• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Adomat, Friederike (1)
  • Alsenz, Heiko (1)
  • Hauser, Ilona (1)
  • Koch, Mirjam (1)
  • Wagner, Franziska (1)
  • Widayat, Agus (1)
  • Widayat, Agus Haris (1)
  • Widodo, Sri (1)

Year of publication

  • 2011 (2)
  • 2006 (1)
  • 2008 (1)
  • 2013 (1)
  • 2014 (1)
  • 2016 (1)
  • 2019 (1)

Document Type

  • Doctoral Thesis (8)

Language

  • English (7)
  • German (1)

Has Fulltext

  • yes (8)

Is part of the Bibliography

  • no (8)

Keywords

  • Atoll (1)
  • Belize (1)
  • Bivalven-Vergesellschaftung (1)
  • Cluster-Analyse (1)
  • Ernährungsweise (1)
  • Geochemie (1)
  • Indonesia (1)
  • Kohle (1)
  • Kohlenpetrologie (1)
  • Late Cretaceous (1)
+ more

Institute

  • Geowissenschaften (7)
  • Geowissenschaften / Geographie (1)

8 search hits

  • 1 to 8
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Verteilung rezenter und fossiler Bivalven auf drei Atollen vor der Küste von Belize (Mittelamerika, Karibisches Meer) (2006)
Hauser, Ilona
Die drei Atolle Glovers Reef, Lighthouse Reef und Turneffe Islands vor der belizischen Küste im Karibischen Meer unterscheiden sich in Geomorphologie, Lagunentiefe, Sedimentbeschaffenheit, Mangroven- und Seegrasbewuchs, Wellen- und Strömungseinfluss sowie in ihren Sedimentationsraten und ihrem Entstehungsalter. Um herauszufinden, ob die Bivalven-Vergesellschaftungen verschiedener Lagunenzonen diese Unterschiede widerspiegeln, wurden 32 bis 44 rezente Sedimentproben auf jedem Atoll entnommen (Gesamtprobenzahl: 111). Deren Datensatz von insgesamt 32 122 Bivalvenschalen wurde anschließend Q-Mode-Cluster-Analysen unterzogen. Neben der Verteilung charakteristischer Arten wurde auch die Verteilung von Bivalven unterschiedlicher Lebens- und Ernährungsweise untersucht. Chione cancellata, ein flach grabender Suspensionsfresser, besiedelt bevorzugt (1) flache, wellen- und strömungsbeeinflusste Lagunenzonen. Die Sedimente (2) sehr hoch energetischer Flachwasserbereiche enthalten zudem hohe Anteile tiefer grabender Suspensionsfresser der Gattung Ervilia. Im (3) Rückriffbereich und am Atollrand sind tief grabende, Detritus fressende Telliniden häufig. Gouldia cerina, wie Chione ein flach grabender Suspensionsfresser, ist typisch für (4) geschlossene Flachwasserbereiche, während die Chemosymbionten-tragende, ebenfalls flach grabende Parvilucina sp. A. vorwiegend in (5) geschlossenen, tiefen Lagunenzonen vorkommt. Charakteristisch für (6) Mangrovengebiete ist Crassinella lunulata, ein sehr flach grabender Suspensionsfresser. Die Anteile taphonomischer Signaturen auf den Schalen, wie Bohrspuren, Inkrustationen, Fragmentierung und Abrasion sowie Diversität, Evenness und Richness sind auf Glovers Reef am höchsten und nehmen über Lighthouse Reef nach Turneffe Islands ab. Da in die gleiche Richtung zunehmende Sedimentationsraten auf den drei Atollen zu verzeichnen sind (GISCHLER 2003), ist vermutlich der abnehmende Effekt des Time-averaging für diesen Trend verantwortlich. Neben der rezenten Fauna wurden auch die Bivalven aus Vibrationsbohrkernen (ein Kern von jedem Atoll) untersucht. Die fossilen Bivalven-Vergesellschaftungen der inneren Lagunen von Glovers Reef, Lighthouse Reef und Turneffe Islands zeigen seit deren Entstehung eine für das jeweilige Atoll typische Fauna, die sich seit ~7000 YBP weiter entwickelte. Sie reflektieren damit die bereits im Anfangsstadium charakteristischen Unterschiede der drei Atolle.
Organic petrology and geochemistry of Miocene coals from Kutai Basin, Mahakam Delta, East Kalimantan, Indonesia : genesis of coal and depositional environment (2008)
Widodo, Sri
The purpose of this study was to reconstruct the depositional environment, the genesis and the composition of Miocene coals in the Kutai Basin, East Kalimantan, Indonesia and to improve our understanding of the factors controlling the organic and inorganic composition, variation of biomarkers, and the peat forming vegetation of the coals. To achieve the aim methods belonging to three different disciplines were applied: 1. Coal petrology (chapter 3) 2. Inorganic geochemistry: sulfur, pyrite and mineral matter distributions (chapter 4) 3. Organic geochemistry of saturated, aromatic hydrocarbon fractions and stable carbon isotopic composition (chapter 5 and 6) Coal petrology Coal developes from peat deposited in mires, mainly in swamps and raised bogs. It is therefore necessary to consider how peat was formed in the past. Coal contains a variety of plant tissues in different degrees of preservation. Tissues of distinct origin are microscopically identifiable and can frequently be related to certain parts of the plant, such as cuticles, woody structures, spores, algal, resin, etc. Together with the particles of less certain origin they are termed macerals which are the petrographic components of coal. During and after deposition of plant remains in sedimentary basins, the organic matter will undergo a sequence of physical, biochemical and chemical changes, which finally results in the formation of coals of increasing rank depending mainly on the temperature influence. The process of coalification begins with practically unaltered plant material and peat, and continues with increasing rank through brown coal, bituminous coal, and finally to anthracite as well as graphite. Coal petrography provides valuable of data of maceral and mineral percentages with reflectance values, which can be used to reconstruct the depositional environment and the coalification processes. In lower rank coals, the material is represented by a group of macerals called huminite, and in bituminous and anthracite coals by a group of macerals called vitrinite. Coal petrography analyses have been carried out on samples from some Miocene coal seams from Kutai Basin. The study has shown that huminite reflectance values of coal samples from ...
