Refine
Year of publication
Document Type
- Doctoral Thesis (15)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- Kristallzüchtung (3)
- Bariumverbindungen (1)
- Charge-Ordering (1)
- Charge-Transfer Salts (1)
- Chemisches Element (1)
- Cuprate (1)
- Elektrischer Strom (1)
- Fester Zustand (1)
- Hochtemperatursupraleiter (1)
- Intermetallische Verbindungen (1)
Institute
- Physik (14)
- Biochemie und Chemie (1)
In den intermetallischen Verbindungen CeCu2Si2, CeCu2Ge2, CePd2Si2 und im CeCu6-xAux-System mit x = 0, 0,1, 0,2 bestimmen die elektronischen Wechselwirkungen, an denen die 4f-Elektronen der periodisch angeordneten Cer-Ionen partizipieren, das Tieftemperaturverhalten. Die magnetische Wechselwirkung der 4f-Elektronen mit den Leitungselektronen der metallischen Matrix führt zur Ausbildung des Schwere Fermionen Zustands. Auf diese Kondo-artige Wechselwirkung geht die Destabilisierung der magnetischen 4f-Momente mit sinkender Temperatur zurück. Bei hinreichend tiefen Temperaturen wird ein Kohärenzregime erreicht, in dem Quasiteilchen mit schweren Massen entstehen, und der Schwere Fermionen Zustand zeigt Merkmale einer schweren Fermiflüssigkeit. Im Fall von CeCu2Si2 gelten die schweren Quasiteilchen als Träger der supraleitenden Phase, die unterhalb von 1 K auftritt. Mit der Kondo-artigen Wechselwirkung konkurriert die magnetische Wechselwirkung zwischen den f-Elektronen, welche das Auftreten magnetischer Ordnung begünstigt. Um die magnetischen bzw. supraleitenden Tieftemperaturinstabilitäten in CeCu2Si2, Ce-Cu2Ge2, CePd2Si2 sowie im CeCu6-xAux-System mit x = 0, 0,1, 0,2 und das daraus resultierende Tieftemperaturverhalten zu untersuchen, wurden für diese Arbeit Ultraschall- und gegebenenfalls m+SR-Experimente an Einkristallen durchgeführt: Die Messungen der relativen Änderung Dcii/cii 0 der longitudinalen elastischen Konstanten cii, i =1,2,3, durch Ultraschall wurden in Abhängigkeit von der Temperatur T, dem statischen Magnetfeld B bis zu 27 T und im Fall von CeCu2Si2 auch unter uniaxialem Druck durchgeführt. Bei den m+SR-Experimenten an den CeCu2Si2-, CeCu2Ge2- und CePd2Si2-Einkristallen wurde die Zeitentwicklung der Myonspinpolarisation (das m+SR-Signal) unter dem Einfluss der inneren magnetischen Felder, die durch die magnetischen Momente der Probe am Myonstopport erzeugt werden können, beobachtet, meistens ohne dabei ein äußeres Magnetfeld anzulegen. Das Verhalten des Signals wurde i. a. mit einer mehrkomponentigen Anpassungsfunktion beschrieben. Die Temperaturabhängigkeit der relativen Amplituden, der Relaxationsraten und gegebenenfalls der Präzessionsfrequenzen dieser Komponenten kann die Entwicklung der verschiedenen Phasen in den Proben widerspiegeln. Ein Schwerpunkt dieser Arbeit liegt auf der Untersuchung der Wechselbeziehung zwischen der Supraleitung (SL) und der sie im B-T-Diagramm umgebenden A-Phase in CeCu2Si2. Auf der Basis von Symmetrieargumenten wurde nämlich aus dem Verhalten der elastischen Konstanten in Einkristallen, in denen die supraleitende Phase durch die Übergangssequenz C (paramagnetische Phase) ® A ® SL erreicht wird, ein außergewöhnliches Phänomen abgeleitet [Bruls, 1994a]: Die A-Phase, die magnetische Signaturen aufweist und immer noch von rätselhafter Natur ist, wird von der Supraleitung verdrängt. Auslöser für die Formulierung eines solchen Szenarios war die große positive Stufe in den elastischen Konstanten (7,5 x 10-4 in Dc11(T)/c11 0 von Einkristall #3S) am Übergang in die Supraleitung statt der erwarteten kleinen negativen Stufe. Im Bild eines Verdrängungseffektes wird die Hypothese aufgestellt, dass am direkten Übergang von C nach SL eine kleine negative Stufe auftritt. Die in der Gesamtbilanz positive Stufe am Übergang von A nach SL kommt dadurch zustande, dass diese kleine negative durch eine größere positive Stufe, die den simultanen Rückgang des APhasenordnungsparameters anzeigt, kompensiert wird. In den Einkristallen liegen die verschiedenen Phasen im B-T-Gebiet unterhalb von 1 K. Dies gilt auch für die B-Phase, die sich im Hochfeld an die A-Phase anschließt. A- und B-Phase zeigen eine Probenvariation, die sich in erster Linie in einer Reduktion der Anomalien und Effekte in verschiedenen Messgrößen spiegelt, aber auch in einer Streuung der Übergangstemperaturen. Die supraleitende Übergangstemperatur ist stark von der Cu-Stöchiometrie abhängig. Auf diese Probenabhängigkeiten lassen sich die unterschiedlichen Sichten auf die Wechselbeziehung zwischen der Supraleitung und der sie umgebenden Phase zurückführen. Sowohl eine