• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Bossert, Oliver (1)
  • Weiland, Claus (1)

Year of publication

  • 2003 (1)
  • 2004 (1)

Document Type

  • Doctoral Thesis (2)

Language

  • German (2)

Has Fulltext

  • yes (2)

Is part of the Bibliography

  • no (2)

Institute

  • Biowissenschaften (2)

2 search hits

  • 1 to 2
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Über Zeitverarbeitung in der MSO : Modellierung der neuronalen Prozesse in der medialen superioren Olive (2004)
Weiland, Claus
Die vorliegende Arbeit beschäftigt sich mit der Modellierung der neuronalen Prozesse, die auditorischen Lokalisationsleistungen zugrunde liegen. Viele der hierzu aktuell diskutierten Modellvorstellungen lassen sich auf ein von L. Jeffress bereits in der Mitte des letzten Jahrhunderts vorgeschlagenes Netzwerkmodell zurückführen: Nach Jeffress werden interaurale Laufzeitunterschiede (ITDs) zwischen beiden auditorischen Pfaden in einem Netzwerk von Detektorneuronen (Koinzidenzdetektoren) ausgewertet. Systematische Laufzeitunterschiede resultieren aus der Architektur des Netzwerks, die sogenannte Delay-Lines realisieren soll. Trotz einer Reihe von Evidenzen für das im auditorischen Diskurs inzwischen als Paradigma geltende Modell, findet Kritik am Jeffress-Modell in jüngerer Zeit zunehmend Beachtung und Interesse. So argumentieren B. Grothe und D. McAlpine gegen die Übertragung des Delay-Line Modells auf die Verhältnisse bei Säugern. Zentrales Moment ihrer Kritik ist eine Afferenz der MSO aus einem weiteren Teilgebiet der Olive (MNTB). Wesentlicher Effekt der von der Projektion gebildeten inhibitorischen Synapse ist eine relative Verschiebung der Best-Delays der MSO-Zellen zur Präferenz contralateraler Delays. Damit besteht nicht nur zu der nach dem Jeffress-Modell notwendigen Aufteilung der Best-Delays ein Widerspruch, die ITDs liegen bei tiefen Frequenzen für kleine Säuger aufgrund deren geringer Kopfgröße außerhalb des Bereichs physiologisch auftretender Delays. In dieser Arbeit werden die Ergebnisse von Grothe und McAlpine durch Compartmental Modeling analysiert. Gegenüber einer Simulationsstudie aus den Gruppen von Grothe und McAlpine werden von uns durch explizite Modellierung der Dendriten zusätzliche Effekte der Inhibiton beschrieben. Wir stellen dar, wie die Topographie von Inhibiton und Excitation die Verarbeitungsprozesse in Bipolar-Zellen durch dendritische Low-Pass Filterung und Kontrastverst ärkung zwischen minimaler und maximaler Spikerate unterstützt. Unsere Ergebnisse können die empirisch nachgewiesene Verteilung excitatorischer (distaler) und inhibitorische (proximaler) Synapsen erklären. In der abschliessenden Analyse der von den Bipolar-Zellen generierten Spike Trains wird das von Grothe und McAlpine entworfene alternative ITD-Codierungsmodell auf der Basis von Ratencodes problematisiert: Bislang erklärt ihr Vorschlag nicht, wie organismische Lokalisationsleistungen auf der Basis weniger Spikes realisiert werden können.
Separation und Rekonstruktion funktionaler Elemente im Zentral-Nervensystem (2003)
Bossert, Oliver
Ziel dieser Arbeit ist es, eine Lücke im methodischen Spektrum neurobiologischer Methoden zu schließen. Es ist heute möglich, das Gehirn auf unterschiedlichen Ebenen zu beschreiben. Es stehen jedoch keine Methoden zur Verfügung, um die Anordnung der Zellen innerhalb eines Nukleus quantitativ zu beschreiben. Die Anzahl und die Anordnung der Zellen ist jedoch eine essentielle Voraussetzung, um die Funktion eines Nukleus zu verstehen. Das hier vorgestellte Verfahren zur Rekonstruktion eines Nukleus basiert auf Nissl-gefärbten Semidünnschnitten der Medialen Superioren Olive (MSO) der Wüstenrennmaus Meriones ungiuculatus. Diese werden mit einer Digitalkamera lichtmikroskopisch aufgenommen und bilden die Basis der Rekonstruktion. In einem ersten Schritt werden innerhalb einer Schnittebene mehrere Einzelbilder patchworkartig zu einem Image Mosaic zusammengefügt. Durch diesen Schritt ist die Auflösung innerhalb einer Schnittebene praktisch unbegrenzt. Das Verfahren beinhaltet mehrere Kontrollmechanismen und funktioniert praktisch fehlerfrei. Danach werden die Bilder farblich korrigiert und mit Methoden der Mustererkennung werden die Zellkerne extrahiert. Die Extraktion der Zellkerne steht in ihrer Qualität einer manuellen Extraktion in nichts nach. Die Zellkerne dienen als Grundlage für den Archimedes-Alignment-Algorithmus, der die Schnittserie in einen dreidimensionalen Bezug setzt, indem aufeinander folgende Schnitte aneinander ausgerichtet werden. Auch dieses Verfahren beinhaltet eine Kontrolle und funktioniert fehlerfrei. Aus diesen Daten kann dann eine Rekonstruktion erstellt werden. Diese wird weiter ausgewertet und ergibt schließlich ein dreidimensionales Abbild des untersuchten Bereichs. Sämtliche Verfahrensschritte arbeiten entweder fehlerfrei oder mit einer nur sehr geringen Fehlerrate. Somit stellt dieses Verfahren eine robuste, effiziente und universell anwendbare Möglichkeit für die umfassende Analyse der Neuronenverteilung im ZNS dar. Das Verfahren eröffnet die Möglichkeit, Nuklei dreidimensional zu untersuchen, bietet aber auch einen Ansatzpunkt um mittels histologischer Daten weiteres Datenmaterial (etwa elektrophysiologischer oder morphologische Daten) zu integrieren.
  • 1 to 2

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks