Wasser 20 Stunden lang zur Ermittlung des Gleichgewichts der Desorption geschüttelt, wobei nach Abtrennung der wässrigen Phasen diese auf ihren Organikgehalt hin wie oben beschrieben untersucht wurden. An diese vier Desorptionsschritte schloß sich das Verdrängungsexperiment einer Versuchsreihe an. Hierbei wurden verseifte, langkettige biogene Tenside (Alkoholate und Carbonsäuresalze mit geradzahliger Anzahl der Kohlenstoffatome) zu jeder Probe hinzugegeben und jede Festphase nochmals mit frischem Wasser im Überkopfmischer geschüttelt. In diesem Schritt sollte überprüft werden, ob die in den Festphasen verbliebenen Phthalate und PAK durch Zugabe von biogenen Tensiden in höherem Maße in der wässrigen Phase wiedergefunden werden als dies aus dem jeweiligen Desorptionsgleichgewicht zu erwarten war. Mit den Ergebnissen konnten Adsorptionsisothermen (nur für Phthalate) aufgenommen und Angaben zur Einstellung des Desorptionsgleichgewichts oder dessen Störung nach Austauschexperimenten gemacht werden. Die Auswertung der Adsorptionsexperimente ergab, daß Festphasen mit Bentonitanteil befähigt sind, einen höheren Anteil an Phthalaten und PAK zu adsorbieren als reine Sandproben. Bei kleinen Phthalatkonzentrationen wurde DEHP aufgrund einer stärkeren Affinität zur Festphase besser adsorbiert als DBP. Stiegen die Phthalatzugaben, so wurde DBP in höherem Maße als DEHP adsorbiert. Dies wurde durch eine bessere Einlagerung der DBP-Moleküle in die innerkristallinen Zwischenschichten des Montmorillonit-Minerals ermöglicht (Interkalation). Röntgenographisch wurde ein deutlich vergrößerter Wert für den Schichtabstand im Montmorillonit nachgewiesen als im ursprünglichem Zustand (bis zu 18 Å gegenüber 15,3 Å). Die Desorptionsisothermen zeigten für Festphasen mit Quarzsandanteilen häufig ein ungleichmäßiges Verhalten. So wurde häufig im zweiten und dritten Desorptionsschritt eine unerwartet hohe Menge an Phthalaten in der wässrigen Lösung gefunden. Reine Bentonitproben zeigten dagegen eine gleichmäßige Konzentrationsabnahme der Phthalate nach jedem Desorptionsschritt. Der eingesetzte Bentonit war in der Lage, Phthalate stärker von der Desorption zurückzuhalten als Quarzsand. Die Einstellung des Desorptionsgleichgewichts erfolgte mit reinem Bentonit schneller als bei Sandproben oder Sand-Bentonit Gemischen. Bei Austauschexperimenten, in denen die ursprünglich eingesetzte Menge an Phthalaten unter 1 mg lag, wurden keine Verdrängungsprozesse festgestellt. Stiegen die Konzentrationen der Phthalate (bis zu ca. 200 mg), so kam es aufgrund der größeren Oberflächenbelegung im Montmorillonit zu Verdrängungsprozessen der Phthalate durch biogene Tenside. Die Extraktion der wässrigen Lösung ergab nach dem Austauschexperiment eine höhere Menge an Phthalaten als es aus dem Desorptionsexperimenten erwartet worden war. Insgesamt wurde mehr DBP als DEHP nach den Austauschexperimenten in der wässrigen Lösung gefunden. Da DBP besser als DEHP in die Zwischenschichten des Montmorillonits eingebaut wurde, konnte auch diese Feststellung damit erklärt werden, daß biogene Tenside die Phthalate aus den innerkristallinen Zwischenschichten verdrängen. Bei PAK wurden Verdrängungsprozesse nur im Falle von Phenanthren festgestellt. Bei anderen in den Experimenten eingesetzten PAK (vorwiegend Naphthalin, Acenaphthen und Fluoren) war offenbar der Dampfdruck so groß, daß vor dem Austauschexperiment nicht mehr genügend organisches Material in der Bodenprobe adsorbiert war. Bei parallel durchgeführten Versuchen mit reinem Quarzsand und mit Seesand als Festphase wurde dagegen weder bei Phthalaten noch PAK eine wesentliche Störung des Desorptionsgleichgewichts in der Größenordnung der bentonithaltigen Proben nach dem Verdrängungsexperiment festgestellt. Dies ist ein Hinweis darauf, daß Verdrängungsprozesse bevorzugt auf Oberflächen von Tonmineralen stattfinden. Insgesamt konnte mit dieser Arbeit gezeigt werden, daß Gleichgewichtseinstellungen von Umweltchemikalien an Tonmineralen durch biogene Tenside gestört werden können. Durch die Einwirkung der biogenen Tenside kommt es zu einer verstärkten Desorption der Umweltchemikalien aus den Tonmineralen.
