Refine
Document Type
- Doctoral Thesis (18)
Has Fulltext
- yes (18)
Is part of the Bibliography
- no (18)
Keywords
- Apoptosis (2)
- Adenom (1)
- Brustkarzinom (1)
- Carcinogenese (1)
- Krebs (Medizin) (1)
- Krebstherapie (1)
- Messenger-RNS ; Translokation ; Peptide ; Wechselwirkung ; Leukämie (1)
- Nekrose (1)
- Proteintransduktion (1)
- Tumor (1)
Institute
- Biochemie und Chemie (9)
- Georg-Speyer-Haus (6)
- Biowissenschaften (5)
- Medizin (4)
- Pharmazie (1)
Development of lentiviral vectors for the gene therapy of X-linked chronic granulomatous disease
(2010)
Es gibt eine Vielzahl von Erkrankungen, die auf einen einzelnen Gendefekt zurückzuführen sind (monogene Erkrankungen). Darunter befindet sich auch die Gruppe der primären Immundefizienzen (PIDs), von denen aktuell über 150 verschiedene Typen von der Weltgesundheitsorganisation registriert sind. In vielen fällen leiden betroffene Individuen unter einem stark erhöhten Infektionsrisiko durch bakterielle oder virale Pathogene, sowie den damit verbundenen schweren Symptomen - bis hin zum verfrühten Tod der Patienten. Meist können PIDs mit konventionellen Methoden präventiv behandelt werden. Dazu gehören zum Beispiel die regelmässige Gabe von Antibiotika, Antimykotika, Zytokinen oder Immunglobulinen. Der einzige zur Verfügung stehende kurative Behandlungsansatz beruht auf der Transplantation von hämatopoietischen Stammzellen (HSZT) eines gesunden und passenden Spenders. Häufig steht jedoch kein histokompatibler Spender zur Verfügung.
Für diese Patientengruppe hat sich die gentherapeutische Behandlung mit autologen hämatopoietischen Stammzellen als eine gute Option herausgestellt. Der Beweis hierfür wurde eindrucksvoll in klinischen Heilversuchen für zwei Formen des Schweren Kombinierten Immundefekts (X-SCID und ADA-SCID) geführt, einer Erkrankung die durch das vollständige Fehlen bzw. die nicht-Funktionalität der lymphoiden Immunzellen charakterisiert ist. Autologe hämatopoietische Stammzellen der Patienten wurden hier ex vivo mittels eines gamma-retroviralen Vektors mit einer funktionellen Kopie der defekten cDNA genetisch modifiziert und anschliessend zurück infundiert. In der Summe wurde bei über 30 Patienten eine deutliche Verbesserung des Gesundheitszustandes bis hin zur vollständigen Heilung erzielt. Bei einem vergleichbaren Ansatz wurden in Frankfurt, in einem Heilversuch für die septische Granulomatose (X-CGD), erstmals klinisch relevante Erfolge in der Gentherapie für einen Defekt in der myeloischen Linie von Immunzellen erzielt. Ursache der X-chromosomal gekoppelten Form der septischen Granulomatose sind Mutationen in dem Gen für gp91phox (CYBB), einer essentiellen Untereinheit des in Phagozyten benötigten NADPH-Oxidase Komplexes. In der Folge sind die Phagozyten dieser Patienten nicht mehr in der Lage, die für das Abtöten von Krankheitserregern nötigen reaktiven Sauerstoffspezies zu bilden. Ständig wiederkehrende schwere Infektionen mit sonst unproblematischen Erregern sind die Folge.
Neben klaren gesundheitlichen Verbesserungen in der Mehrzahl der Patienten hatte diese Gentherapeutische Behandlungsstrategie in einigen Fällen auch klare Nebenwirkungen. In fünf von 20 Patienten mit X-SCID, sowie in beiden behandelten X-CGD Patienten, kam es infolge der Therapie zu hämatologischen Veränderungen, die in der Ausbildung eines myelodysplastischen Syndroms (bei X-CGD) und Leukämie (bei X-SCID) mündeten. In allen Fällen war die Ursache eine Hochregulierung von Proto-Onkogenen in der Nähe von g-retroviralen Integrationsstellen. Diese Probleme demonstrieren deutlich die unbedingte Notwendigkeit zur Verbesserung der verwendeten therapeutischen Vektoren.
In der vorliegenden Arbeit wurden lentivirale Vektoren mit myeloid-spezifischen Promotoren entwickelt und auf ihre Eignung für die Gentherapie der X-chromosomal gekoppelten septischen Granulomatose getestet. Lentivirale Vektoren besitzen ein stark verringertes Risiko für Insertionsmutagenese, sowie die exklusive Fähigkeit ruhende Zellen zu transduzieren. Die Verwendung von myeloid-spezifischen Promotoren für die Transgenexpression verringert die Wahrscheinlichkeit der Proto-Onkogen Aktivierung in unreifen Stamm- und Vorläuferzellen – einer Zellpopulation die besonders sensitiv für die in der Leukämieentstehung obligaten Schritte der Immortalisierung und Transformation ist. Gleichzeitig bleibt der volle therapeutische Nutzen erhalten, da das Transgen gp91phox nur in reifen myeloischen Zellen benötigt wird.
Die entwickelten lentiviralen Vektoren exprimieren eine kodonoptimierte gp91phox cDNA unter der Kontrolle des microRNA223-Promoters (223), des MRP8-Promotors (M) oder eines chimären Fusionspromoters bestehend aus den regulatorischen Bereichen des Cathepsin G und des cFes-Promotors (Chim). Zusätzlich wurde ein sogenanntes „ubiquitär aktives Chromatin-öffnendes Element“ (UCOE) in beiden Orientierungen vor den MRP8-Promotor kloniert, um eine erhöhte und stabile Langzeitexpression des Transgens zu erreichen. Ziel der Arbeit war die Selektion eines geeigneten Kandidaten für präklinische Versuchsreihen.
Die für die Evaluierung der Vektoren relevanten Parameter waren die Transgenexpressionslevel, die Spezifität der Expression für myeloische Zellen sowie die vermittelte funktionelle Rekonstitution der NADPH-Oxidase Aktivität. Die Fragestellungen der Langzeitexpression, der Anfälligkeit für CpG-Methylierung sowie der Genotoxizität der Vektoren wurden ebenfalls bearbeitet. Die Vektoren wurden in vitro in verschiedenen Zelllinien sowie in in vitro differenzierten primären murinen und humanen Blutstammzellen getestet. Die beiden besten Kandidaten (223 und Chim) wurden in vivo in Maustransplantationsexperimenten (Maus-Maus und humane Stammzellen in NOD/SCID-Mäuse) analysiert.
Die beiden lentiviralen Vektoren 223 und Chim eignen sich beide für eine effiziente Expression in myeloische Zellen, die zur funktionellen Rekonstitution der NADPH-Oxidase Aktivität in vitro und in vivo führen. Sie sind den bisher in klinischen Anwendungen verwendeten Vektoren in allen Parametern klar überlegen. Daher ist in zukünftigen klinischen Anwendungen ein verbesserter therapeutischer Nutzen für die Patienten sowie eine Verminderung des Risikos von Nebenwirkungen zu erwarten.
Einfluss des Transkriptionsfaktors Tal1 auf die Osteoklastogenese durch Regulation von DC-STAMP
(2012)
Das menschliche Knochengewebe unterliegt einem ständigen Auf- und Abbau. Der Knochenumbau, die so genannte Knochenremodellierung, findet stetig statt und etwa 10 % des gesamten Knochengewebes werden innerhalb eines Jahres erneuert (Lerner UH, 2006). Während der Knochenremodellierung befindet sich die Zellaktivität der Knochenaufbauenden Osteoblasten und der Knochen-abbauenden Osteoklasten in einem empfindlichen Gleichgewicht (Karsenty G und Wagner EF, 2002; Teitelbaum SL, 2000).
Durch Störung des Gleichgewichts zwischen Osteoblasten und Osteoklasten kann es zu Knochen-assoziierten Krankheiten wie Osteoporose oder Osteopetrose kommen (Helfrich MH, 2003; Sambrook P und Cooper C, 2006). Osteoklasten sind multinukleäre Zellen, die in der Lage sind die Knochenmatrix zu resorbieren (Teitelbaum SL, 2000). Sie entstehen aus pluripotenten, hämatopoetischen Stammzellen durch Differenzierung und Zellfusion von Monozyten/Makrophagen-Vorläuferzellen (Menaa C et al., 2000, Yavropoulou MP und Yovos JG, 2008). Die Osteoklasten-Differenzierung wird hauptsächlich durch die Zytokine M-CSF (macrophage colony stimulating factor) und RANKL (receptor activator of nuclear factor k b ligand) induziert. Sie initiieren ein spezifisches Expressionsmuster Osteoklasten-spezifischer Gene und aktivieren die Zellfusion in Osteoklasten-Vorläuferzellen zur Bildung reifer Osteoklasten (Boyle WJ et al., 2003; Asagiri M und Takayanagi H, 2007). Die RANKL-vermittelte Induktion der Osteoklastogenese beruht auf der Initiierung eines streng regulierten Netzwerks aus Transkriptionsfaktoren (Yang X und Karsenty G, 2002). Einige Transkriptionsfaktoren, die während der Osteoklasten-Differenzierung induziert und exprimiert werden, sind nicht auf Osteoklasten beschränkt. Sie erfüllen auch Aufgaben in anderen hämatopoetischen Differenzierungsprozessen (Engel I und Murre C et al., 1999), so dass vermutlich die Kombination der Transkriptionsfaktoren entscheidend für die Osteoklastogenese ist.
Der basic helix-loop-helix-Transkriptionsfaktor Tal1 (T-cell acute lymphocytic leukemia 1, auch Scl1, stem cell leukemia 1) ist ein entscheidender Faktor in der primitiven und der definitiven Hämatopoese (Bloor AJ et al., 2002; Shivdasani RA et al., 1996). Die Expression von Tal1 konnte bisher in verschiedenen hämatopoetischen Zelllinien gezeigt werden, u.a. in monozytischen Zellen (Elefanty AG et al., 1998; Green AR et al., 1992; Pulford K et al., 1995; Dey S et al., 2010).
In der vorliegenden Arbeit wurde der Einfluss des Transkriptionsfaktors Tal1 in Monozyten und reifen Osteoklasten, vor allem in Bezug auf genregulatorische Prozesse während der Osteoklasten-Differenzierung, untersucht. Der Transkriptionsfaktor Tal1 wird in vitro und in vivo in Osteoklasten-Vorläuferzellen und reifen Osteoklasten exprimiert. Die Proteinexpression von Tal1 wird durch die Inkubation der Zellen mit RANKL induziert, jedoch wurde dies in Bezug auf die mRNA-Expression von Tal1 nicht beobachtet, so dass vermutlich eine posttranskriptionelle Regulation von Tal1 vorliegt.
Die Überexpression von Tal1 sorgte für eine Blockade der Differenzierung von Osteoklasten-Vorläuferzellen in reife Osteoklasten. Der Verlust von Tal1 in primären Monozyten/Makrophagen-Zellen führte zur veränderten Expression von über 1200 Genen, wobei jeweils etwa 600 Gene herauf- bzw. herabreguliert waren. Dies verdeutlicht, dass Tal1 sowohl an der Aktivierung als auch an der Reprimierung der Genexpression in Osteoklasten-Vorläuferzellen beteiligt ist. Die Liste der herabregulierten Gene beinhaltete u.a. das Osteoklasten-spezifische Enzym Acp5 (auch TRAP, tartrate resistant acid phosphatase), die Liste der herauf regulierten Gene beinhaltete u.a. DC-STAMP (dendritic cell specific transmembrane protein) und ATP6V0D2 (d2 isoform of vascuolar ATPase V0 domain), beide werden im Zusammenhang mit der Zellfusion während der Osteoklasten-Differenzierung beschrieben (Kim K et al., 2008; Kim T et al., 2010; Yagi M et al., 2005). Der Promotor von DC-STAMP beinhaltet mehrere potentielle Bindestellen für Tal1 und Osteoklastenspezifische Transkriptionsfaktoren. Es konnte gezeigt werden, dass Tal1, PU.1 und MITF im Bereich um 343 bp vor dem Transkriptionsstartpunkt des DC-STAMP-Promotors binden und dass Tal1 mit den Osteoklasten-spezifischen Transkriptionsfaktoren PU.1 und MITF interagiert. Der inhibitorische Effekt von Tal1 auf die Osteoklasten-Differenzierung kommt durch die Reprimierung der Aktivität der Osteoklasten-spezifischen Transkriptionsfaktoren PU.1 und MITF auf dem DC-STAMP-Promotor in Osteoklasten-Vorläuferzellen zustande. Während der Osteoklastogenese kommt es zu einer verringerten Tal1-Bindung auf dem DCSTAMP-Promotor, wodurch die Tal1-vermittelte Inhibierung der Expression aufgehoben wird.
Die Bindung von PU.1 und MITF auf dem Promotor von DC-STAMP nimmt während der Osteoklasten-Differenzierung zu. Die Expression von DC-STAMP wird im Verlauf der Osteoklastogenese induziert, wodurch es zur Zell-Zell-Fusion kommt.
Die Analyse des transkriptionellen Netzwerks, das die Fusion mononukleärer Zellen in reife Osteoklasten reguliert, vertieft das molekulare Verständnis der Osteoklasten-Differenzierung und kann zur Entwicklung neuer therapeutischer Ansätze beitragen, die in der Behandlung von Osteoporose, Riesenzelltumoren und anderen Osteoklastenassoziierten Krankheiten verwendet werden können.
Die maligne Transformation von Zellen beruht auf der Mutation von Genen, die entartete Zellen der regulierenden Wachstumskontrolle entziehen, ihre Versorgung sicher stellen und sie unempfindlich gegen apoptoseinduzierende Signale machen (Hanahan und Weinberg, 2000). Klassische Behandlungsmethoden wie Strahlen- und Chemotherapie wirken häufig über die Aktivierung apoptotischer Signalwege, die jedoch in behandlungsresistenten Tumorzellen blockiert sein können. Das selektive Einbringen proapoptotischer Proteine in Tumorzellen stellt daher eine vielversprechende Strategie zur Umgehung solcher Blockaden dar. In dieser Arbeit wurden tumorspezifische Antikörperfusionsproteine generiert, die humane Zelltod auslösende Proteine als Effektorfunktion enthalten. Das mitochondriale Protein „apoptosis inducing factor“ (AIF) wird durch diverse Apoptosesignale in das Zytoplasma freigesetzt. AIF leitet nach der Translokation in den Zellkern Chromatinkondensation und Degradation der nukleären DNA ein (Cande et al., 2004b). Zur selektiven Einschleusung von zytoplasmatischem AIF (AIF!100) in ErbB2 exprimierende Tumorzellen wurde es an das ErbB2-spezifische „single chain“ Antikörperfragment scFv(FRP5) fusioniert, welches von dem monoklonalen Antikörper FRP5 abgeleitet ist (Wels et al., 1992b). Daneben enthält ein zunächst generiertes AIF!100-DT183-378-5 Fusionsprotein eine Translokationsdomäne aus Diphtherietoxin (AA 183-378) als mögliche „endosome escape“ Aktivität. Diese Domäne sollte der Effektordomäne nach rezeptorvermittelter Aufnahme den Übergang in das Zytoplasma erlauben. Die Expression dieses Moleküls in E. coli und der Hefe Pichia pastoris führte jedoch nicht zu funktionellen AIF!100-DT183-378-5 Proteinen. Daher wurde für nachfolgende Arbeiten ein ähnliches AIF-Fusionsprotein (5-E-AIF!100) aus früheren Arbeiten unserer Gruppe eingesetzt und sein Wirkmechanismus eingehend untersucht. Im Gegensatz zu AIF!100-DT183-378-5 enthält 5-E-AIF!100 die Translokationsdomäne aus Pseudomonas Exotoxin A. Bakteriell exprimiertes, gereinigtes und renaturiertes 5-E-AIF!100 zeigte eine hohe Spezifität für ErbB2 exprimierende Tumorzellen. Im Gegensatz zu unfusioniertem AIF!100 induzierte 5-E-AIF!100 nach Mikroinjektion in das Zytoplasma der Zielzellen keine Apoptose. Dies deutet darauf hin, dass möglicherweise die N-terminale Antikörperdomäne die proapoptotische Aktivität der AIF-Domäne blockiert. Erst die rezeptorvermittelte Aufnahme von 5-E-AIF!100 in Anwesenheit von Chloroquin resultierte in einer hohen Zytotoxizität. Auf diesem Weg wird sehr wahrscheinlich durch proteolytische Spaltung der