Koexistenz als auch eine Konkurrenz wurde in Betracht gezogen. Aus m+SRMessungen an polykristallinem CeCu2Si2-Material wurde gefolgert, dass sich Supraleitung und magnetische Ordnung inhomogen im Probenvolumen entwickeln. Die im Rahmen dieser Arbeit durchgeführten Schallexperimente an einer Serie supraleitender CeCu2Si2-Einkristalle zeigen unterschiedliche Typen, die sich in der Ausprägung der A- und der B-Phasenanomalien unterscheiden: Am reinen Supraleiter (Einkristall #4B) ohne A- und B-Phase wurde die dem Verdrängungseffekt zugrunde gelegte Hypothese verifiziert, dass für den direkten Übergang von C nach SL eine kleine negative Stufe (- 0,6 x 10-4 in Dc11(T)/c11 0) auftritt. Ein weiterer Einkristall (#1B) lässt sich unabhängig vom mehrfachen Tempern im Feldbereich unterhalb von etwa 1,5 T als quasi reiner Supraleiter identifizieren. Die A-Phase ist nicht bis ins Nullfeld ausgedehnt. Die der A- bzw. B-Phase zugeordneten Hochfeldanomalien sind aber in Abhängigkeit von der Zahl der Tempervorgänge unterschiedlich stark reduziert. Die Verbreiterung der Anomalien wurde als Ausdruck einer Verteilung von Übergangstemperaturen und kritischen Feldern diskutiert. Ihre Reduktion lässt sich in diesem Bild als Ausbildung der A- bzw. B-Phase in einem reduzierten Probenvolumen auffassen. Trotzdem zeigt die elastische Konstante beim Passieren der A-Phasengrenze als Funktion des Feldes scharfe Verdrängungsanomalien. Die Schärfe des supraleitenden Übergangs prägt sich dem Verdrängungseffekt auf. Obwohl bei der Analyse von Dc11/c11 0 eine Konkurrenz der Phasen zugelassen wurde, der eine räumliche Separation im Probenvolumen zugrunde liegt, musste aus der Schärfe der Verdrängungsstufe und der Nettobilanz der Stufenhöhen an den verschiedenen Übergängen gefolgert werden, dass beim Passieren der A-SL-Phasengrenzlinie in Probenbereichen, die sich in der A-Phase befinden, die A-Phase durch die Supraleitung verdrängt wird. Im Fall von Übergängen ausreichender Schärfe ist die Ausbildung der A- und der SL-Phase und die Verdrängung homogen. In die Kategorie des Einkristalls #1B wurde ein weiterer Einkristall (#3Nu) eingeordnet, der unter ähnlichen Züchtungsbedingungen wie die Einkristalle #1Nu und #2Nu (#1,2Nu) hergestellt wurde. Durch den Vergleich der Schallexperimente an den verschiedenen Kristallen wurde der Einkristall #3S als Prototyp für einen Supraleiter mit ausgeprägten und scharfen A-Phasen- und Verdrängungsanomalien identifiziert. In diesem liegt bei B = 0 die Temperatur Tc für den Übergang von A nach SL dicht unterhalb von TA für den Übergang in die A-Phase. Für die Qualität des Prototyps #3S stehen die im Rahmen dieser Arbeit gefundenen magnetoakustischen Quantenoszillationen. Seine anisotropen B-T-Diagramme wurden für statische Magnetfelder bis 27 T gemessen. Eine weitere Phase, die sich der B-Phase im Hochfeld anschließt, konnte im zugänglichen Temperatur- und Feldbereich nicht gefunden werden. In den großen Einkristallen #1,2Nu ließ sich das Verhalten von #3S in wesentlichen Punkten reproduzieren. Zusammen ergaben sie hinreichend viel Material einheitlicher Eigenschaften, um daran m+SR-Experimente durchzuführen. Ihre Schallanomalien erreichen fast vergleichbare Größen wie die in #3S, sind jedoch weniger scharf als in diesem. In den Dämpfungsmessungen an den Phasenübergängen treten größere Unterschiede zwischen #2Nu und #3S hervor. Die vergleichende Analyse der relativen Dämpfung an den diversen Übergängen stützt den Befund, dass die Supraleitung die A-Phase verdrängt. Die Schallexperimente an #3S unter uniaxialem Druck entlang der a-Achse des tetragonalen Gitters von CeCu2Si2 zeigen, dass schon geringer Druck (» 0,3 kbar) eine Verschiebung der Phasengrenzlinien bewirkt: Die A-Phase wird destabilisiert, im Gegenzug wird die Supraleitung stabilisiert. Bevor noch die Verschiebung merklich wird, tritt eine allerdings stark anisotrope Reduktion der Anomaliegrößen auf. Letztere korrespondiert mit der Anisotropie des statischen Verzerrungszustands, den der uniaxiale Druck bewirkt. Bei ca. 0,3 kbar wird die APhasengrenzlinie merklich zu kleineren und die Grenzlinie des Übergangs von A nach SL zu höheren Feldern verschoben. Im Bereich der Übergangstemperaturen TA und Tc bei B = 0 ist das Verhalten der Phasen aufgrund der reduzierten Schallanomalien schwieriger zu analysieren. Auch wenn davon ausgegangen wird, dass die Anomalien unter dem Einfluss des Druckes an sich reduziert sind, können die Größenverhältnisse und die Verbreiterung der Anomalien anzeigen, dass aufgrund der gegenläufigen