Im Rahmen der vorliegenden Arbeit wurde zunächst ein Vorschlag für eine Direktive zur Anwendung von Monitored Natural Attenuation (MNA) an Grundwasserschadensfällen durch Mineralölprodukte unter Berücksichtigung der in Deutschland geltenden Vorgaben für eine konkrete technische Durchführung erarbeitet. Das darin enthaltene Untersuchungs- und Auswertungsprogramm zum Nachweis von Natural Attenuation (NA) berücksichtigt die gesetzlichen Regelungen des Bundes-Bodenschutzgesetzes (BBodSchG) und der BundesBodenschutz- und Altlastenverordnung (BBodSchV). Das entwickelte Untersuchungs- und Auswertungsprogramm wurde in einem weiteren Schritt an einer laufenden MNA-Maßnahme aus der Praxis überprüft. Hierfür wurde ein Kerosin-kontaminierter Teilbereich am Standort des ehemaligen Militärflughafens Wegberg-Wildenrath in Nordrhein-Westfalen ausgewählt. Im Grundwasser liegt eine Kontamination überwiegend aus aromatischen Kohlenwasserstoffen (BTEX und weitere alkylierte Aromaten) sowie MKW (H18) vor. Anhand des Praxisbeispiels wurde die generelle Verwendbarkeit von bereits im Rahmen der bisherigen Altlastenbearbeitung erhobenen Daten im Sinne des erarbeiteten Untersuchungsprogramms aufgezeigt. Hydrogeologische Untersuchungen belegten eine Abhängigkeit der Konzentration von Schadstoffen im Wasser von einem bis zu /- 1,7 m schwankenden Grundwasserstand, wodurch ein instationäres Fahnenverhalten vorlag. Aufbauend auf den Erkenntnissen der hydrogeologischen Erkundung und der Auswertung von hydrochemischen Daten wurden für den Standort zwei sich ergänzende konzeptionelle Modellvorstellungen (ein hydrochemisches Modell sowie ein hydrodynamisches Modell) bezüglich der Prozesse, die das Fahnenverhalten steuern, entwickelt. Beim hydrochemischen Modell erfolgt durch schwankende Grundwasserstände ein Recycling der Elektronenakzeptoren S042- und Fe3 für den Schadstoffabbau im herdnahen Bereich. Bei hohem Grundwasserstand werden reduzierte Eisenspezies als unlösliche Eisenmonosulfide ausgefällt. Bei niedrigem Grundwasserstand werden diese Eisenmonosulfide in Folge von Belüftung zu löslichen Fe3 /SO42-haltigen Mischkristallen oxidiert. Bei einem erneuten Anstieg des Grundwassers steht dieser Elektronenakzeptorpool für einen weiteren Schadstoffabbau zur Verfügung, was wiederum zur Ausfällung der reduzierten Eisenspezies führt. Beim hydrodynamischen Modell werden die beobachteten Konzentrationsänderungen im Grundwasser hauptsächlich durch Schadstoff-Phasenübergänge und der Größe der dabei zur Verfügung stehenden Grenzflächen hervorgerufen. Der Austausch von Schadstoffen aus der NAPL (non-aqueous phase liquids)-Phase in die Bodenluft bei niedrigen Grundwasserständen ist erheblich größer im Vergleich zum Austausch der NAPL-Phase in die (Grund)wasserphase bei hohen Grundwasserständen. Daraus resultieren höhere Schadstoffgehalte im Schadenszentrum bei niedrigen Grundwasserständen und geringere Gehalte bei hohen Grundwasserständen. Eine wichtige Erkenntnis dieser Arbeit war die Herausarbeitung der Art des Einflusses schwankender Grundwasserstände auf die Fahnendynamik. Anhand der Untersuchung auf aromatische Säuren (Metabolite), die im (my)g/l-Bereich nachzuweisen waren, konnte der direkte Beweis für einen aktiven Bioabbau am Standort erbracht werden. Durch einen Vergleich des Aromatenspektrums mit dem vorgefundenen Metabolitenspektrum wurden Aussagen zum Abbauverhalten von einzelnen aromatischen Schadstoffgruppen ermöglicht. Die Abbauprognose ist aufgrund des instationären Fahnenverhaltens mit größeren Unsicherheiten behaftet. Attenuations- bzw. Abbauraten zwischen 0,0003 * 1/d und 0,001 * 1/d wurden anhand von zwei unterschiedlichen Verfahren ermittelt.