Paleoenvironmental and paleoecological changes during deposition of the Late Eocene Kiliran oil shale, Central Sumatra Basin, Indonesia / by Agus Haris Widayat (2011)
Widayat, Agus
Forty two samples of the Late Eocene Kiliran oil shale, Central Sumatra Basin, Indonesia were collected from a 102 m long drill core. The oil shale core represents the deposition time of about 240.000 years. Palynofacies and geochemical analyses have been carried out to reconstruct the paleoenvironmental conditions and paleoecology during deposition of the oil shale. Amorphous organic matter (AOM) is very abundant (>76%). B. braunii palynomorphs are present (3-16%) as the only autochtonous structured organic matter and generally more abundant in the middle part of the profile. The stable carbon isotopic composition of bulk organic matter (13C) varies from -27.0 to -30.5‰ and is generally more depleted in the middle part of the profile. The ratio of total organic carbon to sulfur (TOC/S), used as salinity indicator, ranges from 2.5 to 15.8 and shows variations along the profile. Slightly less saline environments are observed in the middle part of the profile. Fungal remains are generally present only in this part with a distinct peak of abundance. The presence of fungal remains is regarded as an indication for a relatively warmer climate during deposition of the middle part of the profile. The warmer climate is thought to influence the establishment of a thermocline, limiting the supply of recycled nutrients to epilimnion. Consequently, the primary productivity in the Kiliran lake decreased during deposition of the middle part of the profile as indicated by the relatively depleted 13C values and the blooming of B. braunii. The chemocline was also shoaling during the deposition according to the higher abundance of total isorenieratane and its derivatives originated from green sulfur bacteria dwelling in the photic zone euxinia. The warmer climate is also thought to influence the slightly decrease of water salinity during deposition of the middle part of the profile. The occurrence of B. braunii in Kiliran lake is also recognized from organic geochemical data. The distribution of n-alkanes is characterized by the unusual high amount of C27 n-alkane relative to the other long-chain n-alkanes. The concentrations of C27 n-alkane vary from 30.1 to 393.7 μg/g TOC and are generally in parallel with the abundances of B. braunii palynomorphs along the profile. The 13C values of this compound are about -31‰ and up to 2‰ enriched relative to those of the adjacent long-chain n-alkanes. B. braunii race A can thus be regarded as the significant biological source of the C27 n-alkane. Lower amounts of lycopane are observed in many oil shale samples (0 to 54.7 μg/g TOC). The 13C value of this compound is 17.2‰. This strong enrichment of 13C suggests that the lycopane was derived from B. braunii race L. The concentrations of lycopane develop generally in opposite with those of C27 μalkane. It is likely that both B. braunii races bloomed in alternation in the lake, probably due to changes on specific water chemistry. Norneohop-13(18)-ene and neohop-13(18)-ene derived from methanotrophic bacteria are the dominant hopanoid hydrocarbons. The sum of their concentrations varies from 40.6 to 360.0 μg/g TOC. The 13C of these compounds are extremely depleted (-45.2 to -50.2‰). The occurrence of abundant bacteria including methanotrophic bacteria was responsible for the recycling of carbon below the chemocline of the lake. The effect of the recycling of carbon is observed by the presence of a concomitant depletion (about 7-9‰) in 13C of some specific biomarkers derived from organisms dwelling in the whole phototrophic zone. 4-Methylsterane and 4-methyldiasterene homologues occur in the oil shale as the predominant biomarkers. The sum of the concentrations of all homologues are about 40.3-1,009.2 μg/g TOC with generally higher values in the uppermost and lower parts of the profile. Calcium (Ca) accounts as the predominant element in the oil shale, ranging from 5.0 to 16.7%. This element shows generally parallel variation with the 4-methylsterane and 4-methyldiasterene homologues along the profile. This suggests that these compounds were derived from biological sources favoring more alkaline and more trophic environments. On the other hand, these compounds were less abundant in the middle part of the profile which is consistent with less alkaline and less trophic environments promoting B. braunii to bloom. Alternation between Dinoflagellates and B. braunii in ancient lacustrine environments due to water chemistry changes have been known from previous studies. In the present case, distinct alternation between B. braunii abundances and concentrations of 4-methylsterane and 4-methyldiasterene homologues along the studied oil shale profile suggest a hypothesis that these compounds were derived from freshwater Dinoflagellates although dinosterane is not present in the sediment extracts. Water alkalinity and trophic level changes were most likely responsible for the alternation of Dinoflagellates and B. braunii blooming.
The climatic and environmental conditions during deposition of phosphorites and oil shales in the Late Cretaceous upwelling system of the Negev/Israel (2014)
Alsenz, Heiko