innerhalb der Translokationsdomäne vorhandenen Furin-Schnittstelle der N-terminale Bereich des Fusionsproteins entfernt. Die eigentliche Translokation der AIF-Domäne findet jedoch ohne die Zugabe endosomolytischer Reagenzien nicht statt, was für eine unzureichende Aktivität der Translokationsdomäne spricht. Die vollständige Entfernung der Translokationsdomäne führte dennoch zu einem AIF-Fusionsprotein, das weder in Abwesenheit noch in Gegenwart von Chloroquin zytotoxisch aktiv ist (Dälken, 2005). Somit ist die in der Translokationsdomäne enthaltene Furin- Schnittstelle sehr wahrscheinlich für die Aktivierung von 5-E-AIF!100 von entscheidender Bedeutung. Im Fall des natürlichen Exotoxin A ist zusätzlich zu der in 5-E-AIF!100 verwendeten Translokationsdomäne ein C-terminales ER-Retentionssignal für einen effizienten Übertritt der katalytisch aktiven Toxindomäne ins Zytoplasma notwendig (Jackson et al., 1999). Das Anfügen eines KDEL-Signals an den C-Terminus von 5-E-AIF!100 führte jedoch nicht zur Erhöhung der „endosome escape“ Aktivität der Translokationsdomäne. Die ladungsabhängige DNA-Bindungsaktivität von AIF ist für die proapoptotische Funktion des Proteins essentiell. Bindung an DNA wurde auch für 5-E-AIF!100 nachgewiesen, und konnte durch Vorinkubation mit negativ geladenem Heparin inhibiert werden. Die Komplexierung mit Heparin führte zu einer erheblichen Reduktion der zytotoxischen Aktivität von 5-E-AIF!100. Mit großer Wahrscheinlichkeit ist die Abschwächung der Zytotoxizität auf die intrazelluläre Inhibition der AIF/DNA-Interaktion zurückzuführen. Dies bestätigt, dass diese Wechselwirkung für die zelltodinduzierende Eigenschaft von 5-E-AIF!100 von Bedeutung ist. Die Freisetzung Immuntoxin-ähnlicher Proteine, die sich nach rezeptorvermittelter Aufnahme in endosomalen Kompartimenten finden, erfordert häufig die Zugabe endosomolytischer Reagenzien. Um eine von endosomolytischen Reagenzien unabhängige Zytotoxizität der Antikörperfusionsproteine zu erreichen, wurden in dieser Arbeit Möglichkeiten zur Umgehung dieser Abhängigkeit untersucht. Hierzu wurde die Natürliche Killerzelllinie NK-92 eingesetzt. Die Eliminierung von infizierten und transformierten Zellen durch NK-Zellen geschieht hauptsächlich über die Ausschüttung von zytotoxischen Granula, die das porenbildende Protein Perforin und verschiedene Serinproteasen wie Granzym B (GrB) enthalten (Atkinson et al., 1990; Smyth et al., 2001). Dabei ist Perforin für die zytosolische Translokation der Proteasen verantwortlich (Browne et al., 1999). Anhand des Modellproteins Granzym B-scFv(FRP5) (GrB-5) wurde untersucht, ob Antikörperfusionsproteine mit Hilfe von Perforin in das Zytoplasma der Zielzellen gelangen können. GrB-5 wurde in NK-92 Zellen unter Beibehaltung der Spezifität und enzymatischen Aktivität exprimiert. GrB-5 ist wie Wildtyp GrB in zytotoxischen Granula lokalisiert und wird nach der Degranulation sehr wahrscheinlich zusammen mit Perforin sekretiert. Freigesetztes GrB-5 zeigte Bindung an ErbB2 exprimierende Zellen. Zudem wiesen Überstände von aktivierten NK-92 Zellen, die GrB-5 und Perforin enthielten, im Vergleich zu Überständen von Kontrollzellen eine höhere Zytotoxizität gegenüber ErbB2-positiven Tumorzellen auf. Dies lässt darauf schließen, dass GrB-5 in Abwesenheit exogener endosomolytischer Reagenzien durch einen Perforin-vermittelten Mechanismus in die Zielzellen gelangen konnte. Weiterhin wurden NK-92 Zellen generiert, die den GrB-Inhibitor Protease Inhibitor-9 (PI-9) exprimieren. Diese Zellen zeigten im Vergleich zu parentalen Zellen eine höhere Zytotoxizität, die sich auf eine verbesserte Inaktivierung fehlgeleiteter, zytoplasmatischer GrB-Moleküle durch das ektopisch exprimierte PI-9 zurückführen lässt. NK-92-PI-9 Zellen könnten genutzt werden, um größere Mengen von GrB-Fusionsproteinen zu exprimieren, ohne dabei die Zellen durch die Erhöhung der zytoplasmatischen GrB-Konzentration zu gefährden. Die in dieser Arbeit gewonnenen Ergebnisse zeigen, dass AIF für den Einsatz als Effektorfunktion in Immuntoxin-ähnlichen Fusionsproteinen geeignet ist. Die Anwendung von NK-Zellen zur Expression und Sekretion tumorspezifischer Antikörperfusionsproteinen zusammen mit Perforin zeigt einen möglichen Lösungsweg für das generelle Aufnahmeproblem von Immuntoxin-ähnlichen Proteinen. Die erzielten Ergebnisse können nun für die weitere Optimierung humanisierter Antikörperfusionsproteine genutzt werden.
Our understanding of human biology and disease is based on the last millennia’s gain of knowledge, which has been exponentially accelerated since the invention of optical and "biochemical" microscopes like transcriptomics and other omics technologies.
In order to broaden our knowledge of an important human transcription factor, T-Cell Acute Lymphocytic Leukemia 1 (TAL1), some of these technologies were used.
TAL1’s gene or promoter structure is altered in about 20-30% of T-ALL. In addition, there is an increase in TAL1 expression in ca. 60% of pediatric and about 45% of adult T-ALL. Physiologically, TAL1 is an indispensable factor in hematopoiesis: in the murine knockout model, blood cells vanish in the early embryonic period. In addition, the TF is also relevant in adult erythropoiesis.
Accordingly, the identification of novel TAL1 target genes was significant both for clinical reasons and in order to understand the hematopoietic functions.
We performend a combined RNA- and ChIPseq approach. After a lentiviral mediated knockdown in K562 cells RNAseq was performed using the Illumina high-throughput method. Overall, the RNAseq yielded one billion good quality sequencing fragments. They made identification of up- and downregulated transcripts as well as associated biological processes, cellular components, molecular function and dominant KEGG signaling pathways possible. Furthermore, more than 2-fold altered coding transcripts and lncRNA were analyzed for relevant TAL1-binding in the transcription start area. There were 3205 significantly altered coding transcripts and 5136 significantly altered lncRNA. By integrating an Encode TAL1-ChIPseq in K562 cells (using a cutoff fold change of 2x) a relevant TAL1 binding could be detected with 71 coding and 416 lncRNA genes.
The combination of RNA- and ChIPseq yields a wealth of relevant results. Accordingly, TAL1 has complex pro- and anti-malignant effects in all areas of oncogenesis like described by Hanahan and Weinberg. Various interactions with target genes and signaling cascades in inter alia proliferation (e.g. HEMGN, MYC, AHI1, YPEL3, BTG2), angiogenesis (e.g. EGFL7, LTBP3), apoptosis (e.g. BCL3, BCL2A1, BMF), immune evasion (e.g. CMTM6) and inflammation (e.g. IL23 and PTGS1) have been revealed, thus complementing the knowledge about pro- and anti-oncogenic effects of TAL1. In addition, it was possible to identify target genes relevant for erythropoiesis and possible osteogenesis. Concerning lncRNA, interesting potential effectors have been identified. However, they still need to be functionally characterized. Relating the results to Virchow’s first description of leukemia as "white blood" the role of TAL1 in leukemia’s genesis but also in erythropoiesis has been confirmed and extended, thus contributing to explain Virchow’s observation: "...therefore, when I speak of white blood, I mean in fact a blood in which the proportion between the red and colorless (in white) blood corpuscles is reversed ...” (Virchow R. Weisses Blut. Frorieps Notizen 1845;36:151-156).