The present study was elaborated within the scope of the INTAFERE (Integrated Analysis of Mobile Organic Foreign Substances in Rivers) project which investigates the occurrence of xenobiotics in small freshwater streams with particular consideration of social impact factors. The aim of this study is to investigate the seasonal and spatial variance of organic micropollutants in small fresh water streams and to identify possible sources and sinks. Therefore four small freshwater river systems in Hesse, Germany, have been investigated with respect to common organic pollutants such as: the organophosphates tri-n-butyl phosphate (TBP), tris(2-butoxyethyl)phosphate (TBEP), tris(2-chloroethyl)phosphate (TCEP), tris(1-chloro-2-propyl)phosphate (TCPP), and tris(1,3-dichloro-2-propyl)phosphate (TDCPP), the synthetic musk fragrances 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexa-methylcyclopenta-[g]-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), the endocrine disruptors bisphenol A (BPA), 4-tert-octylphenol (OP) and the technical isomer mixture of 4-nonylphenol (NP), the herbicide terbutryn [2-(t-butylamino)-4-(ethylamino)-6-(methylthio)-s-triazine] as well as the insect repellent N,N-diethyl-m-toluamide (DEET). Water samples were collected in the time span from September 2003 to September 2006 at 26 sampling locations. The samples were extracted with solid phase extraction (SPE) and analyzed by coupled gas chromatography-mass spectrometry (GC-MS). For quantification the internal standard method was used. The results of the study showed an ubiquitous occurrence of organic pollutants in the fresh water streams of the study area. The organophosphates have been detected in 90 % of the water samples with mean concentrations of 502 ng/l (TCPP), 276 ng/l (TBP), 183 ng/l (TBEP), 118 ng/l (TCEP) and 117 ng/l (TDCPP). Sewage treatment plant (STP) effluents were identified as the dominating source for the chlorinated organophosphates as well as for the synthetic musk fragrances and the insect repellent DEET in the river systems. Consequently the highest concentrations were observed in the Schwarzbach system characterized by the highest proportion of waste water compared to the other river systems. Mean concentration levels of the synthetic musk fragrances HHCB and ATHN were 141 ng/l and 46 ng/l, respectively and 124 ng/l in case of DEET. The synthetic musk fragrances showed a clear seasonal trend with significantly lower concentrations in summer times compared to winter times, which is ascribed to stronger photodegradation and volatization during summer times. In contrast, mean DEET concentrations and loads were significantly higher in summer than in autumn, winter and spring, in parallel with the main insect season. The concentrations of the endocrine disruptors BPA, NP and OP in the river water samples ranged from <20 ng/l to 1927 ng/l, <10 ng/l to 770 ng/l, and <10 ng/l to 420 ng/l, respectively. Whereas OP was present in about 2/3 of the samples, NP and BPA could only be detected in 56% and 13% of the water samples, respectively. BPA levels exceeded in two samples the predicted no-effect concentration (PNEC) for water organisms. In case of NP, highest concentrations and loads were found in September 2003 and decreased significantly since then. In contrast, concentrations and loads of OP which serves in a similar application field remained nearly constant during the sampling period. The decrease of NP can be attributed to the implementation of the European Directive 2003/53/EG, which restricts the use of nonylphenols and nonylphenol ethoxylates since January 2005. However, at the end of the sampling period in September 2006, NP could still be detected at mean concentrations of 18 ng/l in the river waters of the sampling area. Furthermore, absence of NP in several samples from associated STP effluents indicate that the STPs cannot be the only sources for NP found in the river water. The herbicide terbutryn was present in the rivers during the whole sampling period from September 2003 to September 2006 despite a ban on its use as a herbicide from January 2004 on. Terbutryn levels ranged from < 4 ng/l to 5600 ng/l, showing a clear spatial pattern with high terbutryn concentrations in the Weschnitz and Modau river systems and significantly lower terbutryn levels in Schwarzbach and Winkelbach. Results from the analysis of two STP effluents discharging into the Weschnitz and the Modau, respectively, indicate that terbutryn enters the rivers from this source. Furthermore, terbutryn concentrations and loads showed a clear seasonal trend with significantly higher levels in summer and autumn. Obviously, the ban on agricultural use of terbutryn at the end of 2003 had no discernable influence on terbutryn concentration in the rivers because there was no trend of decreasing.