The Late Cretaceous is known to be mostly affected by warm periods interrupted temporarily by a number of cooling events. The reconstruction of the paleoclimatic conditions during a period of high concentration of CO2 in the atmosphere is of great importance for the creation of future climate models. We applied the recently developed method reconstructing the SST from the TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms). The sample material used for the present study was obtained from the tropical Late Cretaceous southern Tethys upwelling system (Negev/Israel), lasting from the Late Santonian to the Early Maastrichtian (~ 85 to 68 Ma). On the core samples from the Shefela basin, representing the outer belt of the upwelling system and the outcrop profile from the open mine Mishor Rotem (Efe Syncline), representing the inner belt, various bulk geochemical and biomarker studies were performed in this thesis. Derived from TEX86 data, a significant long-term SST cooling trend from 36.0 to 29.3 °C is recognized during the Late Santonian and the Early Campanian in the southern Tethys margin. This is consistent with the opening and deepening of the Equatorial Atlantic Gateway (EAG) and the intrusion of cooler deep water from the southern Atlantic Ocean influencing the global SSTs and also the Tethys Ocean. Furthermore, the cooler near shore SST usually found in modern upwelling systems could be verified in case of the ancient upwelling system investigated in the present study. The calculated mean SST in the inner belt (27.7 °C) represented in the Efe Syncline was 1.5 °C cooler in comparison to the more seaward located outer belt (Shefela basin). Moreover, geochemical and biomarker analyses were used to identify both the accumulation of high amounts of phosphate in the PM and good preservation of organic matter (OM) in the lower part of the OSM section. Total organic carbon (TOC) contents are highly variable over the whole profile reaching from 0.6 % in the MM, to 24.5 % in the OSM. Total iron (TFe) varies from 0.1 % in the PM to 3.3 % in the OSM and total sulfur (TS) varies between 0.1 % in the MM and 3.4 % in the OSM. Different correlations of TS, TOC and TFe were used to identify the conditions during the deposition of the different facies types. Natural sulfurization was found to play a key role in the preservation of the OM particularly in the lower part of the OSM. Samples from the OSM and the PM were deposited under dysoxic to anoxic conditions and iron limitation lasted during the deposition of the OSM and the PM, which effected the incorporation of sulfur into OM. Phosphorus is highly accumulated in the sediments of the PM with a mean proportion of 11.5 % total phosphorus (TP), which is drastically reduced to a mean value of 0.9 % in the OSM and the MM. From the correlation of the bulk geochemical parameters TOC/TOCOR ratio and TP a major contribution of sulfate reducing bacteria to the phosphate deposition is concluded. This interrelation has previously been investigated in recent coastal upwelling systems off Peru, Chile, California and Namibia. This was further supported by the analysis of branched and monounsaturated fatty acids indicating the occurrence of sulfate reducing and sulfide oxidizing bacteria during the deposition. According to the results from the analysis of n-alkanes and C27- to C29-steranes up to 95 % of the OM was of marine origin. Organic sulfur compounds (OSC) were a major compound class in the aromatic hydrocarbon fraction and n-Alkyl and isoprenoid thiophenes were the most abundant, with highest amounts found for 2-methyl-5-tridecyl-thiophene (28 µg/g TOC). The relatively high abundance of ββ-C35 hopanoid thiophenes and epithiosteranes is equivalent to an incorporation of sulfur during the early stages of diagenesis. Moreover, the geochemical parameters δ13Corg, δ15Norg, C/N and the pristane/phytane (Pr/Ph) ratio, were studied for reconstruction of seafloor and water column depositional environments. The high C/N ratio along with relatively low values of δ15Norg (4 ‰ to 6 ‰) and δ13Corg (-29 ‰ to -28 ‰) are consistent with a significant preferential loss of nitrogen-rich organic compounds during diagenesis. Oxygen-depleted conditions lasted during the deposition of the PM and the bottom of the OSM, reflected by the low Pr/Ph ratio of 0.11–0.7. In the upper part of the OSM and the MM the conditions changed from anoxic to dysoxic or oxic conditions. This environmental trend is consistent with co-occurring foraminiferal assemblages in the studied succession and implies that the benthic species in the Negev sequence were adapted to persistent minimum oxygen conditions by performing complete denitrification as recently found in many modern benthic foraminifera. Furthermore, the anammox process could have influenced the nitrogen composition of the sediments. In this anaerobically process nitrite and ammonia are converted to molecular nitrogen.
Evolutionary transformations of the ethmoidal region in Canis lupus familiaris (Linné, 1758): effects of domestication on the turbinal skeleton in selected dog breeds (2019)
Wagner, Franziska