NK cells are part of the innate immune system, and are important players in the body’s first defence line against virus-infected and malignantly transformed cells. While T cells recognize neoplastic cells in an MHC-restricted fashion, NK cells do not require prior sensitization and education about the target. In leukemia and lymphoma patients undergoing allogeneic hematopoietic stem cell transplantation not only T cells but also NK cells have been found to mediate potent graft-versus-tumor effects. Hence, autologous or donor-derived NK cells hold great promise for cancer immunotherapy. Since the generation of highly purified NK cell products for clinical applications is labor-intensive and time consuming, established human NK cell lines such as NK-92 are also being considered for clinical protocols. NK-92 cells display phenotypic and functional characteristics similar to activated primary NK cells. While NK-92 cells are highly cytotoxic towards malignant cells of hematologic origin, they do not affect healthy human tissues. NK-92 cells can be expanded under GMP-compliant conditions, and can therefore be provided in sufficient numbers with defined phenotypic characteristics for clinical applications. Safety of NK-92 cells for adoptive immunotherapy was already shown in two phase I/II clinical trials...
In der vorliegenden Arbeit soll die selektive Wirkung der Nukleosidanaloga Fludarabin und Cytarabin auf maligne Zellen überprüft werden. Dazu wird die Sensibilität unterschiedlicher Zellen gegenüber den beiden Zytostatika mittels Durchflußzytometrie bestimmt. Außerdem wird als pharmakokinetischer Parameter die intrazelluläre Konzentration des jeweiligen aktiven Metaboliten, F-Ara-ATP und Ara-CTP mit Hilfe der Hochdruckflüssigkeitschromatographie ermittelt. Als Vertreter der gesunden Zellen werden Lymphozyten gesunder Spender sowie in einem einmaligen Versuch hochaufgereinigte CD34+-Stammzellen untersucht. Stellvertretend für maligne Zellen werden die Experimente an Zellen der T-lymphoiden Zelllinie Molt4 und der erythroleukämischen Zelllinie K562 durchgeführt. Anhand der pharmakokinetischen Untersuchungen kann eine höhere Bildung an aktivem Triphosphat in malignen Zellen gegenüber gesunden Lymphozyten sowohl für Fludarabin- als auch für Cytarabininkubation nachgewiesen werden. Stammzellen scheinen eine Stellung zwischen den malignen Zellen und den Lymphozyten einzunehmen. Letztere Ergebnisse bleiben zu verifizieren. Untersuchungen der Sensibilität der malignen Zellen gegenüber Fludarabin und Cytarabin mit Hilfe der Durchflußzytometrie ergeben jeweils eine erhöhte Zytotoxizität gegenüber Molt4-Zellen, nicht jedoch gegenüber K562-Zellen im Vergleich zu gesunden Lymphozyten. Während die pharmakokinetischen Ergebnisse eine erhöhte Sensibilität für maligne Zellen gegenüber Fludarabin und Cytarabin aufgrund höherer intrazellulärer Triphosphatspiegel suggerieren, zeigen die durchflußzytometrischen Messungen, dass sich allein auf dieser Basis keine Aussage über die Sensibilität der Zellen gegenüber dem jeweiligen Zytostatikum machen lässt. Eine selektive Wirkung von Nukleosidanaloga auf maligne Zellen lässt sich anhand der gewonnenen Daten vermuten, aber nicht beweisen. Hierzu sind weitere Untersuchungen unerlässlich.
Bispezifische transmembrane Antikörperfragmente zur Inhibierung von ErbB-Wachstumsfaktor-Rezeptoren
(2014)
Der epidermale Wachstumsfaktor-Rezeptor (EGFR) und das ErbB2 Molekül sind Mitglieder der ErbB-Rezeptortyrosinkinase-Familie. Die Bindung von Peptidliganden an die extrazelluläre Domäne (ECD) von EGFR führt zu einer Konformationsänderung, die den Dimerisierungs-kompetenten Zustand des Rezeptors stabilisiert und eine Homodimerisierung oder Heterodimerisierung mit anderen ErbB-Rezeptoren erlaubt. ErbB2 liegt dagegen ohne Ligandenbindung dauerhaft in einer Dimerisierungskompetenten Konformation vor. Die Rezeptordimerisierung stimuliert die intrazelluläre Kinaseaktivität, was zu einer Autophosphorylierung distinkter Tyrosine im C-terminalen Schwanz der Rezeptoren führt. Diese Phosphotyrosine dienen als Bindungsstellen unterschiedlicher intrazellulärer Substrate und Adaptorproteine, die Zellwachstums-, Migrations- und Überlebens-fördernde Signalkaskaden auslösen. Eine Über- oder Fehlfunktion dieser Rezeptoren wurde in vielen Karzinomen epithelialen Ursprungs sowie in Glioblastomen beschrieben und mit einem aggressiven Krankheitsverlauf in Verbindung gebracht.
Der therapeutische Antikörper Cetuximab inhibiert das Tumorwachstum, indem er an die ECD von EGFR bindet und dabei die Ligandenbindung und Rezeptoraktivierung unterbindet. Dieselben Eigenschaften weist das single chain fragment variable (scFv) 225 auf, das die gleiche Antigenbindungsdomäne besitzt. Ein weiteres scFv-Antikörperfragment, scFv(30), wurde in vorangegangenen Arbeiten der Gruppe aus einer scFv-Bibliothek isoliert und bindet als zytoplasmatisch stabil exprimierbares Molekül an die intrazelluläre Domäne (ICD) des EGFR.
Im ersten Teil dieser Arbeit wurde das bislang unbekannte Epitop des scFv(30) Antikörperfragments mittels Peptid-Spotting Experimenten bestimmt. Die Bindungsstelle des scFv(30) Proteins wurde dabei am C-terminalen Ende der EGFR Sequenz lokalisiert und umfasst die Aminosäuresequenz GIFKGSTAE (AS 1161-1169 des reifen EGFR Proteins).
Die Expression von Antikörperfragmenten als sogenannte Intrabodies in Tumorzellen stellt einen wirkungsvollen Ansatz zur selektiven Interferenz mit wichtigen physiologischen und pathophysiologischen Prozessen dar. Im zweiten Teil der vorgelegten Arbeit wurde das EGFR-ECD-spezifische Antikörperfragment scFv(225) über eine Transmembrandomäne und eine flexible Gelenkregion mit dem EGFR-ICD-spezifischen scFv(30) Molekül zu einem neuartigen bispezifischen Antikörper verbunden. Die konstitutive Expression dieses 225.TM.30 Intrabodies und der monospezifischen Variante 225.TM nach lentiviraler Transduktion von EGFR-überexprimierenden MDA MB468 und A431 Tumorzellen resultierte in einer substanziellen Reduktion der EGFR-Oberflächenexpression und einer Blockierung der Liganden-induzierten EGFR-Autophosphorylierung, begleitet von einer deutlichen Inhibition des Zellwachstums. Eine weitere Analyse der 225.TM.30-induzierten molekularen Prozesse in diesen Tumorzellen im Vergleich zu den beiden monospezifischen Varianten 225.TM und TM.30 erfolgte mittels eines Tetracyclin-induzierbaren Expressionssystems. Dazu wurden A431, MDA-MB468 und EGFR-negative MDA-MB453 Zellen zunächst mit retroviralen Vektorpartikeln transduziert, die für den optimierten reversen Tetracyclin-kontrollierten Transaktivator (M2) kodieren. Anschließend erfolgte die Tansduktion mit retroviralen transmembranen Antikörperkonstrukten, kontrolliert von einem Tetracyclin-induzierbaren Promoter (T6). Die Doxycyclin (Dox)-induzierte Expression von 225.TM.30 und 225.TM bestätigte die im konstitutiven Expressionssystem beobachteten Ergebnisse. TM.30-exprimierende Zellen zeigten dagegen keinen Unterschied in der Oberflächenexpression oder Aktivierbarkeit von EGFR zu parentalen Zellen, wiesen aber dennoch eine deutliche Inhibition des Wachstums auf. Konfokale Laserscanning Mikroskopie Studien zeigten eine Co-Lokalisation von 225.TM und EGFR hauptsächlich an der Zelloberfläche, während 225.TM.30 und TM.30 im endoplasmatischen Retikulum detektiert wurden und EGFR in diesem Kompartiment festhielten. Die TM.30/EGFR-Komplexe im ER könnten eine ER-Stress-Antwort auslösen und damit das reduzierte Wachstum TM.30-exprimierender Zellen erklären. Tatsächlich wurden in MDA MB468/M2/iTM.30 und A431/M2/iTM.30 Zellen erhöhte Proteindisulfidisomerase (PDI) und teilweise GRP78/BiP Proteinmengen detektiert, die auf eine ER-Stress-Antwort hindeuten. Das bispezifische 225.TM.30 Molekül vereinte die Eigenschaften der monospezifischen Antikörpervarianten. Es hielt wie TM.30 Anteile des EGFR im ER zurück und war wie 225.TM in der Lage, die EGFR-Oberflächenexpression zu reduzieren und die EGFR-Autophosphorylierung zu inhibieren.