The present PhD-thesis was prepared within subproject B8 of the DFG-Sonderforschungsbereich (SFB) 641 “The Tropospheric Ice Phase”. The subproject B8 was entitled “Interactions of volatile organic compounds with airborne ice crystals”. Results of previous studies have shown that various volatile organic compounds (VOC) and semivolatile organic compounds (SVOC) are incorporated into the atmospheric ice phase and several uptake mechanisms are discussed in the literature. The aim of this study was to identify the dominating VOC and SVOC in airborne snow collected at Jungfraujoch in the Swiss Alps (3580 m asl) and to study in laboratory experiments the uptake mechanism of organic compounds into snow and ice. For this purpose an analytical method to analyse freshly fallen snow samples was developed and evaluated in a first step. The method consists of headspace (HS) solid phase dynamic extraction (SPDE) followed by gas chromatography combined with mass spectrometry (GC/MS). During the extraction process a new cooling device was successfully integrated into the HS-SPDE-GC/MS method to enhance the extraction yield. Extraction and desorption parameters such as the number of extraction cycles, extraction temperature, desorption volume and desorption flow rate have been optimized. Detection limits for benzene, toluene, ethylbenzene, m-, p-, o- xylene (BTEX) ranged from 19 ng L-1 (benzene) to 30 ng L-1 (m/p-xylene), while those for C6-C10 n-aldehydes ranged from 21 ng L-1 (n-heptanal) to 63 ng L-1 (n-hexanal). Furthermore, freshly fallen snow samples were collected at the High Altitude Research Station Jungfraujoch (3580 m asl, Switzerland) during the field campaigns “Cloud and aerosol characterization experiment” (CLACE) 4 and 5 in February and March 2005 and 2006, respectively. Freshly fallen snow samples collected directly in-cloud on a high altitude remote location were used as approximation of airborne ice crystals since sampling of airborne ice crystals in quantities sufficient for analysis of individual organic compounds is not yet possible. In the collected snow samples a wide range of organic compounds were identified, namely BTEX, n-aldehydes (C6-C10), terpenes, chlorinated hydrocarbons and alkylated monoaromatics. The most abundant organic compounds in snow samples from Jungfaujoch during CLACE 4 and 5 were n-hexanal with a median concentration of 1.324 μg L-1 (CLACE 5) followed by n-nonanal (CLACE 5) with a median concentration of 1.239 μg L-1. High concentration variations of the analytes in snow samples collected at the same time at the same place argue for a heterogeneous composition of snow and ice. Several indicators were found that the origin of the n-aldehydes in the snow can be attributed to direct biogenic emissions from vegetation and indirect biogenic emissions through photochemical oxidation of fatty acids and alkenes. In a second step laboratory experiments were carried out to clarify the uptake mechanism of volatile and semivolatile organic compounds into snow/ice. Organic compounds can be incorporated into the atmospheric ice phase either by the process of gas scavenging, liquid scavenging (riming) or particle scavenging. Gas scavenging (incorporation of the organic compounds from the gas phase during growing of ice crystals) revealed to be ineffective based on previous laboratory experiments in which ice crystals were growing in the presence of aromatic hydrocarbons (BTEX) in the gas phase. In the present study the process of liquid scavenging (riming) was investigated in the laboratory using aqueous standard solutions containing BTEX, naldehydes (C6-C10), methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE). The headspace above the standard solution was sampled after adjusting the aqueous solutions to definite temperatures by use of a thermostat. Measurement were carried out at 25°C, 15°C and 5°C (water), -5°C and -15°C (supercooled water) and -25°C (ice). Results have shown that the known trend of lower gas phase concentrations over water concomitant with lower temperatures (Henry’s Law) is only valid for temperatures above 0°C. At temperature below 0°C, increasing concentrations of the analytes (BTEX, MTBE, ETBE and n-aldehydes) were determined in the gas phase together with decreasing temperatures. Dimensionless Henry’s law coefficients (KAW) were calculated from the concentrations of the organic compounds in the headspace above the standard solutions at temperatures between 25°C and -25°C. The observed inversion of Henry’s law coefficients of volatile and semivolatile organic compounds at a water temperature of approximately 0°C is explained by the formation of ordered zones of H2O molecules in supercooled water called “ice-like-clusters”. Together with decreasing temperatures the degree of formation of ordered zones increases which results in the removal of the organic molecules from the liquid phase and transfer into the gas phase. At a temperature of -25°C the supercooled water is converted into ice and a further significant increase of the gas phase concentrations of hydrophobic compounds such as BTEX is observed. In comparison, less hydrophobic compounds such as MTBE, ETBE and n-aldehydes are detected in lower amounts in the gas phase above the water/ice phase due to the higher water solubility and lower Henry coefficients compared to BTEX. The results show that in the absence of particles the uptake of BTEX MTBE, ETBE and C6-C10-naldehydes into ice not enhanced during freezing of a supercooled liquid, since at -25°C for these analytes the concentrations in the gas phase are higher at -25°C (ice) compared with -15°C (supercooled liquid). The heterogeneous distribution of BTEX and n-aldehydes concentrations in snow samples collected during the CLACE field campaigns suggests that adsorption of the organic compounds to particles followed by incorporation of the particles into the snow and ice might play a major role in the uptake process of organic compounds into snow and ice. To increase the knowledge about uptake processes of organic compounds into snow and ice further experiments are required with should include aerosol particles in the experimental setup to evaluate the influence of particle scavenging in the uptake processes.
The crude oil constituents benzene, toluene, ethylbenzene, and the three xylene isomers (BTEX) are the dominating groundwater contaminants originating from surface spill accidents by oil production facilities and with gasoline and jet fuel. Thereby BTEX posing a threat to the world´s scarce drinking water resources due to their water solubility and toxicity. An active remediation cleanup involving a BTEX event proves not only to be very expensive but almost impossible when it comes to the complete removal of contaminants from the subsurface. A favoured and common practice is combining an active remediation process focussing on the source of contamination coupled together with the monitoring of the residual contamination in the subsurface (monitored natural attenuation; MNA). MNA include all naturally occuring biological, chemical and physical processes in the subsurface. The general goal of this work was to improve the knowledge of biodegradation of aromatic hydrocarbons under anaerobic conditions in groundwater. For this groundwater and soil at the former military underground storage tank (UST) site Schäferhof – Süd near Nienburg/Weser (Niedersachsen, Germany) were sampled and analysed. The investigations were done in collaboration of the Umweltbundesamt, the universitys of Frankfurt and Bremen and the alphacon GmbH Ganderkesee. To investigate the extent of groundwater contamination, the terminal electron acceptor processes (TEAPs) and the metabolites of BTEX degradation in groundwater, six observation wells were sampled at regular intervals between January 2002 and September 2004. The wells were positioned in order to cover the upstream, the source area and the downstream of the presumed contamination source. Additionally, vertical sediment profiles were sampled and investigated with respect to spreading and concentration of BTEX in the subsurface. A large residual contamination involving BTEX is present in soil and groundwater at the studied locality. Maximum BTEX concentration values of 17 mg/kg were recorded in analysing sediment in the unsaturated zone. In the capillary fringe, values of 450 mg/kg were recorded (October 2004) and in the saturated zone maximum values of 6.7 mg/kg BTEX were detected. The groundwater samples indicate increasing BTEX concentrations in the groundwater flow direction (from 532 µg/l up to 3300 µg/l (mean values)). Biodegradation of aromatic hydrocarbons under anaerobic conditions in the sub surface at contaminated sites is characterised by generation of metabolites. From the monoaromatic hydrocarbons BTEX metabolites such as benzoic acid (BA) and the methylated homologs and C1-and C2-benzyl-succinic acids (BSA) are generated as intermediates. A solid-phase extraction method based on octadecyl-bonded silica sorbent has been developed to concentrate such metabolite compounds from water samples followed by derivatization and gas chromatography/mass spectrometry (GC/MS) of the extracts. The recovery rate range between 75 and 97%. The method detection limit was 0.8 µg/l. Organic acids were identified as metabolic by-products of biodegradation. Benzoic acid, C1-, C2- and C3-benzoic acid were determined in all contaminated wells with considerable concentrations. Furthermore, the depletion of the dominant terminal electron acceptors (TEAs) oxygen, nitrate, and sulphate and the production of dissolved ferrous iron and methane in groundwater indicate biological mediated processes in the plume evidently proving the occurrence of NA. A large overlap of different redox zones at the studied part of the plume has been observed. A important finding in this study is the strong influence of groundwater level fluctuations on the BTEX concentration in groundwater. A very dry summer in 2003 was recorded during the monitoring period, resulting on site in a drop of the groundwater level to 1.7 m and a concomitant increase of BTEX concentrations from 240 µg/l to 1300 µg/l. The groundwater level fluctuations, natural degradation and retention processes essentially influence BTEX concentrations in the groundwater. Groundwater level fluctuations have by far a stronger influence than the influence of biological degradation. Increasing BTEX concentrations are hence not a consequence of limited biological degradation. Another part of the study was to observe the isotopic fractionation of the electron acceptor Fe(III), due to biologically mediated reduction of Fe(III) to the watersoluble Fe(II) at the site and first field data are presented. Both groundwater and sediment samples were analysed with respect to their Fe isotopic compositions using high mass resolution Multi Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS). The delta56Fe -values of groundwater samples taken from observation wells located downstream of the source area were isotopically lighter than delta56Fe -values obtained from groundwater in the uncontaminated well. The Fe isotopic composition of most parts of the sediment profile was similar to the Fe isotopic composition of uncontaminated groundwater. Thus, a significant iron isotope fractionation can be observed between sediment and groundwater downstream of the BTEX contamination.