During the last decades mammalian intracranial structures like the ethmoidal region have rarely been a focus of morphological studies, as they required invasive techniques. Contrary, the ontogeny of the fetal nasal capsule could easily be investigated based on histological material. Since the early 21st century modern imaging techniques like high-resolution computed tomography (μCT) reveal non-destructive insights into the mammalian skull. Furthermore, visualization software enables the virtual reconstruction of the tissues and additionally their morphometric analyses. However, the use of morphometric approaches on the nasal cavity is still scarce. Moreover, the turbinal skeleton is generally regarded as a unit, or the rostral respiratory part is compared to the caudal olfactory part; but the distinct olfactory turbinals have been considered only in a few studies. The present study focuses on the highly diverse facial shape of the dog (Canis lupus familiaris) that evolved during domestication. Due to human-controlled breeding and care the natural selective pressure in prehistoric dogs has been replaced continually by artificial selection. As a consequence, harmful mutations on gene loci which e.g., control facial length growth got fixed within an extremely short time. According to veterinarian studies the turbinals of short snouted breeds continue their growth after the elongation of the facial bones has stopped prematurely. However, such investigations are based on low-resolution CT or MRT data and the morphological descriptions are vague. Referring to the elongation of the face in dolichocephalic breeds no former study has dealt with the detailed morphology of their turbinal skeleton so far. The current study is based on comparative anatomical, morphometric, morphofunctional, and ontogenetic patterns of the dog’s turbinal skeleton. The 32 macerated skulls and four histological serial sections represent eleven breeds which cover different snout lengths (brachycephalic, mesaticephalic, dolichocephalic; according to two length indices), functional groups (scent hound, sighthound, companion/toy), and breeding histories (ancient pure-breeding associated with an unchanged appearance, modern time fashion breeding). The nasal cavity of the selected skulls was μCT-scanned and virtual 3D models of the turbinal skeleton were reconstructed. The breeds have been compared with each other in their number of olfactory turbinals, in the morphology of all turbinals and the lamina semicircularis as well as in their morphometrics and ontogeny. Based on morphological and ontogenetic patterns a new terminology of the interturbinals was established. The morphometric data covers the measurement of the relative turbinal surface area (IAT) and the calculation of the surface density (SDEN) and the turbinal complexity (TC). For the latter parameter a new morphometric approach was developed. For the ontogenetic comparison histological serial sections of perinatal dog stages have been consulted. As the dog’s ancestor macerated skulls of three adult Eurasian wolves (Canis lupus lupus) function for outgroup comparison and represent the grundplan with which the breeds are compared. The results support former studies concerning a species-specific number of the fronto- and ethmoturbinals: in the Eurasian wolf and all postnatal dogs under study three ethmoturbinals and three frontoturbinals are observed. Additionally, two types of interturbinals are distinguished, namely four prominent interturbinals which are present in nearly all individuals and show a homologous pattern, and a variable number of additional interturbinals which differ in their shape among the dogs. Generally, longer snouted breeds have more additional interturbinals, so the total number of olfactory turbinals is increased to a maximum of 16 in the borzoi, whereas several short snouted breeds have only nine olfactory turbinals due to the loss of additional interturbinals and one prominent interturbinal. Regarding ontogeny the growth of the respiratory and the olfactory turbinals and the lamina semicircularis is highly associated with the growth of the facial bones after birth. As the viscerocranium of brachycephalic breeds is subjected to a postnatal growth inhibition the ethmoidal region stops growing prematurely, too. The turbinals of both functional parts develop less accessory lamellae that results in the reduction of the three morphometric parameters IAT, SDEN, and TC. The increase of all these three parameters with increasing snout length proves a correlation between both variables in the maxilloturbinal, all olfactory turbinals, and the lamina semicircularis in the dog. With the help of the perinatal dog stages plesiomorphic patterns which are present in all adult specimens (e.g., separation of ethmoturbinal I into two laminae, the presence of the uncinate process) were distinguished from less established morphological traits which get preferably reduced in association with brachycephaly (e.g., the anterior process of the posterior lamina of ethmoturbinal I, the caudal processes of frontoturbinal 1 and 2 within the frontal sinus due to the latter’s reduction). Obviously, the driving mechanism behind these and further variations are mutations on gene loci which control ontogenetic processes: the in other studies already described postnatal growth inhibition in the dermal bones of the midface of brachycephalic breeds seems to have a similar effect on the ethmoidal region. The results of the present study serve as basis for the evaluation how far the bony turbinals’ morphology, morphometrics, and ontogeny might be associated with physiological, genetic, neurological, and phylogenetic patterns. Additionally, the growth patterns of the hard tissues need to be compared to those of the soft tissues (i.e. the nasal epithelium).
Paleoenvironmental and paleoecological changes during deposition of the late eocene kiliran oil shale, Central Sumatra Basin, Indoniesia (2011)
Widayat, Agus Haris