Die Expression der drei transmembranen Antikörper in EGFR-negativen MDA-MB453/M2 Zellen hatte dagegen keinen Einfluss auf das Wachstum dieser Zellen, was die EGFR-Spezifität der vorgestellten Moleküle unterstreicht.
Im letzten Teil der vorgelegten Arbeit wurde die scFv(225) Domäne in 225.TM.30 gegen das ErbB2-ECD-spezifische scFv(FRP5) Molekül ausgetauscht, und somit ein ErbB2-ECD- und EGFR-ICD-spezifischer Intrabody generiert (5.TM.30). Nach der Dox-induzierten Expression des 5.TM.30 Moleküls in EGFR- und/oder ErbB2-exprimierenden Tumorzellen wurde die Funktionalität beider Bindungsdomänen verifiziert. Die 5.TM.30 Expression resultierte dabei in ErbB2-positiven Tumorzellen in einer verringerten Oberflächen- und Gesamtexpression von ErbB2 und in EGFR-positiven Zellen in einer Reduktion der EGFR-Gesamtproteinmenge. Dies lässt auf eine erhöhte, 5.TM.30-induzierte Degradation der beiden Rezeptoren schließen. Die Expression des 5.TM.30 Proteins führte zudem zu einer Inhibition des Wachstums EGFR- und/oder ErbB2-positiver Zellen. Weiterhin wurde auch in 5.TM.30-exprimierenden MDA-MB468/M2 Zellen, wie für 225.TM.30 und TM.30 beschrieben, eine Co-Lokalisation des transmembranen Antikörperfragments mit EGFR im ER gezeigt.
Die in dieser Arbeit vorgestellten Ergebnisse weisen erstmals die Funktionalität von membranverankerten mono- und bispezifischen Antikörpermolekülen als Intrabodies nach, und zeigen ihr Potenzial zur gerichteten Interferenz mit der Wachstumsfaktor-abhängigen Signaltransduktion. Durch den Austausch der extra- und intrazellulären Antikörperdomänen könnte diese Strategie ebenso zur Analyse oder Blockade weiterer Signalmoleküle und Signalkomplexe eingesetzt werden.
Die allogene Stammzelltransplantation (SZT) nach Hochdosischemotherapie ist oft die einzige Therapieoption für pädiatrische Patienten, die an einer Hochrisikoleukämie erkrankt sind. Bei Patienten mit einer sehr schlechten Prognose und ohne Aussicht auf einen passenden Spender werden auch haploidente SZT durchgeführt, bei der meist die Eltern als Spender dienen. Aufgrund der HLA-(Human Leukocyte Antigen) Inkompatibilität zwischen Spender und Empfänger birgt die haploidente SZT jedoch einerseits das hohe Risiko einer Abstoßung des Transplantats sowie andererseits die Gefahr einer lebensbedrohlichen Spender-gegen-Wirt Reaktion (Graft-versus-Host Disease, GvHD). Das Risiko für die Entstehung einer GvHD kann durch die selektive Anreicherung von CD34 positiven Stammzellen deutlich verringert werden. Dabei werden unter anderem immunkompetente T-Zellen entfernt, die maßgeblich an der Entstehung einer GvHD beteiligt sind. Diese Zellen spielen aber auch bei der Immunrekonstitution und der Reaktivität gegen residuale leukämische Blasten (Graft-versus-Leukemia (GvL) Effekt) nach SZT eine wichtige Rolle. Aufgrund dessen ist die SZT mit CD34-selektionierten Präparaten häufig mit schweren Infektionen und einer erhöhten Rezidivrate verbunden. Des Weiteren wächst das Transplantat deutlich schlechter an. Immuntherapeutische Ansätze mit Spenderlymphozyten-Infusionen (Donor Lymphocyte Infusion - DLI) können das Anwachsen des Transplantates und den GvL-Effekt fördern, steigern jedoch gleichzeitig das Risiko einer GvHD. Um die Entstehung einer GvHD zu kontrollieren, ohne dabei auf den Nutzen einer DLI verzichten zu müssen, wurde bereits vor über 10 Jahren ein aussichtsreicher Ansatz entwickelt. Hierbei werden Spender-T-Zellen vor der Infusion in den Patienten genetisch so modifiziert, dass sie ein Selbstmordgen („suicide gene“) exprimieren. Im Falle einer aufkeimenden GvHD ermöglicht die Aktivierung des Suizidmechanismus eine gezielte Eliminierung der alloreaktiven Spender-T-Zellen. Das zurzeit am häufigsten verwendete Selbstmordgen leitet sich von der Thymidinkinase (TK) des Herpes Simplex Virus (HSV) ab. In einer Reihe von klinischen Studien mit erwachsenen Patienten konnte nach allogener SZT die prinzipielle Wirksamkeit dieses Sicherheitskonzeptes bereits gezeigt werden. Im Verlauf der klinischen Anwendung wurde allerdings eine Reihe von Nachteilen festgestellt. So führte zum Beispiel die Immunogenität der HSV-TK in immunkompetenten Patienten zur Abstoßung der modifizierten T-Zellen. Des Weiteren zeigte sich eine mangelnde Effizienz hinsichtlich des Abtötens der T-Zellen. Außerdem ist die für die T-Zell-Eliminierung benötigte Menge an Ganciclovir (10 mg/kg Körpergewicht pro Tag) stammzelltoxisch, wodurch die Immunrekonstitution nach SZT deutlich vermindert sein kann. Ferner wurde beobachtet, dass die ex vivo modifizierten und expandierten T-Zellen in ihrer biologischen Funktionalität deutlich eingeschränkt waren. Um den immuntherapeutischen Ansatz der DLI vor allem hinsichtlich der Sicherheit weiter zu verbessern, wurden in den vergangenen Jahren verschiedene Suizidstrategien entwickelt und die Bedingungen der ex vivo Modifikation optimiert. Eine aussichtsreiche Suizidstrategie verwendet das B-Zell-Oberflächenantigen CD20 in Kombination mit einem bereits für die Klinik zugelassenen, monoklonalen anti-CD20 Antikörper (Rituximab). Im Gegensatz zu TK-modifizierten Zellen, deren Beseitigung in vivo mehrere Tage in Anspruch nimmt, können CD20 positive B-Zellen innerhalb weniger Stunden eliminiert werden. Der tatsächliche Wirkmechanismus von Rituximab in vivo ist bisher noch nicht vollständig aufgeklärt, allerdings konnte in vitro bereits gezeigt werden, dass die Eliminierung CD20 positiver Zellen mittels eines komplement-abhängigen (CDC) und/oder eines antikörperabhängigen Zelltodes (ADCC) erfolgt. Das Ziel der vorliegenden Arbeit war die Entwicklung und Optimierung eines CD20-abhängigen Suizid-Vektorsystems für die effiziente Transduktion von primären T-Zellen und deren selektive Eliminierung mittels Rituximab. Dazu mussten verschiedene Teilziele erreicht werden: (1) Da nur genetisch modifizierte T-Zellen, die in vivo abgeschaltet werden können, infundiert werden dürfen, ist eine ex vivo Anreicherung der CD20 positiven Zellen zwingend erforderlich. Dementsprechend sollte untersucht werden, inwieweit sich CD20 als Oberflächenmarker für eine MACS- (Magnetic Associated Cell Sorting) basierte Aufreinigung eignet und gegebenenfalls alternative Ansätze geprüft werden. (2) Weiterführend sollte ein Transduktionsprotokoll etabliert werden, welches hohe Transduktionseffizienzen ermöglicht und die Funktionalität der genetisch modifizierten T-Zellen weitestgehend erhält. (3) Bezüglich der Wirksamkeit des CD20-Rituximab-Systems liegen bisher nur veröffentlichte in vitro Daten vor. Daher sollte die Effektivität des neu entwickelten Suizidsystems in einem GvHD-ähnlichen Mausmodell in vivo charakterisiert werden. Zu Beginn dieser Arbeit wurde ein gammaretroviraler Vektor verwendet, welcher die Wildtypsequenz des CD20 Gens unter der Kontrolle eines vom Myeloproliferativen Sarcoma Virus (MPSV) abgeleiteten LTR (long terminal repeat) exprimiert (M71CD20). Mit diesem Vektor konnten mit Hilfe einer 3-Plasmid-Transfektion von 293T-Zellen lediglich Virusüberstände mit einem sehr niedrigen Titer hergestellt werden (<1 x 105/ml). Demzufolge war es zwar möglich die humane T-Zelllinie HuT 78 durch eine RetroNectin-assistierte Transduktion genetisch zu modifizieren, primäre