Druckabhängigkeit von TA und Tc nur noch ein Teilvolumen A-Phase entwickelt. Die Schallexperimente wurden auf Einkristalle der zu CeCu2Si2 isostrukturellen Verbindungen CeCu2Ge2 und CePd2Si2 ausgedehnt. Diese ordnen bei Normaldruck langreichweitig mit bekannter magnetischer Struktur. CeCu2Ge2 geht bei ca. 4,4 K in eine inkommensurabel [Knopp,1989], CePd2Si2 bei ca. 10 K in eine kommensurabel geordnete antiferromagnetische Phase über [Grier, 1988]. Die Messungen an einem CeCu2Ge2-Einkristall mit TN = 4,5 K führen für B // a auf ein komplexes B-T-Diagramm, dessen Topologie durch mindestens einen kritischen Punkt gekennzeichnet ist. Im Nullfeld gibt es keine reproduzierbaren Hinweise auf einen weiteren Phasenübergang. Auch bei CeCu2Ge2 und CePd2Si2 erscheint der Magnetismus als sensitiv auf die Stöchiometrie und strukturelle Inhomogenitäten. Für beide Verbindungen treten Einkristalle mit reduziertem TN auf. Dies wird aber nicht von einer signifikanten Reduktion der Anomaliegrößen begleitet. Im Fall der CeCu2Ge2-Einkristalle mit TN = 3,5 K tritt bereits im Nullfeld ein weiterer Übergang (M) bei einer Temperatur TM im Bereich von 1,7 K-2,5 K auf, der sich für B // a entlang der M-Linie auf den kritischen Punkt zubewegt. Im B-T-Gebiet, das in der Halbebene oberhalb der Temperatur des kritischen Punktes liegt, gleicht die Topologie des Phasendiagramms der des 4,5 K-Einkristalls. Darauf stützt sich unter anderem die Folgerung, dass bei B = 0 für TM < T < TN die magnetischen Strukturen der Einkristalle mit TN = 4,5 K und TN = 3,5 K einander ähnlich sind. In einem CePd2Si2-Einkristall mit TN = 10 K verharrt TN für B // c auch bei 12 T auf dem Wert für B = 0. Die vorhandenen Ultraschallmessungen geben keine Hinweise auf weitere Übergänge für T < TN und B £ 12 T. Dies gilt auch für den CePd2Si2-Einkristall mit einem reduzierten TN von 8,8 K. Bei den m+SR-Experimenten an den CeCu2Ge2- und CePd2Si2-Einkristallen mit reduziertem TN wurde erwartet, bei geeigneter experimenteller Geometrie in der geordneten Phase ein Präzessionsmuster im m+SR-Signal zu erhalten. Hierfür muss in der Verteilung der inneren Magnetfelder, die von den geordneten magnetischen Momenten erzeugt werden und um welche die Myonenspins präzedieren, genügend statistisches Gewicht auf einem endlichen Feldbetrag liegen. Im Fall von CeCu2Ge2 ist aufgrund der Inkommensurabilität mit einer der magnetischen Struktur innewohnenden Relaxation des Signals zu rechnen. Sowohl in CeCu2Ge2 als auch in CePd2Si2 ist der Übergang in die geordnete Phase durch das Auftreten einer schnell relaxierenden Komponente gekennzeichnet. Diese ist auch innerhalb der geordneten Phasen dominant. Der zügige Anstieg ihrer Amplitude korrespondiert mit der Stufenanomalie in den elastischen Konstanten am Übergang. Das in CePd2Si2 beobachtete Präzessionsmuster bzw. der Ansatz zu nicht monotonem Verhalten in CeCu2Ge2 unterhalb des Übergangs ist nur schwach ausgeprägt. Aus der schnellen Anfangsdepolarisation, von welcher der Großteil des Signals betroffen ist, wurde geschlossen, dass eine Inhomogenität der Feldverteilung infolge struktureller Inhomogenitäten der Proben Ursache für die Diskrepanzen zwischen beobachtetem und erwartetem Verhalten ist. Im Fall von CeCu2Ge2 können neben den Störungen der Gitterperiodizität dynamische Effekte auf Grund der Nähe zu den M-Übergängen bei TM < TN hinzukommen. Die m+SR-Experimente an supraleitenden CeCu2Si2-Einkristallen zeigen, dass mit der Entwicklung der A-Phase eine gaußförmig schnell relaxierende Komponente im zweikomponentigen m+SR-Signal verknüpft ist. Das Verhalten dieser Komponente lässt sich durch die Temperaturabhängigkeit ihrer Amplitude a1 und ihrer Rate S1 charakterisieren. Sie ist in den Einkristallen #1,2Nu, die in den elastischen Konstanten große A-Phasen- und Verdrängungsanomalien aufweisen, zu beobachten, nicht aber im Supraleiter #1B, der im Nullfeld keine APhase ausbildet, sondern direkt in die supraleitende Phase (SL) übergeht. Aus dem Vergleich der Werte für die Relaxationsrate der schnell relaxierenden Signalkomponente wurde geschlossen, dass die A-Phase mit dem Zustand der magnetischen Volumina, die in Polykristallen detektiert wurden und deren magnetische Momente elektronischen Ursprungs sein müssen [Luke, 1994,; Feyerherm, 1997], identisch ist. In der SL-Phase von #1B ist die gaußförmige Relaxation des m+SR-Gesamtsignals so langsam wie in der C-Phase. Im m+SR-Signal der Einkristalle kann übereinstimmend mit den Polykristalldaten in der APhase für die gewählte Geometrie kein spontanes