Forty two samples of the Late Eocene Kiliran oil shale, Central Sumatra Basin, Indonesia were collected from a 102 m long drill core. Palynofacies and geochemical analyses have been carried out to reconstruct the paleoenvironmental conditions and paleoecology during deposition of the oil shale. Amorphous organic matter (AOM) is very abundant (>76%). B. braunii palynomorph is present (3-16%) as the only autochtonous structured organic matter and generally more abundant in middle part of the profile. The stable carbon isotopic composition of organic matter (δ13C) varies from -27.0 to -30.5‰ and is generally more depleted in middle part of the profile. The ratio of total organic carbon to sulfur (TOC/S), used as salinity indicator, ranges from 2.5 to 15.8 and shows variations along the profile. Relatively less saline environments are observed in the middle part profile. Fungal remains are generally present only in middle part of the profile with distinct peak of abundances. The presence of fungal remains is regarded as an indication for a relatively warmer climate during deposition of middle part of the profile. The warmer climate is thought to influence the establishment of a thermocline, limiting the supply of recycled nutrients to the epilimnion. Consequently, the primary productivity in the Kiliran lake decreased during deposition of the middle part of the profile as indicated by the relatively depleted δ13C and the blooming of B. braunii. The chemocline was also shoaling during deposition of the middle part of the profile according to the higher abundance of isorenieratene derivatives of green sulfur bacteria origin. The warmer climate affected also to increase of water supply and thus less saline environments. Tectonic subsidence is also thought to be a significant factor for the development of the Kiliran lake. The Zr/Rb ratio, an indicator for grain size, ranges from 0.4 to 1.3 and generally increases upwards along the profile. Three sudden decreases of the ratio are observed, indicating rapid change to finer grain size. These decreases are interpreted to indicate rapid deepening events of the lake due to mainly periodic subsidence. During deposition of lower part of the profile, the subsidence rates might have been relatively higher than sediment and water supply rates, resulting in a higher autochtonous fraction in the oil shale. During deposition of middle part of the profile, the sediment and water supply rates were relatively higher promoting distinct progradational sedimentation. Subsequently, the lake became more shallow and smaller during deposition of the upper part of the profile, leading to a relatively higher terrigenous input to the oil shale. Norneohop-13(18)-ene and neohop-13(18)-ene derived from methanotrophic bacteria are the dominant hopanoid hydrocarbons. The sum of their concentrations varies from 40.6 to 360.0 μg/g TOC. The δ13C of these compounds are extremely depleted (-45.2 to -50.2‰). The occurrence of abundant bacteria including methanotrophic bacteria was responsible for the recycling of carbon below the chemocline of the lake. The effect of the recycling of carbon is observed by the presence of a concomitant depletion (about 7-9‰) in 13C of some specific biomarkers derived from organisms dwelling in the whole phototrophic zone. 4-Methylsterane and 4-methyldiasterene homologues occur in the oil shale as the predominant biomarkers. The sum of the concentrations of all homologues are about 40.3-1,009.2 μg/g TOC with generally higher values in uppermost and lower parts of the profile. Ca accounts as the predominant element in the oil shale, ranging from 5.0 to 16.7%. This element shows generally parallel variation with the 4-methylsterane homologues along the profile. This suggests that the 4-methylsteranes were derived from biological sources favoring more alkaline and more trophic environments. On the other hand, these compounds were less abundant in middle part of the profile which is consistent with less alkaline and less trophic environments promoting B. braunii to bloom. The 4-methylsterane homologues are considered to originate from Dinoflagellates. Alternation between Dinoflagellates and B. braunii in Paleogene lake systems due to water chemistry changes are known from previous studies. Moreover, freshwater Dinoflagellates have been frequently reported to occur in the basin depocenters. In the present case, distinct alternation between B. braunii abundances and concentrations of 4-methylsterane homologues along the studied oil shale profile suggest that the 4-methylsterane homologues were derived from freshwater Dinoflagellates although dinosterane is not present in the sediment extracts. Water alkalinity and trophic level changes were most likely responsible for the alternation of Dinoflagellates and B. braunii blooming.
Holocene evolution of coastal lagoon environments in Belize, Central America : analysis of stratigraphic patterns, mollusk shell concentrations and storm deposition (2016)
Adomat, Friederike