T-Zellen hingegen konnten gar nicht transduziert werden. Aufgrund der schwachen Expression von CD20 an der Zelloberfläche zeigten die transduzierten HuT 78 Zellen nur eine geringe Empfindlichkeit gegenüber der Rituximab-vermittelten Lyse. Unter Verwendung von humanem Serum als Komplementquelle konnte eine maximale Lyse von 20% erreicht werden. Zusätzlich war die immunomagnetische Aufreinigung der CD20 positiven Zellen mit Hilfe des anti-CD20 MACS Systems durch eine geringe Ausbeute (<1%) und einen niedrigen Reinheitsgrad (<90%) geprägt. Um die Suizidgenstrategie für eine potentielle klinische Anwendung weiterzuentwickeln, wurde eine Codon-Optimierung des CD20 Transgens vorgenommen (CD20op). Die Optimierung zielte darauf ab, selten verwendete Basentripletts (Codons) innerhalb der CD20 cDNA mit von Säugetierzellen häufig genutzten zu ersetzen und somit die Translationsrate zu steigern. Ferner wurde der GC-Gehalt auf 60% erhöht und einige RNA-Instabilitätsmotive entfernt, um die Stabilität der mRNA zu verbessern. Aufgrund dieser Optimierungen wurde ein 35-facher Anstieg des Virustiters beobachtet. Dies ermöglichte die Transduktion von HuT 78 Zellen mittels einer standardmäßig durchgeführten Zentrifugationsmethode. Durchflusszytometrische Analysen zeigten, dass die Oberflächenexpression der Codon-optimierten CD20 Variante im Vergleich zur Wildtypsequenz um ein Dreifaches gesteigert werden konnte. Die verbesserte Oberflächenexpression erhöhte die Rituximab-vermittelte Lyse deutlich. In vitro konnten so bis zu 80% der transduzierten HuT 78 Zellen eliminiert werden. Die geringe Ausbeute der immunomagnetischen anti-CD20-Selektion konnte allerdings nicht verbessert werden. Weiterführend wurde daher im Rahmen dieser Arbeit der CD20op Vektor mit einem zweiten Oberflächenmarker kombiniert, um eine effiziente Anreicherung der genetisch modifizierten Zellen zu gewährleisten. Da im klinischen Maßstab bereits ein System zur Aufreinigung von Stammzellen über den Oberflächenmarker CD34 etabliert ist, wurde eine C-terminal verkürzte Variante des CD34 Moleküls (tCD34) als Selektionsmarker gewählt. Für eine optimale Koexpression von CD20op und tCD34 wurde eine Fusionskassette unter Verwendung des 2A-Elementes des Thosea asigna Virus generiert (T2A). Dieses Element ermöglicht die effiziente Expression beider Transgene von einem Vektor. Im Verlauf der Translation kommt es innerhalb des T2A-Elementes zu einem ribosomalen Sprung und folglich zur Generierung von zwei voneinander unabhängigen Proteinen. Mit dem neu klonierten bicistronischen Vektor M71CD20opT2AtCD34 konnten gute Virustiter im Bereich von 2,3 ± 0,9 x 106/ml erzielt werden. Dies ermöglichte die Transduktion von HuT 78 Zellen durch Zentrifugation. Mittels Durchflusszytometrie und protein-biochemischer Methoden konnte gezeigt werden, dass CD20op und tCD34 korrekt in der Zelllinie exprimiert wurden. Die Anreicherung von CD20op/tCD34 positiven HuT 78 Zellen mit Hilfe immunomagnetischer anti-CD34-Selektion resultierte in einer deutlich verbesserten Ausbeute; ebenso konnte eine Reinheit von über 98% erreicht werden. In vergleichenden Analysen wurde gezeigt, dass die CD20op/tCD34 transduzierten Zellen eine ähnliche Sensitivität gegenüber Rituximab aufwiesen wie Zellen, die mit dem monocistronischen M71CD20op Vektor transduziert wurden. Nachdem die Effizienz des bicistronischen Vektors in der humanen T-Zelllinie HuT 78 nachgewiesen werden konnte, wurden weiterführende Versuche mit humanen primären T-Zellen initiiert. Für die genetische Modifikation von primären T-Zellen mit gammaretroviralen Vektoren ist die Aktivierung und eine damit einhergehende Proliferation der T-Zellen zwingend erforderlich. Deswegen wurden zunächst die Aktivierungs- und Kulturbedingungen für eine optimale Transduktion der T-Zellen bestimmt. In dieser Arbeit wurden die T-Zellen ausschließlich mit anti-CD3/anti-CD28 Antikörpern stimuliert, die auf paramagnetischen Partikeln immobilisiert wurden und dadurch eine dreidimensionale Aktivierung ermöglichten. Diese Art der Stimulation wird bereits in klinischen Studien verwendet und sollte im Gegensatz zu löslichen Antikörpern die biologische Funktionalität der T-Zellen weitestgehend erhalten. Primäre T-Zellen wurden mittels RetroNectin-beschichteter Platten an zwei aufeinander folgenden Tagen transduziert, dabei konnte eine durchschnittliche Transduktionseffizienz von 65% erzielt werden. Die korrekte Expression von CD20op und tCD34 konnte, wie bereits für HuT 78 Zellen beschrieben, ebenfalls in primären T-Zellen nachgewiesen werden. Mittels immunomagnetischer anti-CD34 Selektion von CD20op/tCD34 positiven primären T-Zellen wurde eine sehr gute Anreicherung mit 98%iger Reinheit und einer Ausbeute von 45% erreicht. Unter Verwendung von humanen natürlichen Killerzellen konnte eine Sensitivität der genetisch modifizierten Zellen gegenüber Rituximab-vermittelter zellulärer Toxizität (ADCC) nachgewiesen werden. Da die Funktionalität der T-Zellen aufgrund der benötigten Aktivierung und der Expansion ex vivo beeinträchtigt sein kann, wurden im Rahmen dieser Doktorarbeit die T-Zellen phänotypisch und funktionell genauer charakterisiert. Es konnte durchflusszytometrisch gezeigt werden, dass die Mehrheit der naiven T-Zellen aufgrund der anti-CD3/anti-CD28 Aktivierung einen „central memory“ Phänotyp erworben hatte, welcher durch die Expression des „Homing“-Oberflächenmarkers CD62L (L-Selectin) und den Verlust des Markers CD45RA gekennzeichnet war. Es ist bekannt, dass dieser T-Zell-Phänotyp ein hohes alloreaktives Potential sowie eine lange Lebensdauer in vivo aufweist. Da für eine effektive Immunantwort CD4 positive Helferzellen und CD8 positive zytotoxische T-Zellen essentiell sind, wurde im Rahmen dieser Arbeit die Transduktionseffizienz in beiden Subpopulationen bestimmt. CD4 positive und CD8 positive T-Zellen ließen sich gleichermaßen gut transduzieren und es konnte demonstriert werden, dass ein physiologisches CD4/CD8 Verhältnis von 1-2 erhalten blieb. Im Vergleich dazu wurde in veröffentlichten Studien häufig eine verstärkte Transduktion von CD8 positiven T-Zellen verzeichnet, was zu einer Verschiebung des CD4/CD8 Verhältnisses und somit zu einer beeinträchtigten Immunantwort führte. Des Weiteren wurde im Rahmen der vorliegenden Arbeit in vergleichenden Analysen das alloreaktive Potential der genetisch modifizierten Zellen bestimmt. Zur Charakterisierung der Alloreaktivität wurde eine „Mixed Lymphocyte Reaction“ (MLR) verwendet. Hierfür wurden die T-Zellen mit CFSE (Carboxy-Fluorescein Succinimidyl Ester) gefärbt und mit bestrahlten, allogenen mononukleären Zellen aus peripherem Blut (PBMCs) kultiviert. Das Maß der Alloreaktivität ließ sich durch die Verringerung des CFSE Signals bestimmen. In einer Reihe von Experimenten konnte gezeigt werden, dass der prozentuale Anteil an alloreaktiven, transduzierten T-Zellen vergleichbar zu frisch isolierten T-Zellen war. Auch wenn ein geringeres Proliferationspotential der genetisch modifizierten T-Zellen festgestellt wurde, deutet dieses Ergebnis dennoch auf einen teilweisen Erhalt der T-Zell-Funktionalität hin. Im letzten Drittel der vorliegenden Arbeit wurde neben der Langzeitexpression