Präzessionsmuster beobachtet werden. Die monotone, gaußförmige Relaxation des Signals weist auf eine inhomogene Feldverteilung mit statistisch verteilten Magnetfeldbeträgen hin. Diese Felder haben eher statischen Charakter. In den Einkristallen #1,2 Nu sind aber die mittleren Übergangstemperaturen der Phasenübergangssequenz C-A-SL gegenüber dem Prototyp #3S reduziert und die Schallanomalien verbreitert. Aufgrund der m+SR-Ergebnisse für die CeCu2Ge2- und CePd2Si2-Proben mit reduzierten Übergangstemperaturen wurde daher in Betracht gezogen, dass die im m+SR-Signal erkennbaren Merkmale der Feldverteilung nicht nur auf die „Struktur“ oder den Ordnungstypus der A-Phase zurückgehen, sondern auch durch strukturelle Inhomogenitäten des Materials geprägt sind. Störungen des Kristallgitters können eine Inhomogenität der Feldverteilung bewirken, durch welche die Charakteristika der A-Phase zumindest teilweise verdeckt werden können. Überhaupt kann der Ordnungstyp der A-Phase untrennbar mit dem Vorhandensein von Gitterstörungen verknüpft sein. Um die Natur der A-Phase eindeutig zu klären, sind Neutronenbeugungsexperimente notwendig. Bei den im Zusammenhang mit dieser Arbeit durchgeführten Neutronenexperimenten konnten bislang keine magnetischen Bragg-Reflexe gefunden werden. Die m+SR-Experimente an den Einkristallen bestätigen das Szenario der Verdrängung der APhase durch die Supraleitung, wie es in den Schallexperimenten an den CeCu2Si2-Einkristallen gefunden wurde: In den Einkristallen #1,2 Nu steigt die normierte Amplitude a1(T) der Komponente des m+SR-Signals, die auf die A-Phase zurückgeht, unterhalb von 0,80 K zügig auf einen Maximalwert von 75 % bei ca. 0,60 K an. Dieser Anstieg von a1 korrespondiert mit der negativen Stufenanomalie, die in der Temperaturabhängigkeit der relativen Änderung Dcii(T)/cii 0 (i =1,3) der elastischen Konstanten beim Übergang von der C- in die A-Phase auftritt. Die Abnahme von a1 unterhalb von 0,60 K korrespondiert mit der positiven Stufenanomalie in Dcii/cii 0 am Übergang von A nach SL. Tc = 0,60 K wird mit dem Einsetzen der Supraleitung assoziiert. Diese Korrespondenz zwischen Schallanomalien und a1(T) geht soweit, dass der Verlauf von Dcii(T)/cii 0 sich beinahe durch die Multiplikation von a1(T) mit einem konstanten Proportionalitätsfaktor reproduzieren lässt. Mit Einschränkungen kann a1(T) als Maß für das Probenvolumen, das sich in der A-Phase befindet, betrachtet werden. Dcii(T)/cii 0 skaliert also mit dem A-Phasenvolumen. Dieser Zusammenhang ergibt sich auch aus einer einfachen Modellbetrachtung für eine inhomogene Entwicklung und Verdrängung der A-Phase durch die Supraleitung im Probenvolumen. Der Proportionalitätsfaktor ist hierbei mit der negativen Stufe in Dcii(T)/cii 0 am Übergang von C nach A in einer idealen homogenen Probe identisch. Im Fall des Einkristalls #3S ist im Bereich des Übergangs von C nach A der Verlauf der Kurve, die mit -7,9 x 10-4 a1(T) errechnet wurde, mit Dc11(T)/c11 0 identisch. Im Bereich der Verdrängungsanomalie reproduziert die errechnete Kurve ein Ansteigen von Dc11(T)/c11 0, aber die Abweichung nimmt mit sinkender Temperatur zu. Gemessen an den durchgeführten Approximationen innerhalb der Modellbetrachtung ist die Übereinstimmung aber beachtlich. Der prototypische Einkristall #3S weist größere und schärfere Schallanomalien als die Einkristalle #1,2Nu auf, ist aber für m+SR-Messungen viel zu klein. Mit dem Wert von -7,9 x 10-4 für den Proportionalitätsfaktor lässt sich in umgekehrter Weise zum Vorgehen bei den Einkristallen #1,2Nu die an #3S gemessenen Kurve von Dc11(T)/c11 0analysieren. Das Ergebnis für a1(T) zeigt, dass sich im gesamten Probenvolumen von #3S die A-Phase entwickelt und ihre Verdrängung durch die Supraleitung vollständig und quasi homogen erfolgt. Verdrängt die Supraleitung die A-Phase, müssen der A-Phasenordnungsparameter und die inneren magnetischen Felder, die anzeigen, dass die A-Phase vorliegt, wieder verschwinden. Die Relaxationsrate S1 der Komponente im Signal, die mit der A-Phase verknüpft wird, kann als Maß für den Ordnungsparameter betrachtet werden. In den Einkristallen #1,2Nu zeigt die Temperaturabhängigkeit S1(T) einen Bruch in ihrem Verhalten, wenn die zügige Abnahme von a1(T) aufgrund der Verdrängung der A-Phase einsetzt: Sie geht für sinkende Temperatur in ein Regime eines deutlich abgeschwächten Anstiegs über. Dies wurde im Bild einer inhomogenen Entwicklung der Phasen als Folge eines Nettoeffekts diskutiert, zu dem Probenbereiche beitragen, in denen die A-Phase kurz davor