Within the present study the occurrence and fate of the organophosphorus flame retardants and plasticizers tris(2-chloroethyl) phosphate (TCEP), tris(2-chloro-1-methylethyl) phosphate (TCPP), tris(1,3-dichloro-2-propyl) phosphate (TDCP), tris(2-butoxyethyl) phosphate (TBEP), tri-iso-butyl phosphate (TiBP), and tri-n-butyl phosphate (TnBP) in precipitation, lake water, surface runoff and groundwater from urban and remote areas in Germany was investigated between June 2007 and October 2009. 255 samples of precipitation, 210 samples of lentic surface water and 72 samples of groundwater were analyzed for the six organophosphates (OPs) by solid phase extraction followed by gas chromatography-mass spectrometry. The research focused on aspects concerning (1) the atmospheric washout of OPs by precipitation, (2) the temporal variation of OP concentrations in precipitation and in lentic surface waters as well as (3) the pollution of groundwater by OPs. The results of the study emphasize the importance of precipitation as an all-season entry-pathway for OPs in the aquatic environment, particularly in densely populated urban environments with high traffic volume and abundant usage of flame-protected products. No seasonal trends were observed for all analytes in precipitation at the urban sampling site. TCPP dominated in all precipitation and storm water holding tank (SWHT) water samples with maximum levels exceeding 1 µg/L. An accumulation of OPs deposited in SWHTs was observed with concentrations often exceeding those observed in wet precipitation. Median concentrations of TCPP (880 ng/L), TDCP (13 ng/L), and TBEP (77 ng/L) at the urban SWHT were more than twice as high as those measured at the urban precipitation sampling site (403 ng/L, 5 ng/L, 21 ng/L) located close to the SWHT. OP levels in more remote lakes were often below or close to the limits of quantitation (LOQ). Nevertheless, TCPP was the substance with the highest median concentration in rural volcanic lakes (7–18 ng/L) indicating an atmospheric transport of the compound. At urban lakes the median OP concentrations were in the range of 23–61 ng/L (TCEP), 85–126 ng/L (TCPP), <LOQ–53 ng/L (TBEP), 8–10 ng/L (TiBP), and 17–32 ng/L (TnBP). In laboratory experiments, TBEP, TiBP, and TnBP were photochemically degraded in spiked lake water samples upon exposure to sunlight. In the SWHT a seasonal trend with decreasing concentrations in summer/autumn was evident for TiBP and TnBP but not for the chlorinated OPs. The decreasing concentrations can be explained by in-lake photodegradation. Results have also shown that the occurrence of OPs in groundwater is depending on the anthropogenic impact during groundwater recharge/natural replenishment. Infiltration of precipitation was found to be no important entry-pathway for OPs into aquifers at rural sites. Highest OP concentrations (>0.1 µg/L) were determined in groundwater polluted by percolating leachate from contaminated sites or groundwater recharged via bank filtration of OP-loaded recipients. Concentrations of TCEP, TCPP, TiBP and TnBP in groundwater decreased rapidly (89–97%) during bank filtration with increasing distance from the recipient due to adsorption processes and/or biotransformation. Although TCEP and TCPP are stable within the aquifer, they are not suitable as conservative organic tracers in groundwater.