von CD20op und tCD34 ebenfalls die Effizienz des CD20op-Rituximab-Systems in vivo untersucht. Hierfür wurde ein Rag-1 defizientes Mausmodell verwendet. Aufgrund der vorliegenden Lymphopenie ermöglichte dieses Modell ein gutes Anwachsen der Spenderlymphozyten. Reife murine T-Zellen wurden an zwei aufeinander folgenden Tagen mit dem gammaretroviralen Vektor M71CD20opT2AtCD34 transduziert und vor der Transplantation mittels immunomagnetischer anti-CD34 Selektion angereichert (Reinheit: 98%). Fünf Wochen nach Transplantation wurde ein Teil der Mäuse mit 150 μg Rituximab pro Maus i.v. behandelt, als Negativkontrolle wurde Mäusen ein monoklonaler anti-HER2/neu Antikörper (Herceptin) gespritzt, der in diesem Zusammenhang nicht relevant war. Das Behandlungsschema wurde in zwei darauf folgenden Wochen wiederholt. Jeweils zwei Tage nach der Antikörperinjektion wurde der Anteil an transduzierten Spenderzellen im peripheren Blut durchflusszytometrisch bestimmt. Bereits nach der ersten Rituximab-Injektion konnte eine 95%ige Depletion der genetisch modifizierten T-Zellen gezeigt werden. Die beiden nachfolgenden Injektionen beeinflussten den Anteil der modifizierten T-Zellen im peripheren Blut nur noch geringfügig. In Herceptin behandelten Mäusen blieb der Anteil an genetisch modifizierten Zellen konstant. Am Ende der Untersuchungen (Woche 17) wurde in Rituximab behandelten Mäusen nur noch ein minimaler Prozentsatz an modifizierten Zellen nachgewiesen, welche durch eine geringe Oberflächenexpression von CD20op und tCD34 charakterisiert waren. Abschließend konnte die effektive Eliminierung der T-Zellen aus der Milz und den Lymphknoten sowohl durchflusszytometrisch als auch per quantitativer PCR nachgewiesen werden. Die erfolgreiche Depletion der T-Zellen wurde im weiteren Verlauf der Arbeit durch eine Zeitkinetik nach Rituximab Gabe genauer untersucht. Bereits zwei Stunden nach der Injektion des Antikörpers konnte im peripheren Blut nur noch ein kleiner Anteil an genetisch modifizierten Zellen nachgewiesen werden. Dieses Ergebnis entspricht Daten aus klinischen Studien mit Rituximab und verdeutlicht das Sicherheitspotential des CD20-Rituximab-Systems, geprägt durch eine schnelle und effiziente Eliminierung von reaktiven T-Zellen. Der adaptive Transfer von Spender T-Zellen führte in den Empfängertieren zur Entwicklung einer massiven Kolitis, die durch Gewichtsabnahme und Durchfall charakterisiert war. In dieser Arbeit konnte dies durch die Rituximab-vermittelte Eliminierung der reaktiven Zellen verhindert werden; Rituximab behandelte Mäuse zeigten keine Kolitissymptome, wohingegen Herceptin behandelte Tiere stetig an Gewicht verloren. Diese Gewichtsabnahme konnte zu einem späteren Zeitpunkt auch in der Herceptin Gruppe nach Behandlung mit Rituximab gestoppt werden. Außerdem wurde daraufhin in diesen Tieren eine schnelle Gewichtszunahme von bis 34% beobachtet. Die erfolgreiche Depletion der CD20op/tCD34 positiven T-Zellen stellte in den Rag-1 defizienten Empfängertieren vorübergehend erneut eine Lymphopenie her. Dabei kam es aber auch zur Expansion nichttransduzierter T-Zellen, welche mit einem Anteil von 2% im CD34-selektionierten T-Zell-Transplantat vertreten waren. Da diese T-Zellen nicht durch Rituximab eliminiert werden konnten, entwickelten die Empfängertiere unweigerlich Kolitissymptome. Mittels quantitativer PCR wurde anschließend nachgewiesen, dass es sich bei den in vivo expandierten Zellen zum Großteil um nicht-transduzierte T-Zellen handelte, da keine proviralen Integrationen nachgewiesen werden konnten. Das in dieser Arbeit verwendete Mausmodell lieferte wichtige Informationen hinsichtlich der Langzeitexpression der beiden Transgene sowie der Effizienz des CD20-Rituximab-Suizidsystems. Auch wenn die in dem verwendeten Modell induzierte Kolitis als Äquivalent einer GvHD angesehen werden kann, sollte die Effizienz des entwickelten Systems in einem klassischen bzw. haploidenten GvHD Modell verifiziert werden. Darauf aufbauend könnten dann prä-klinische Studien zur Effektivität und Sicherheit des optimierten Suizidansatzes initiiert werden. Zusammenfassend bietet das neue, in dieser Arbeit stufenweise optimierte CD20-Rituximab-System eine vielversprechende Alternative zu dem HSV-TK System. Im Hinblick auf die derzeitigen Entwicklungen bezüglich der Funktionalität der genetisch modifizierten Zellen und der schnellen Beseitigung durch Rituximab wäre die Weiterentwicklung des CD20op/tCD34 Ansatzes zur effektiven Kontrolle einer GvHD nach DLI im Rahmen einer allogenen Stammzelltransplantation wünschenswert.
Die X-chromosomal gebundene chronische Granulomatose (X-CGD) ist eine seltene Erbkrankheit, bei der die NADPH-Oxidase der Phagozyten nicht funktionell ist. Der Grund hierfür liegt meist in Mutationen in der GP91phox Untereinheit der Phagozyten-Oxidase. Hierdurch treten lebensbedrohliche Bakterien- und Pilzinfektionen bei Patienten auf, was neben einer geringen Lebensqualität zu einer erheblich verkürzten Lebenserwartung führt. Eine Stammzelltransplantation eines gesunden Spenders ist bislang der einzige heilende Therapieansatz. Für X-CGD-Patienten, die keinen passen-den Spender zur Verfügung haben, stellt die genetische Modifikation autologer hämato-poetischer Stammzellen eine alternative Form der Therapie dar. Im Jahr 2004 wurden daher in einer präklinischen Phase I/II Studie in Frankfurt zwei X-CGD-Patienten gentherapeutisch behandelt. Hierbei wurden CD34+ Stammzellen ex vivo mit einem γ-retroviralen Vektor transduziert, der eine LTR-getriebene Expressionskassette für GP91phox trägt. Nach einer nicht-myeloablativen Konditionierung wurden die genetisch modifizierten Zellen der Patienten retransplantiert. Beide behandelten Patienten zeigten schon kurz nach Therapiebeginn eine deutliche Verminderung der Infektionsanfälligkeit und somit eine stark verbesserte Lebensqualität. Auf zellulärer Ebene konnte ein gutes Engraftment der modifizierten hämatopoetischen Stammzellen im Knochenmark beobachtet werden. In funktionellen Tests konnte die Bildung superoxidproduzierender Phagozyten für die Immunabwehr gezeigt werden. Das molekulare Monitoring beider Patienten hat jedoch über die Zeit eine Verringerung der Enzymaktivität in den Phagozyten (Superoxidproduktion) gezeigt, obwohl der Anteil genetisch modifizierter Zellen nicht geringer wurde. Im Rahmen der vorliegenden Arbeit konnte durch quantitative RT-PCR-Analysen proviraler mRNA-Transkripte, eine Korrelation zwischen dem Verlust der Enzymaktivität und reduzierter Transgen-expression gezeigt werden. Durch DNA-Analysen peripherer Blutproben beider Patienten konnte eine verstärkte Methylierung an der Promotor-CpG-Insel, welche die Transgen-expression reguliert, als Ursache identifiziert werden. Weiterführende klonale Untersuchungen genmodifizierter Kolonien aus dem Knochenmark der Patienten offenbarten einen direkten Zusammenhang zwischen der Abwesenheit von Transkription bzw. Superoxidbildung und der Methylierung dieser CpG-Insel im proviralen Promotor-bereich. Somit konnte zum ersten Mal ein epigenetisches Silencing bei Patienten nach einer Behandlung mit Gentherapie nachgewiesen werden. In weiteren Versuchen konnte die vollständig ausgebildete, spezifische