In Belize, which is well known for the Belize Barrier Reef and its offshore atolls, coastal lagoons are frequent morphological features along the coast. They represent transitional environments between siliciclastic and carbonate settings. In order to shed light into the Holocene evolution of coastal lagoon environments, five localities along the central coast of Belize were selected as coring sites. These include four coastal lagoons and one marsh area, namely Mantatee Lagoon, Mullins River Beach, Colson Point Lagoon, Commerce Bight Lagoon and Sapodilla Lagoon. A total of 26 sediment cores with core lengths ranging from 109 cm to 500 cm, were drilled using a Lanesky-vibracorer. Overall, 73 m of Holocene sediments and Pleistocene soil were recovered. Together with 58 radiocarbon dates the sediments reveal details on the sediment architecture and depositional features of the localities. Marine inundation of the mainland and coastal lagoon formation started around 6 kyrs cal BP. As a response to sea-level rise during the Holocene transgression, facies retrograded towards the coast, as seen in marginal marine overlying brackish mollusk faunas. Evidence for late Holocene progradation of facies due to sea-level stagnation is largely lacking. The occurrence of landward thinning sand beds, hiatuses and marine fauna in lagoonal successions are indications of event (overwash) sedimentation. Sediments recovered are largely of Holocene age (<7980 cal BP), overlying Pleistocene sections. Analyses of sediment composition and texture, radiocarbon dating and mollusk shell identification were used to describe and correlate sedimentary facies. XRD analyses have identified quartz as the dominant mineral, with the Maya Mountains as main source of coastal lagoon sediments. The most common sedimentary facies include peat and peaty sediment, mud, sand, and poorly sorted sediments. Pleistocene soil forms the basement of Holocene sediments. Holocene mud represents lagoon background permanent sedimentation. Peats and peat-rich sequences were deposited in mangrove swamp environments, whereas sandy facies mainly occur in the shoreface, beach, barriers, bars, barrier spits and overwash deposits. Facies successions could be identified for each locality, but it has proven difficult to correlate the stratigraphic sequences, especially among localities. These differences among the five locations studied suggest that apart from regional influence such as sea-level rise, local environmental factors such as small-scale variation in geomorphology and resulting facies heterogeneity, connectivity of the lagoon with the sea, antecedent topography and river discharge, were responsible for coastal sedimentation and lagoon development in the Holocene of Belize. Faunal composition and distribution patterns of mollusk assemblages from 20 shell concentrations in cores collected in coastal lagoons, a mangrove-fringed tidal inlet and the marginal marine area (shallow subtidal) show considerable variation due to environmental heterogeneity and the interplay of several environmental factors in the course of the mid-late Holocene (ca. 6000 cal BP to modern). The investigated fauna ≥2 mm comprises 2246 bivalve, gastropod and 11 scaphopod specimens. Fifty-three mollusk species, belonging to 42 families, were identified. The bivalve Anomalocardia cuneimeris and cerithid gastropods are the dominant species and account for 78% of the total fauna. Diversity indices are low in concentrations from lagoons and relatively high in the marginal marine and tidal inlet areas. Based on cluster analysis and nonmetric multidimensional scaling (NMDS), seven lagoonal assemblages and three marginal marine/tidal inlet assemblages were defined. A separation between lagoonal and marginal marine/tidal inlet assemblages seen in ordination indicates a lagoon-onshore gradient. The statistical separation among lagoonal assemblages demonstrates environmental changes during the Holocene evolution of the coastal lagoons, which is probably related to the formation of barriers and spits. The controlling factors of species distribution patterns are difficult to figure out, probably due to the heterogeneity of the barrier-lagoon systems and the interaction of paleoecological and paleoenvironmental factors. In addition to the taxonomic analysis, a taphonomic analysis of 1827 valves of A. cuneimeris from coastal lagoons was carried out. There is no relationship between depth and age of shells and their taphonomic condition. Size-frequency distributions and right-left valve ratios of A. cuneimeris suggest that valves were not transported over long distances but were deposited parautochthonously in their original habitat. Shells from tidal inlet and marginal marine environments were also predominantly deposited in their original habitats. Since the Belize coast was repeatedly affected by hurricanes and the paleohurricane record for this region is poor, the sediment cores have been examined in order to identify storm deposits. The paleohurricane record presented in this study spans the past 8000 years and exhibits three periods with increased evidences of hurricane strikes occurring at 6000-4900 cal yr BP, 4200-3600 cal yr BP and 2200-1500 cal yr BP. Two earlier events around 7100 and 7900 cal yr BP and more recent events around 180 cal yr BP and during modern times have been detected. Sand layers, redeposited corals and lagoon shell concentrations have been used as proxies for storm deposition. Additionally, hiatuses and reversed ages may indicate storm influence. While sand layers and corals represent overwash deposits, the lagoon shell concentrations, which mainly comprise the bivalve Anomalocardia cuneimeris and cerithid gastropods, have been deposited due to changes in lagoon salinity during and after storm landfalls. Comparison with other studies reveals similarities with one record from Belize, but hardly any matches with other published records. The potential for paleotempestology reconstructions of the barrier-lagoon complexes along the central Belize coast differs depending on geomorphology, and deposition of washovers in the lagoon basins is limited, probably due to the interplay of biological, geological and geomorphological processes.