Background. There is growing public and scientific concern about the occurrence of anthropogenic chemicals in the aquatic environment. Surface and groundwater serve as main drinking water resource. Especially in metropolitan areas these water reservoirs are impacted by organic pollutants predominantly originating from wastewater treatment plant (WWTP) effluents. The impact of wastewater derived anthropogenic chemicals is therefore related to environmental and human health concerns. In order to lower the potential environmental and human health risk from wastewater associated pollutants, strategies for enhanced pollutant removal are applicable in a medium-term perspective. Ozonation and powdered activated carbon treatment are the two advanced wastewater treatment technologies, which are technically mature as well as economically feasible for the application in large-scale wastewater treatment plants. While powdered activated carbon removes substances by adsorption, ozonation degrades a parent compound into oxidation products. Most of the available research has been done at lab-scale while onsite ecotoxicity tests and chemical analyses are rare.
Objectives. For a comparative evaluation of advanced wastewater treatments' potential to alter toxicity, a broad spectrum of ecotoxicological data need to be collected. The focus has been set on three major objectives: A) Evaluation of the endocrine activity; B) Evaluation of the unspecific toxicity; C) Evaluation of genotoxicity and mutagenicity.
Methods. The advanced treatment methods, ozonation and powdered activated carbon treatment of secondary wastewater effluents, – each equipped with subsequent sand filtration as additional post treatment step – were ecotoxico-logically characterized at a pilot-scale WWTP. For process control the elimination of 35 selected pharmaceuticals was identified by chemical analyses using HPLC-MS/MS.
The endocrine activity ((anti-)estrogenic, (anti-)androgenic, dioxin-like activity)) was characterized by yeast-based in vitro bioassays and cytotoxicity by cell based assays. Genotoxicity and mutagenicity was assessed using umuC'assay and Ames assay, respectively. All in vitro assays were performed using extracts of the wastewater samples. In vivo toxicity was assessed with the fish early life stage test with rainbow trout (Oncorhynchus mykiss). Ozonation was additionally assessed at a full-scale WWTP with in-vitro tests on endocrine activity and cytotoxicity and in vivo toxicity tests using five aquatic model organisms: Lemna minor, Daphnia magna, Chironomus riparius, Lumbriculus variegatus, Potamopyrgus antipodarum.
Results. In conventional activated sludge treated effluents the residual estrogenicity, antiandrogenicity, aryl hydrocarbon receptor agonistic activity and cytotoxicity were considerably reduced while antiestrogenicity was increased by both advanced treatment technologies. Ozonation led to an increase in genotoxic effects detected with Ames assay and with single cell gel electrophoresis of rainbow trout erythrocytes. Furthermore, mortality of rainbow trout was increased and reproduction of L. variegatus was decreased. Sand filtration lessened the genotoxic effects and adjusted reproduction of L. variegatus and mortality of rainbow trout to a similar level as conventional treatment.
Conclusions. This work demonstrates that conventional activated sludge treatment induces in vitro and in vivo toxicity. Advanced wastewater treatment combined with subsequent sand filtration can reduce in vitro and in vivo toxicity. An observed increase of endocrine activity after advanced wastewater treatment is an indication for different removal efficiencies of chemicals causing agonistic or antagonistic activity, respectively. Ozonation of wastewater generates ecotoxicity, which is largely removed by subsequent sand filtration. After a comprehensive investigation and after assurance of the removal of adverse effects, advanced treatment technologies could have beneficial effects on the ecological quality of the receiving water.
Forty two samples of the Late Eocene Kiliran oil shale, Central Sumatra Basin, Indonesia were collected from a 102 m long drill core. Palynofacies and geochemical analyses have been carried out to reconstruct the paleoenvironmental conditions and paleoecology during deposition of the oil shale. Amorphous organic matter (AOM) is very abundant (>76%). B. braunii palynomorph is present (3-16%) as the only autochtonous structured organic matter and generally more abundant in middle part of the profile. The stable carbon isotopic composition of organic matter (δ13C) varies from -27.0 to -30.5‰ and is generally more depleted in middle part of the profile. The ratio of total organic carbon to sulfur (TOC/S), used as salinity indicator, ranges from 2.5 to 15.8 and shows variations along the profile. Relatively less saline environments are observed in the middle part profile. Fungal remains are generally present only in middle part of the profile with distinct peak of abundances. The presence of fungal remains is regarded as an indication for a relatively warmer climate during deposition of middle part of the profile. The warmer climate is thought to influence the establishment of a thermocline, limiting the supply of recycled nutrients to the epilimnion. Consequently, the primary productivity in the Kiliran lake decreased during deposition of the middle part of the profile as indicated by the relatively depleted δ13C and the blooming of B. braunii. The chemocline was also shoaling during deposition of the middle part of the profile according to the higher abundance of isorenieratene derivatives of green sulfur bacteria origin. The warmer climate affected also to increase of water supply and thus less saline environments.
Tectonic subsidence is also thought to be a significant factor for the development of the Kiliran lake. The Zr/Rb ratio, an indicator for grain size, ranges from 0.4 to 1.3 and generally increases upwards along the profile. Three sudden decreases of the ratio are observed, indicating rapid change to finer grain size. These decreases are interpreted to indicate rapid deepening events of the lake due to mainly periodic subsidence. During deposition of lower part of the profile, the subsidence rates might have been relatively higher than sediment and water supply rates, resulting in a higher autochtonous fraction in the oil shale. During deposition of middle part of the profile, the sediment and water supply rates were relatively higher promoting distinct progradational sedimentation. Subsequently, the lake became more shallow and smaller during deposition of the upper part of the profile, leading to a relatively higher terrigenous input to the oil shale.
Norneohop-13(18)-ene and neohop-13(18)-ene derived from methanotrophic bacteria are the dominant hopanoid hydrocarbons. The sum of their concentrations varies from 40.6 to 360.0 μg/g TOC. The δ13C of these compounds are extremely depleted (-45.2 to -50.2‰). The occurrence of abundant bacteria including methanotrophic bacteria was responsible for the recycling of carbon below the chemocline of the lake. The effect of the recycling of carbon is observed by the presence of a concomitant depletion (about 7-9‰) in 13C of some specific biomarkers derived from organisms dwelling in the whole phototrophic zone.
4-Methylsterane and 4-methyldiasterene homologues occur in the oil shale as the predominant biomarkers. The sum of the concentrations of all homologues are about 40.3-1,009.2 μg/g TOC with generally higher values in uppermost and lower parts of the profile. Ca accounts as the predominant element in the oil shale, ranging from 5.0 to 16.7%. This element shows generally parallel variation with the 4-methylsterane homologues along the profile. This suggests that the 4-methylsteranes were derived from biological sources favoring more alkaline and more trophic environments. On the other hand, these compounds were less abundant in middle part of the profile which is consistent with less alkaline and less trophic environments promoting B. braunii to bloom.
The 4-methylsterane homologues are considered to originate from Dinoflagellates. Alternation between Dinoflagellates and B. braunii in Paleogene lake systems due to water chemistry changes are known from previous studies. Moreover, freshwater Dinoflagellates have been frequently reported to occur in the basin depocenters. In the present case, distinct alternation between B. braunii abundances and concentrations of 4-methylsterane homologues along the studied oil shale profile suggest that the 4-methylsterane homologues were derived from freshwater Dinoflagellates although dinosterane is not present in the sediment extracts. Water alkalinity and trophic level changes were most likely responsible for the alternation of Dinoflagellates and B. braunii blooming.
The purpose of this study was to reconstruct the depositional environment, the genesis and the composition of Miocene coals in the Kutai Basin, East Kalimantan, Indonesia and to improve our understanding of the factors controlling the organic and inorganic composition, variation of biomarkers, and the peat forming vegetation of the coals. To achieve the aim methods belonging to three different disciplines were applied: 1. Coal petrology (chapter 3) 2. Inorganic geochemistry: sulfur, pyrite and mineral matter distributions (chapter 4) 3. Organic geochemistry of saturated, aromatic hydrocarbon fractions and stable carbon isotopic composition (chapter 5 and 6) Coal petrology Coal developes from peat deposited in mires, mainly in swamps and raised bogs. It is therefore necessary to consider how peat was formed in the past. Coal contains a variety of plant tissues in different degrees of preservation. Tissues of distinct origin are microscopically identifiable and can frequently be related to certain parts of the plant, such as cuticles, woody structures, spores, algal, resin, etc. Together with the particles of less certain origin they are termed macerals which are the petrographic components of coal. During and after deposition of plant remains in sedimentary basins, the organic matter will undergo a sequence of physical, biochemical and chemical changes, which finally results in the formation of coals of increasing rank depending mainly on the temperature influence. The process of coalification begins with practically unaltered plant material and peat, and continues with increasing rank through brown coal, bituminous coal, and finally to anthracite as well as graphite. Coal petrography provides valuable of data of maceral and mineral percentages with reflectance values, which can be used to reconstruct the depositional environment and the coalification processes. In lower rank coals, the material is represented by a group of macerals called huminite, and in bituminous and anthracite coals by a group of macerals called vitrinite. Coal petrography analyses have been carried out on samples from some Miocene coal seams from Kutai Basin. The study has shown that huminite reflectance values of coal samples from ...