Methylierung des SFFV-Promotors in transduzierten Knochenmarkzellen eines Patienten durch in vitro Behandlung mit einem Methyltransferase-Inhibitor (Aza-D) in Kombination mit einem Histondeacetylase-Inhibitor (TSA) bis zu 30% reduziert werden. Dieser Teilerfolg zeigt, dass eine klinisch relevante Reaktivierung der Transgenexpression, durch Umkehrung des Silencings am SFFV-Promotor, prinzipiell möglich ist. Das Phänomen der Abschaltung der Genexpression des γ-retroviralen Vektors in der Frankfurter Gentherapiestudie, hat ein Testsytem zur Evaluierung zukünftiger Gentherapie-Vektoren erfordert. Durch Monitoring proviraler Parameter (Kopien, Transgenexpression, Proteinexpression und Promotor-CpG-Methylierung), in der murinen embryonalen Stammzelllinie P19 konnte in dieser Arbeit ein prädiktiver Silencing-Assay erfolgreich etabliert werden. Mit Hilfe dieses Systems wurden vielversprechende Silencing-resistente Vektoren mit dem UCOE (Ubiquitous Chromatin Opening Element) identifiziert. Hierdurch wurden wichtige Grundlagen geschaffen, um zukünftige virale Vektorsysteme in Bezug auf ihre Langzeitexpression testen zu können. Zusätzlich zu der Inaktivierung der transduzierten Expressionskassette konnte in beiden Patienten ein klonales Auswachsen von Subklonen beobachtet werden, das letztendlich zu einem myelodisplastischen Syndrom bei beiden Patienten führte. Der virale Enhancer war im Gegensatz zum viralen Promotor niemals methyliert, wodurch seine transaktivierenden Eigenschaften unbeeinflusst blieben. Diese enhancervermittelte Aktivierung proliferationsfördernder Gene (Mds1-Evi1-Genlokus) konnte durch RT-PCR-Analysen zunächst in Mischpopulationen aus peripherem Blut der Patienten nach-gewiesen werden. Weiterführende klonale Analysen in Knochenmarkzellen zeigten den direkten Zusammenhang zwischen der transkriptionellen Aktivierung des Mds1-Evi1-Genlokus und den proviralen Insertionen. Somit konnte die Ursache für die therapie-assoziierte, klonale Dominanz in beiden X-CGD-Patienten aufgeklärt werden. In der Frankfurter Gentherapiestudie wurde erstmals ein klinischer Erfolg für X-CGD-Patienten erzielt. Durch intensives molekulares Monitoring konnte im Rahmen dieser Arbeit aufgedeckt werden, dass der eingesetzte γ-retrovirale Vektor über das Phänomen der Insertionsmutagenese hinaus, auch in Bezug auf die epigenetische Abschaltung der Transkription (Silencing), für zukünftige Studien modifiziert werden muss. Sicherheits-verbesserte Vektoren mit einer Resistenz gegenüber Silencing in murinen embryonalen Stammzellen konnten in dieser Arbeit charakterisiert werden. Mit diesen Genfähren könnte der angestrebte Langzeittherapieerfolg in Zukunft möglich werden.
Das onkogene Fusionsprotein AML1/ETO entsteht durch die chromosomale Translokation t(8;21), die in etwa 12 % aller primären akuten myeloischen Leukämien (AML) auftritt. Die DNA-Bindedomäne des hämatopoetischen Transkriptionsfaktors AML1 wird hierbei mit fast dem gesamten ETO-Protein fusioniert, das als transkriptioneller Repressor wirkt. In den transformierten Zellen kommt es somit zur Blockierung der myeloischen Differenzierung und zur verstärkten Proliferation. Entscheidend für das leukämische Potential von AML1/ETO ist die Fähigkeit zur Oligomerisierung, die durch die Nervy-Homologie-Region-2 (NHR2)-Domäne im ETO-Anteil vermittelt wird.
Durch lentivirale Transduktion konnte bereits gezeigt werden, dass Proteine, welche die NHR2-Domäne enthalten, die Oligomerisierung von AML1/ETO inhibieren und damit den leukämischen Phänotyp AML1/ETO-exprimierender myeloischer Zellen aufheben. In der vorliegenden Arbeit sollten nun alternative Wege zur Einbringung der therapeutischen Proteine in t(8;21)-positive AML-Zellen untersucht werden. Dafür wurde sowohl die Möglichkeit der Proteintransduktion als auch die Verwendung nicht-integrierender viraler Vektoren analysiert.
Im ersten Projekt wurden durch Fusion mit der HIV-1 TAT-Domäne zellpermeable NHR2-Proteine generiert. Zunächst wurde ein Protokoll zur Expression und Reinigung der rekombinanten Proteine etabliert. Durch eine ausführliche biochemische Charakterisierung konnte gezeigt werden, dass die aus Bakterien aufgereinigten NHR2-Proteine funktionell und sehr rein waren. Sie wiesen den erwarteten hohen alpha-helikalen Anteil auf und behielten ihre Fähigkeit zur Bildung von Tetrameren in vitro bei. Die TAT-NHR2-Fusionsproteine sind in der Lage, in humane Zellen einzudringen und konnten erfolgreich in den Lysaten nachgewiesen werden. Mikroskopische Studien zeigten, dass der Großteil der internalisierten Proteine in Endosomen-ähnlichen Vesikeln lokalisiert war. Die Zugabe des Endosomeninhibitors Chloroquin oder eines endosomolytischen, zellpermeablen Peptides ermöglichte eine erhöhte intrazelluläre Stabilität der zellpenetrierenden Proteine. Co-Immunpräzipitations-Experimente konnten bestätigen, dass die aufgenommenen NHR2-Proteine spezifisch an das ETO-Protein in transfizierten, adhärenten Zellen binden können. Die Proteintransduktion in die myeloische, AML1/ETO-wachstumsabhängige Zelllinie Kasumi-1 ist unter serumfreien Bedingungen ebenfalls möglich. Die konsekutive Behandlung der AML-Zellen mit den TAT-NHR2-Fusionsproteinen führte zu einer Reduktion der Expression des Stammzellmarkers c-kit (CD117) in 26 % der behandelten Zellen. Die Anwendung zellpermeabler NHR2-Proteine ist demnach prinzipiell möglich, bedarf aber weiterer Optimierung, um die notwendige hohe Bioverfügbarkeit zu erreichen.
In einem zweiten Projekt wurden Adeno-assoziierte virale (AAV) Vektoren verwendet, um die NHR2-Proteine in den hämatopoetischen Zellen zu exprimieren. Mit Hilfe mehrerer Methoden konnte gezeigt werden, dass sich mit den generierten Vektoren, die auf dem AAV-Serotyp 2 basierten, erfolgreich eine transiente Genexpression induzieren ließ. Der CMV-Promoter vermittelte jedoch nur eine schwache Expression in den hämatopoetischen Zellen. Unter Verwendung des stärkeren SFFV-Promoters konnte die Expressionsstärke deutlich gesteigert werden. Die von den optimierten AAV-Vektoren vermittelte Expression der NHR2-Proteine führte in den beiden AML1/ETO-positiven Zelllinien Kasumi-1 und SKNO-1 zu den erwarteten, spezifischen Effekten. So wurde das Wachstum verlangsamt und gleichzeitig die Apoptoserate erhöht. AML1/ETO-unabhängige Zellen wurden dagegen von den AAV-NHR2-Vektoren nicht beeinflusst. Obwohl die Proteinexpression in SKNO-1 Zellen stärker war, zeigten die Kasumi-1 Zellen deutlichere Effekte. Die NHR2-Proteine bewirkten in den transduzierten t(8;21)-positiven Zellen außerdem eine Reduktion der Expression der Stammzellmarker CD34 bzw. c-kit. Dies deutet auf eine partielle Differenzierung der beiden AML1/ETO-abhängigen Zelllinien hin. Damit ließen sich durch AAV-vermittelte Transduktion in den AML-Zellen dieselbe Wirkung in Hinblick auf Wachstum, Differenzierbarkeit und Apoptoserate erzielen wie dies mit den lentiviralen Vektoren zuvor beschrieben wurde. In einem abschließenden Vergleich wurde aber deutlich, dass nicht-integrierende Vektorsysteme generell eine schwächere NHR2-Proteinexpression induzieren und demzufolge auch schwächere Effekte als integrierende Vektoren in den AML1/ETO-positiven Zellen auslösen.