Foraminifera as proxies for paleoceanographic reconstructions during specific periods of Earth history (2013)
Koch, Mirjam
To reconstruct ocean circulation changes during specific periods of Earth history, benthic and planktic foraminifera were used as proxies in the different parts of this thesis. Both studied time periods, the Late Cretaceous and the early Pleistocene, are characterized by long-term climate cooling and major changes in ocean circulation. The first part of this thesis concentrated in the Late Cretaceous. During the Late Cretaceous long-term cooling phase, benthic foraminiferal δ18O values show a positive shift lasting about 1.5 Myr (71.5–70 Ma). This shift can be observed on a global scale and has become known as the Campanian-Maastrichtian Boundary Event (CMBE). It is proposed that this δ18O excursion is influenced either by changing intermediate- to deep-water circulation or by temporal build-up of Antarctic ice sheets. Benthic foraminiferal assemblage counts from a southern high-latitudinal site near Antarctica (ODP Site 690) are analyzed to test if the influence of the CMBE on the benthic species composition. One of the two discussed hypotheses for the causation of the δ18O transition is a change in intermediate- to deep-water circulation from low-latitude to high-latitude water masses. This change would result in cooler temperatures, higher oxygen concentration, and possibly lower organic-matter flux at the seafloor, causing a major benthic foraminiferal assemblage change. Another possible explanation of the δ18O transition of the CMBE is significant ice formation on Antarctica. However no major benthic foraminiferal assemblage change would be expected in this case. The benthic foraminiferal assemblage of Site 690 shows a separation of the studied succession into two parts with significantly different species composition. The older part (73.0–70.5 Ma) is dominated by species, which are typical for lower bottom water oxygen concentration and more common in low-latitude assemblages. Species dominating the younger part (70.0–68.0 Ma) are indicators for well-oxygenated bottom waters and more common in high-latitude assemblages. This change in the benthic foraminiferal assemblages is interpreted to represent a shift of low-latitude toward high-latitude dominated intermediateto deep-water sources. A change in oceanic circulation was therefore at least a major component of the CMBE. The Pacific Ocean contributed significantly to the climatic development during the Late Cretaceous cooling period. The contribution of ocean circulation changes in the Pacific Ocean to the Late Cretaceous climatic development in general and the CMBE and Mid-Maastrichtian Event (MME) in particular, however, is poorly understood. Previously measured high resolution planktic and benthic stable isotope data and a neodymium (Nd) isotope record from the Pacific ODP Site 1210 (Shatsky Rise, tropical Pacific Ocean) for the Campanian to Maastrichtian (69.5 to 72.5 Ma) are used to reconstruct changes in surface- and bottom water temperatures as well as changes in the source region of deep- to intermediate waters [see Appendix 4; Jung et al. 2013]. The results of the benthic foraminiferal δ18O and Nd isotope records in combination with Nd isotope records from other studies indicate changes in the intensity of intermediate- to deep ocean circulation in the tropical Pacific across the Campanian-Maastrichtian interval [see Appendix 4; Jung et al. 2013]. During the early Maastrichtian (72.5 to 69.5 Ma), a three-million-year-long period of cooler conditions and a simultaneous change towards less radiogenic Nd isotope signatures is interpreted to represent a period of increased admixture and northward flow of deep waters from the Southern Ocean (Southern Component Water, SCW). This change was probably caused by an intensified formation of deep waters in the Southern Ocean. This was reduced again during the MME (69.5 to 68.5 Ma). This early Maastrichtian cold interval is similar to the CMBEδ13C fall and succeeding δ13C rise towards the MME and is therefore also interpreted to represent tectonically forced, long-term changes in the global carbon cycle and thus a tectonic forcing of the early Maastrichtian climate cooling. Overall, the Campanian-Maastrichtian Nd and stable isotope records of Shatsky Rise indicate changes in ocean circulation that are paralleled by global warming and cooling periods. The fluctuating strength of SCW contribution in the tropical Pacific points towards an increased respectively weakened ocean circulation, which is probably related to the strength of deep-water formation in the Southern Ocean [see Appendix 4; Jung et al. 2013]. For this study, the analysis of benthic foraminiferal assemblages of Site 1210 is carried out for the same time interval (69.5 to 72.5 Ma) as Nd and stable isotopes to evaluate the influence of intermediate- to deep ocean circulation changes on the benthic foraminiferal community. The possible reaction of benthic foraminiferal assemblages is compared to the results of stable isotope and neodymium isotopes. The observed changes in species abundances only partly reflect the circulation changes reconstructed with Nd and stable oxygen istopes. For example, Stensioina spp., Aragonia spp. and Lenticulina spp., cold-water preferring species, start to be increasingly abundant at the beginning of enhanced influence of SCW. However, their abundance pattern does not follow the varying strength of the cold SCW influence at Shatsky Rise. Other species prefer lesser oxygen