steht, von der Supraleitung verdrängt zu werden und deshalb der A-Phasenordnungsparameter und einhergehend die inneren magnetischen Felder nicht mehr zunehmen oder sogar zurückgehen. Um ein solches Verhalten zu verifizieren, braucht es Messungen an Einkristallen mit scharfen Phasenanomalien und einem breiteren Temperaturgebiet, auf dem die A-Phase bei B = 0 existiert. Aufgrund der Konkurrenz der Wechselwirkungen, an denen die f-Elektronen partizipieren, lässt sich im CeCu6-xAux-System durch Variation der Konzentration x ein Übergang zwischen einem magnetischen und einem nichtmagnetischen Grundzustand induzieren. Auf die Nähe zum T=0-Phasenübergang werden in CeCu5,9Au0,1 die Abweichungen vom Fermiflüssigkeitsverhalten, das in der spezifischen Wärme, der magnetischen Suszeptibilität und dem elektrischen Widerstand von CeCu6 näherungsweise beobachtbar ist, zurückgeführt. In den vergleichenden Messungen der longitudinalen elastischen Konstanten an CeCu5,9Au0,1 und CeCu6 traten erst unterhalb von 1 K Unterschiede für die beiden Konzentrationen auf. Die Übereinstimmung im globalen Verhalten legte nahe, dass auch im Fall von CeCu5,9Au0,1 die Schalleffekte durch die Grüneisenparameterkopplung beschreibbar sind. In der Grüneisenparameterformel folgt die adiabatische elastische Konstante der Temperaturabhängigkeit des elektronischen Beitrags zur Inneren Energie mit den richtungsabhängigen Grüneisenparametern als Proportionalitätskonstanten. Da die beobachteten Unterschiede klein sind, ist es umso erstaunlicher, dass sie nicht vollständig durch die Unterschiede in der Änderung der Inneren Energie erfasst werden können. Zudem sind sie moden- und damit richtungsabhängig. Diese Ergebnisse wurden im Bild einer Temperaturabhängigkeit der betroffenen Grüneisenparameter diskutiert.
Metalle, die mit kubisch innenzentrierter Struktur oder in dichtesten Kugelpackungen kristallisieren, wandeln sich in guter Näherung ohne Volumenänderung ineinander um. Dieser bereits von Pearson 1972 beschriebene Sachverhalt wird hier als Volumenregel formuliert. Elemente in den genannten Strukturen haben die gleiche Dichte. Mit der für die Abhängigkeit des Bindungsgrades s vom Atomabstand r von Pauling 1947 angegebenen Funktion s(r) = exp((R1 - r)/b) wird aus den Kristallstrukturen der festen Elemente das Atomvolumen berechnet, das das jeweilige Element bei gleicher Bindungswertigkeit in einer dieser Strukturen hat. Dabei werden Strukturen mit höherer Dichte als die kubisch innenzentrierte Struktur oder die dichtesten Kugelpackungen nicht gefunden. Diese und einige weitere Strukturen gleicher Dichte (+- 1%) werden hier als dichte Strukturen bezeichnet. Außer den Edelgasen sind alle Elemente, die mit dichten Strukturen kristallisieren, Metalle, doch haben eine Reihe von Metallen (Mangan, Zink, Cadmium, Quecksilber, Gallium und Zinn) nichtdichte Strukturen. Für diese und für die nichtmetallischen Elemente wird das Atomvolumen ihrer dichten Formen berechnet, d.h. das Volumen, das sie unter Normalbedingungen im dichten (metallischen) Zustand einehmen würden. Ist für ein Element der Bindungsgrad für eine Bindungslänge bekannt, so kann aus diesem das Atomvolumen im dichten Zustand abgeschätzt werden. Aus verschiedenen Strukturen von Nichtmetallen (Phosphor und Schwefel etc.) berechnet sich jeweils in guter Näherung das gleiche Atomvolumen für den dichten Zustand VD. Dies bestätigt die Gültigkeit der Pauling-Funktion. Eine weitere Bestätigung liegt darin, dass für Mangan, Kupfer und Technetium in verschiedenen Strukturen quantenmechanisch berechnete Volumenverhältnisse nach den hier abgeleiteten Beziehungen ebenfalls erhalten werden. Der dichte Zustand der Elemente erscheint hier als ein von der Kristallstruktur unabhängiger Grenzzustand der kondensierten Materie. Bei bekannter Bindungswertigkeit eines Elements können die Parameter R1 und b der Paulingfunktion (Bindungsgrad-Parameter) und damit die Abstandsabhängigkeit des Bindungsgrades berechnet werden. Dies wird für alle s-, p- und d-Elemente durchgeführt. Dabei ergeben sich für die Länge der Einfachbindung R1 Werte, die zum Teil erheblich von den Literaturdaten abweichen. Der Parameter b ist im Gegensatz zu den Literaturangaben nicht konstant, sondern der dritten Wurzel aus VD proportional. Aufgrund derBindungsgrad-Parameter kann derBeitrag vonMetall-Metall-Bindungen zur Wertigkeit in Verbindungen bestimmt werden. Die Volumenverhältnisse von intermetallischen Phasen sowie Hochdruckformen der Elemente werden aufgrund der hier abgeleiteten Beziehungen diskutiert.
Quasikristalle im System Zink-Magnesium-Seltene-Erden : Materialpräparation und Einkristallzüchtung
(2005)
Diese Arbeit beschäftigt sich mit der Materialpräparation und Einkristallzüchtung von Quasikristallen und verwandten Verbindungen im System Zink-Magnesium-Seltene-Erden (Zn-Mg-SE). Für eine Einkristallzüchtung der hochgeordneten primitiv-ikosaedrischen Phase (si Zn-Mg-Ho) wird zuerst eine geeignete Schmelzzusammensetzung ermittelt, aus der si Zn-Mg-Ho primär erstarrt. Es wird gezeigt, daß sich diese auch auf die Seltenen Erden Erbium und Thulium, die einen ähnlich großen Atomradius haben, übertragen läßt. Bei der Verwendung von Seltenen Erden mit größerem Atomradius bildet sich eine bisher unbekannte rhomboedrische Phase mit einer Zusammensetzung von Zn84Mg5SE11, von der im Zn-Mg-Gd--System Einkristalle mit der Bridgman-Methode in einem geschlossenen Tantaltiegel gezüchtet werden. Die Kristallzüchtung von si Zn-Mg-Ho erfolgt sowohl mit der Bridgman-Methode als auch aus einem offenen Tiegel mit Keimvorgabe von oben, wobei die Schmelze mit einer Salzabdeckung vor Verdampfungsverlusten geschützt wird (LETSSG-Methode). Auf diese Weise werden facettierte Einkristalle mit einer Kantenlänge von über einem Zentimeter gezüchtet. Auch von der flächenzentriert-ikosaedrischen Phase im System Zn-Mg-Y, Zn-Mg-Ho und Zn-Mg-Er sowie von der hexagonalen Zn-Mg-Y--Z-Phase werden mit dieser Methode ähnlich große Einkristalle hergestellt. Zur Synthese von größeren Mengen polykristallinen Materials durch Abschrecken und Tempern wird eine Meltspinanlage aufgebaut, die durch die Verwendung eines ebenen Drehtellers (statt des sonst üblichen Rades) sehr kompakt ist und in eine vorhandene Metallschmelzanlage integriert werden kann. Mit diesem Gerät wird quasikristallines si Zn-Mg-Ho einphasig synthetisiert und dekagonales Zn-Mg-Dy, Zn-Mg-Ho und rhomboedrisches Mg21Zn25 als Probenhauptbestandteil hergestellt. Die erzeugten Proben werden zur Untersuchung von Struktur und physikalischen Eigenschaften an Kooperationspartner weitergegeben. Dabei wird ein lokales Strukturmodell der fci und si Quasikristalle mittels Analyse der Atompaarverteilungsfunktionen, die aus Röntgenpulverdaten (Molybdän- und Synchrotronstrahlung) gewonnen werden, entwickelt. Anhand dessen lassen sich erstmals ikosaedrische Cluster in den Quasikristallen eindeutig nachweisen. Die magnetische Suszeptibilität von si Zn-Mg-Ho zeigt bis zu einer Temperatur von 50~mK paramagnetisches Verhalten. Eine magnetische Fernordnung tritt bis zu dieser Temperatur nicht auf. Untersuchungen mit der Radio-Tracer-Methode zeigen, daß Phasonen an der Diffusion in fci Zn-Mg-Y und Zn-Mg-Ho nicht beteiligt sind.
Magnetic characteristics of metal organic low-dimensional quantum spin systems at low temperatures
(2010)
In dieser Arbeit wurden neue Klassen von niedrigdimensionalen metallisch-organischen Materialien untersucht, die es ermöglichen interessante quantenkritische Phänomene (quantum critical phenomena, QCP) wie die Bose-Einstein-Kondensation (Bose-Einstein condensation, BEC) der magnetischen Anregung in gekoppelten Spin-Dimer-Systemen, den Berezinskii-Kosterlitz-Thouless Übergang (Berezinskii-Kosterlitz-Thouless transition, BKT) und die Divergenz des magnetokalorischen Effekts (magnetocaloric effect, MCE) in Quanten-Spinsystemen beim Anlegen eines magnetischen Feldes zu beobachten. Die Niedrigdimensionalität der untersuchten Systeme war sowohl für die theoretische Beschreibung, als auch für die experimentelle Beobachtung der Phänomene von großer Bedeutung. Aus theoretischer Sicht eröffnet die Beschäftigung mit diesen Systemen die Möglichkeit, einfache Modelle zu entwickeln, die exakt lösbar sind und erlaubt somit ein qualitatives Verständnis der magnetischen Phänomene. Von experimenteller Seite ist es von größtem Interesse, dass durch das Zusammenspiel von Niedrigdimensionalität, konkurrierenden Wechselwirkungen und starker Quantenfluktuation exotische und aufregende magnetische Phänomene (quantenkritische Phänomene) entstehen, die mit verschiedenen experimentellen Methoden untersucht werden können. Um die intrinsischen Eigenschaften der quantenkritischen Phänomene zu verstehen ist es wichtig, die Phänomene an einfachen und gut kontrollierbaren niedrigdimensionalen Modellsystemen wie ein- oder zweidimensionalen Systemen zu untersuchen. ...
Diese Arbeit beschäftigt sich mit der Synthese und der Einkristallzüchtung der beiden Spin-Leiter-Verbindungen SrCu203 und Sr2Cu3O5 unter hohem Druck. Zunächst wird in einer Reihe von Versuchen ein geeignetes Tiegelmaterial ermittelt. Dabei stellen sich eine Doppeltiegelkonstuktion mit einem einkristallinen Magnesiumoxid-Innentiegel und einem verschweißbaren äußeren Platintiegel als beste Materialkombination heraus. Die Standzeit eines Versuchs lässt sich hiermit von den in der Literatur üblichen 30 Minuten um das 50 bis 100-fache verlängern. Durch Verwendung dieser Tiegelkombination können erstmals Züchtungsexperimente von SrCu203 und Sr2Cu305 aus der Schmelze erfolgreich durchgeführt werden. Für beide Zusammensetzungen konnten Kristalle mit Kantenlängen bis zu 2 mm hergestellt werden. Die besten Wachstumsbedingungen für SrCu203 liegen zwischen 3 und 5 GPa und zwischen 1400°C und etwa 1200°C. Diese Bedingungen wurden für stöchiometrische und auf etwa 70% Cu0 erhöhte Einwaagenzusammensetzungen ermittelt. Für Sr2Cu305 gelten ähnliche Züchtungsparameter. Durch die Züchtungsexperimente wurden neue Phasen, wie eine unbekannte Modifikation von Sr2Cu305 und eine nicht näher identifizierte ,243'-Phase gefunden. Das Auftreten der Fremdphase Sr2Cu02(C03) war zunächst überraschend und klärte sich durch den Herstellungsprozess der MgO-Einkristalle auf. Der Einbau des aus dem Tiegel stammenden gelösten Magnesiums wird in der die Cu203-Schichten trennenden Strontiumschicht erwartet. Damit erlangt es keine Wirkung auf die Spin-Leiter-typischen Effekte. Durch zahlreiche Messungen mit wellenlängendispersiver Röntgenanalyse am Rasterelektronenmikroskop wurden die maßgeblichen Reaktionswege aufgeklärt und die besten Wachtumsbedingungen sowie die Fremdphasenreaktionen ermittelt. Die Ergebnisse der Raman- und IR-Spektroskopie bestätigen das Auftreten der Struktur- beziehungsweise verbindungstypischen 2-Magnonen- und 2-Magnonplus-Phonon-Quasiteilchen. Durch Polarisationsmikroskopie und optische Transmissionsuntersuchungen konnte nachgewiesen werden, dass es sich bei den Proben um Einkristalle handelt. Die thermische Ausdehnung zeigt eine deutliche Anisotropie. Die Achsen in a- und b-Richtung besitzen niedrige und von der C-Richtung deutliche verschiedene lineare Ausdehnungskoeffizienten.
This thesis deals with the simulation, optimization and realization of quasi-optical scanning systems for active THz cameras. Active THz cameras are sensitive in the THz regime of the electromagnetic spectrum and are suitable for the detection of metal objects such as weapons behind clothing or fabrics (maybe for security applications) or material investigation. An advantage of active THz-systems is the possibility to measure the phase of the THz-radiation and thus to reconstruct the surface topography of the objects under test. Due to the coherent illumination and the required system parameters (like image field size, working distance and lateral resolution) the optical systems (in the THz region often called quasi-optical systems) must be optimized. Specifically, the active illumination systems require highly optimized quasioptical systems to achieve a good image quality. Since currently no suitable multi-pixel detectors are available, the object has to be scanned in one or two dimensions in order to cover a full field of view. This further reinforces the occurring aberrations. The dissertation covers, alongside the underlying theory, the simulation, optimisation and realisation of three different active THz systems. The subdivision of the chapters is as follows: Chapter 1 deals with a motivation. Chapter 2 develops the underlying theory and it is demonstrated that the geometrical optics is an adequate and powerful description of the image field optimization. It also addresses the developed analytic on-axis and the off-axis image field optimization routine. Chapter 3, 4 and 5 are about the basis of various active THz cameras, each presented a major system aspect. Chapter 3 shows how active THz-cameras with very high system dynamics range can be realised. Within this chapter it could although be demonstrated how very high depth resolution can be achieved due to the coherent and active illumination and how high refresh rate can be implemented. Chapter 4 shows how absolute distance data of the objects under test can be obtained. Therefore it is possible to reconstruct the entire object topography up to a fraction of the wavelength. Chapter 5 shows how off-axis quasi-optical systems must be optimized. It is also shown how the illumination geometry of the active THz systems must be changed to allow for real-time frame rates. The developed widened multi-directional lighting approach also fixes the still existing problem of phase ambiguity of the single phase measurement. Within this chapter, the world’s first active real-time camera with very high frame rates around 10 Hz is presented. This could be only realized with the highly optimised quasioptical system and the multi-directional lighting approach. The paper concludes with a summary and an outlook for future work. Within the outlook some results regarding the simulation of synthetic aperture radar systems and metamaterials are shown.
In der modernen Festkörperphysik spielen elektronisch stark korrelierte Systeme mit ihrem komplexen Vielteilchenverhalten eine zentrale Rolle. Insbesondere das Wechselspiel zwischen thermischen und Quantenfluktuationen in den Ladungs- und Spinfreiheitsgraden führt zur Entstehung verschiedenster neuartiger Grundzustände.
Die vorliegende Dissertation „Ultrasonic and Magnetic Investigations in frustrated Lowdimensional Spin Systems“ beschäftigt sich mit den besonderen physikalischen Eigenschaften niedrig dimensionaler Spinsysteme. Diese Materialklasse, die auch zu den stark korrelierten Systemen zählt, wird seit vielen Jahren intensiv sowohl experimentell als auch theoretisch untersucht. Auf theoretischer Seite sind die niedrigdimensionalen Spinsysteme besonders interessant, da sie als Modellsysteme die exakte Beschreibung des Grundzustandes und des Anregungsspektrums ermöglichen. Von experimenteller Seite ist es in den letzten Jahrzehnten gelungen, verschiedenste Materialklassen niedrigdimensionaler Spinsysteme zu synthetisieren.
In der vorliegenden Arbeit werden die grundlegenden Theorien und physikalischen Konzepte niedrigdimensionaler Spinsysteme diskutiert. Insbesondere auch die Spin-Phonon-Wechselwirkung dieser Materialien, die für die hier beobachteten elastischen Anomalien verantwortlich ist. Weiterhin wird auch das elastische Verhalten bei magnetischen Phasenübergängen beschrieben.
Da die Ultraschallexperimente einen Schwerpunkt dieser Arbeit bilden, wird der Versuchsaufbau zur phasenempfindlichen Detektion von Schallgeschwindigkeit und Ultraschalldämfung ausführlich beschrieben. Diese Messmethode ist ideal zur Untersuchung der Spin-Phonon Wechselwirkung geeignet.
Towards a THz Bloch laser
(2011)
The realisation of tunable THz laser sources working at room temperature would give
rise to further applications in this range of the electromagnetic spectrum. The THz
Bloch laser could therefore become the basis for a technological breakthrough. Beside
this practical relevance, the physics of the gain mechanism has been investigated
theoretically for a long time and the experimental implementation of a self-starting
laser still has not been achieved.
At the beginning of this thesis the basic principles of Bloch oscillations and the
related Bloch gain are described. The need of a superlattice structure to make Bloch
oscillations possible in a semiconductor material is discussed. In this context, the effect
of negative differential resistance and its influence on the field distribution due to Gunn
domains is explained. The latter lead to an inhomogeneous field which may suppress
the Bloch gain mechanism. The Krömer criterion is introduced and the concept of
field-pinning layers to improve the field homogeneity is deduced. Finally, the design of
the laser material is shown and different types of laser waveguides are compared.
In chapter 3 detailed recipes for the processing of samples are given. Different types of
contacts (ohmic and Schottky), the wafer bonding process required for double-metal
lasers and the application of different photoresists for different purposes are described.
An explanation of the formation of waveguides due to dry etching, wet etching
and ion implantation follows. Dry etching is an established technique in the field
of microstructure processing but the challenge of etching about 20 μm has led to
problems. The high etching depth also makes wet etching difficult but this method
could be improved due to a hard bake of the photoresist. The protection of critical
areas on the surface of the samples with photoresist during ion implantation was
increased by optimising the spin coating process. However, a full implantation of the
active layer between the waveguides was not achieved which was the reason for the
development of the hybrid technology. Here a prior wet etching of about 10 μm is
performed and the rest of the material is implanted.
The experimental setup is shown in chapter 4. An alternative method for the electrical
contacting with the help of a copper bar is introduced. This improves the current
distribution and the risk of an electrical breakdown during the measurements could
therefore be lowered. Devices for THz beam guidance and spectroscopic measurements
are shown and the method of biasing the samples with pulses below 100 ns and
determining the effective voltage applied to the sample is depicted. These short pulses
are required to prevent the samples heating up drastically due to high power.
Chapter 5 contains the current-voltage characterisation of several structures including
I-V-samples, Bloch laser samples and a quantum cascade laser. Different contacts
(ohmic and Schottky) and different techniques for the formation of the ridges have
been used in the processing of these samples (performed at the University of Frankfurt
in all cases) and their influence on the I-V-dependence is discussed. The properties of
the THz emission of the quantum cascade laser are in good agreement with published
results from lasers processed with the same material. Another important result of
this chapter is that the Bloch laser samples show unstable behaviour compared to the
quantum cascade structure even with short pulses (of about 10 ns) where the risk of an
electrical breakdown or the building of filaments is low. THz radiation emitted from
one of the Bloch laser samples could not be observed.
Two aspects that may have prevented the Bloch laser to emit are discussed in
chapter 6. The saturation of the gain for higher amplitudes of the THz wave is
investigated in single mode and multiple mode operation (the latter could occur due
to the Bloch gain being expected to be broadband). In both cases it is shown that
the saturation effect would limit the output power only to values clearly above the
detection limit. In the subsequent section the distribution of the electric field is
simulated with SILVACO software. Structures with transit layer lengths above the
Krömer criterion are compared with structures which include field-pinning layers. It is
shown that the latter are useful to avoid propagating Gunn domains as they build up
in similar structures without field-pinning layers. Nevertheless, the electric field inside
the superlattice regions is not stable. Beside spatial inhomogeneities also temporal
variations of the field magnitude are observed. The lack of a suitable field distribution
is expected to be the main reason for the samples not to work.
In the field of strongly correlated electron systems, there is a long standing discussion on whether lattice degrees of freedom play a role for several physical phenomena, among them the Mott MI transition and charge-ordering transition. Charge-transfer salts of the ..-(BEDT-TTF)2X and (TMTCF)2X families have been revealed as model systemss for the study of the latter phenomena. The (TMTCF)2X salts have been recognized as model systems for studying correlation effects in 1D, while the (BEDT-TTF)-based materials for such studies in 2D. In this work, high-resolution dilatometry experiments were performed in order to address these issues. The main results obtained are summarized below. ...