concentrations and warmer bottom water, e.g. Paralabamina spp. and Globorotalites spp. Paralabamina spp. has its highest relativ abundance at the beginning of the studied succession, where the influence of SCW is small. However, this taxa occurs throughout the record, even though the influence of SCW increases. Globorotalites spp. is even most abundance after the CMBE, where bottom waters are till cold and influenced by SCW. This leads to the conclusion that the varying strength of SCW in the tropical Pacific at Shatsky Rise through the studied interval is not facilitating a significant faunal turnover as has been observed at the South Atlantic Site 690 (Chapter 3). These results of the benthic foraminiferal assemblage analysis suggest a rather minor influence of the SCW on the major environmental factors that are generally influencing benthic foraminiferal communities (e.g., oxygen concentration, organic matter flux to the sea floor, bottom-water temperature). The second major part of this thesis focused on the late Pliocene-earliest Pleistocene. The late Pliocene is characterized by a long-term global cooling trend resulting in a major increase of Arctic ice sheets from around 3 Ma onwards, culminating in the Plio-Pleistocene intensification of the Northern Hemisphere glaciation. At around 2.7 Ma, large amplitude glacial-interglacial excursions (~1‰ δ18O in benthic foraminiferal calcite) in benthic oxygen isotopes can be observed. Marine isotope stage (MIS) 100 at around 2.55 Ma is the first glacial, when widespread ice rafted debris has been found in sediments in the North Atlantic Ocean. To gain a deeper understanding of the climatic evolution of the latest Pliocene-early Pleistocene, it is necessary to improve the reconstructions of North Atlantic paleohydrography, as the North Atlantic provides a key region for global climate. The consequences of the intensification of Northern Hemisphere on the early Pleistocene North Atlantic thermocline stratification and intermediate waters are still poorly understood. However, surface hydrography, the history of the thermocline and development of North Atlantic intermediate waters are well-studied for the Last Glacial Maximum (LGM). These well-known mechanisms responsible for the LGM in comparison with the present-day interglacial North Atlantic are used as an analogue for te early Pleistocene glacialinterglacials cycles. In this study, suborbitally resolved stable oxygen and carbon isotope and Mg/Ca records are measured from a deep-dwelling planktic foraminifera (Globorotaliacrassaformis) from Integrated Ocean Drilling Program Site U1313 (North Atlantic, 41°N) covering marine oxygen isotope stages MIS 103 to 95 (early Pleistocene, 2.6 to 2.4 Ma). The results are interpreted to represent a change in intermediate-water masses on glacialinterglacial timescales. During glacials geochemical records in G. crassaformis (~500–1000 m) bear the imprint of Glacial North Atlantic Intermediate Water (GNAIW), while during interglacials this species reflects the signature of the influence of Mediterranean Outflow Water (MOW) in combination with the subtropical gyre. The comparison of this data with the published records from G. ruber from the same samples facilitates the reconstruction of glacial-interglacial stratification changes of the upper water column at Site U1313. The results show that larger gradients of temperature, salinity and δ13C prevailed during glacials, suggesting a stronger stratification of the upper water column. This can be seen to indicate glacial-interglacial changes in ntermediate water masses in the North Atlantic similar to those reconstructed for the latest Pleistocene. As an additional proxy, the clumped isotope paleothermometer is applied for the Late Cretaceous study as well as for the early Pleistocene. This proxy is commonly assumed to be independent of other factors than temperature. Clumped isotopes are measured for the Late Cretaceous Site 690 on the planktic foraminiferal species Archaeoglobigerina australis and compared to already existing stable oxygen isotopes of this species. This is assumed to enable the reconstruction of paleotemperature independent of ice volume and therefore contribute to the long-lasting discussion whether there was a temporal ice build-up on Antarctic during the Campanian-Maastrichtian cooling period. For the early Pleistocene, the planktic foraminiferal species G. crassaformis is used from Site U1313 from MIS 99 (interglacial) and MIS 98 (glacial). This provides the opportunity to separate ice volume, salinity and temperature effects on the measured δ18O record of G. crassaformis. The results of the clumped isotope measurements reveal comparatively large standard errors. For the Late Cretaceous the standard error of the clumped isotope measurements proved too large to allow any conclusions on the temperature component on the δ18O record of A. australis. For the early Pleistocene, the temperature difference is also too small to be reconstructed with the standard error of the clumped isotope measurements in this study. Measuring many replicates of one sample would minimize the standard error considerably. However, the amount necessary to measure replicates cannot be gained for either time period, as almost all foraminifera were picked from the respective samples. It is concluded that the respective questions may be solved with a different method of clumped isotope analysis requiring less sample material. This method is, for example, available at the ETH Zurich.
  • 1 to 8

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks