004 Datenverarbeitung; Informatik
Refine
Year of publication
Document Type
- Article (200)
- Doctoral Thesis (132)
- Working Paper (122)
- diplomthesis (78)
- Conference Proceeding (52)
- Bachelor Thesis (48)
- Contribution to a Periodical (30)
- Report (19)
- Part of a Book (18)
- Part of Periodical (18)
Is part of the Bibliography
- no (761)
Keywords
Institute
- Informatik (441)
- Informatik und Mathematik (87)
- Präsidium (64)
- Wirtschaftswissenschaften (42)
- Frankfurt Institute for Advanced Studies (FIAS) (30)
- Hochschulrechenzentrum (24)
- Physik (20)
- Medizin (19)
- Extern (12)
- Rechtswissenschaft (11)
Nuclear pore complexes (NPCs) mediate nucleocytoplasmic transport. Their intricate 120 MDa architecture remains incompletely understood. Here, we report a near-complete structural model of the human NPC scaffold with explicit membrane and in multiple conformational states. We combined AI-based structure prediction with in situ and in cellulo cryo-electron tomography and integrative modeling. We show that linker Nups spatially organize the scaffold within and across subcomplexes to establish the higher-order structure. Microsecond-long molecular dynamics simulations suggest that the scaffold is not required to stabilize the inner and outer nuclear membrane fusion, but rather widens the central pore. Our work exemplifies how AI-based modeling can be integrated with in situ structural biology to understand subcellular architecture across spatial organization levels.
Inspired by the physiology of neuronal systems in the brain, artificial neural networks have become an invaluable tool for machine learning applications. However, their biological realism and theoretical tractability are limited, resulting in poorly understood parameters. We have recently shown that biological neuronal firing rates in response to distributed inputs are largely independent of size, meaning that neurons are typically responsive to the proportion, not the absolute number, of their inputs that are active. Here we introduce such a normalisation, where the strength of a neuron’s afferents is divided by their number, to various sparsely-connected artificial networks. The learning performance is dramatically increased, providing an improvement over other widely-used normalisations in sparse networks. The resulting machine learning tools are universally applicable and biologically inspired, rendering them better understood and more stable in our tests.
Orientation hypercolumns in the visual cortex are delimited by the repeating pinwheel patterns of orientation selective neurons. We design a generative model for visual cortex maps that reproduces such orientation hypercolumns as well as ocular dominance maps while preserving retinotopy. The model uses a neural placement method based on t–distributed stochastic neighbour embedding (t–SNE) to create maps that order common features in the connectivity matrix of the circuit. We find that, in our model, hypercolumns generally appear with fixed cell numbers independently of the overall network size. These results would suggest that existing differences in absolute pinwheel densities are a consequence of variations in neuronal density. Indeed, available measurements in the visual cortex indicate that pinwheels consist of a constant number of ∼30, 000 neurons. Our model is able to reproduce a large number of characteristic properties known for visual cortex maps. We provide the corresponding software in our MAPStoolbox for Matlab.
Artificial neural networks, taking inspiration from biological neurons, have become an invaluable tool for machine learning applications. Recent studies have developed techniques to effectively tune the connectivity of sparsely-connected artificial neural networks, which have the potential to be more computationally efficient than their fully-connected counterparts and more closely resemble the architectures of biological systems. We here present a normalisation, based on the biophysical behaviour of neuronal dendrites receiving distributed synaptic inputs, that divides the weight of an artificial neuron’s afferent contacts by their number. We apply this dendritic normalisation to various sparsely-connected feedforward network architectures, as well as simple recurrent and self-organised networks with spatially extended units. The learning performance is significantly increased, providing an improvement over other widely-used normalisations in sparse networks. The results are two-fold, being both a practical advance in machine learning and an insight into how the structure of neuronal dendritic arbours may contribute to computation.
The electrical and computational properties of neurons in our brains are determined by a rich repertoire of membrane-spanning ion channels and elaborate dendritic trees. However, the precise reason for this inherent complexity remains unknown. Here, we generated large stochastic populations of biophysically realistic hippocampal granule cell models comparing those with all 15 ion channels to their reduced but functional counterparts containing only 5 ion channels. Strikingly, valid parameter combinations in the full models were more frequent and more stable in the face of perturbations to channel expression levels. Scaling up the numbers of ion channels artificially in the reduced models recovered these advantages confirming the key contribution of the actual number of ion channel types. We conclude that the diversity of ion channels gives a neuron greater flexibility and robustness to achieve target excitability.
The measurement of protein dynamics by proteomics to study cell remodeling has seen increased attention over the last years. This development is largely driven by a number of technological advances in proteomics methods. Pulsed stable isotope labeling in cell culture (SILAC) combined with tandem mass tag (TMT) labeling has evolved as a gold standard for profiling protein synthesis and degradation. While the experimental setup is similar to typical proteomics experiments, the data analysis proves more difficult: After peptide identification through search engines, data extraction requires either custom scripted pipelines or tedious manual table manipulations to extract the TMT-labeled heavy and light peaks of interest. To overcome this limitation, which deters researchers from using protein dynamic proteomics, we developed a user-friendly, browser-based application that allows easy and reproducible data analysis without the need for scripting experience. In addition, we provide a python package that can be implemented in established data analysis pipelines. We anticipate that this tool will ease data analysis and spark further research aimed at monitoring protein translation and degradation by proteomics.
In the human brain, the incoming light to the retina is transformed into meaningful representations that allow us to interact with the world. In a similar vein, the RGB pixel values are transformed by a deep neural network (DNN) into meaningful representations relevant to solving a computer vision task it was trained for. Therefore, in my research, I aim to reveal insights into the visual representations in the human visual cortex and DNNs solving vision tasks.
In the previous decade, DNNs have emerged as the state-of-the-art models for predicting neural responses in the human and monkey visual cortex. Research has shown that training on a task related to a brain region’s function leads to better predictivity than a randomly initialized network. Based on this observation, we proposed that we can use DNNs trained on different computer vision tasks to identify functional mapping of the human visual cortex.
To validate our proposed idea, we first investigate a brain region occipital place area (OPA) using DNNs trained on scene parsing task and scene classification task. From the previous investigations about OPA’s functions, we knew that it encodes navigational affordances that require spatial information about the scene. Therefore, we hypothesized that OPA’s representation should be closer to a scene parsing model than a scene classification model as the scene parsing task explicitly requires spatial information about the scene. Our results showed that scene parsing models had representation closer to OPA than scene classification models thus validating our approach.
We then selected multiple DNNs performing a wide range of computer vision tasks ranging from low-level tasks such as edge detection, 3D tasks such as surface normals, and semantic tasks such as semantic segmentation. We compared the representations of these DNNs with all the regions in the visual cortex, thus revealing the functional representations of different regions of the visual cortex. Our results highly converged with previous investigations of these brain regions validating the feasibility of the proposed approach in finding functional representations of the human brain. Our results also provided new insights into underinvestigated brain regions that can serve as starting hypotheses and promote further investigation into those brain regions.
We applied the same approach to find representational insights about the DNNs. A DNN usually consists of multiple layers with each layer performing a computation leading to the final layer that performs prediction for a given task. Training on different tasks could lead to very different representations. Therefore, we first investigate at which stage does the representation in DNNs trained on different tasks starts to differ. We further investigate if the DNNs trained on similar tasks lead to similar representations and on dissimilar tasks lead to more dissimilar representations. We selected the same set of DNNs used in the previous work that were trained on the Taskonomy dataset on a diverse range of 2D, 3D and semantic tasks. Then, given a DNN trained on a particular task, we compared the representation of multiple layers to corresponding layers in other DNNs. From this analysis, we aimed to reveal where in the network architecture task-specific representation is prominent. We found that task specificity increases as we go deeper into the DNN architecture and similar tasks start to cluster in groups. We found that the grouping we found using representational similarity was highly correlated with grouping based on transfer learning thus creating an interesting application of the approach to model selection in transfer learning.
During previous works, several new measures were introduced to compare DNN representations. So, we identified the commonalities in different measures and unified different measures into a single framework referred to as duality diagram similarity. This work opens up new possibilities for similarity measures to understand DNN representations. While demonstrating a much higher correlation with transfer learning than previous state-of-the-art measures we extend it to understanding layer-wise representations of models trained on the Imagenet and Places dataset using different tasks and demonstrate its applicability to layer selection for transfer learning.
In all the previous works, we used the task-specific DNN representations to understand the representations in the human visual cortex and other DNNs. We were able to interpret our findings in terms of computer vision tasks such as edge detection, semantic segmentation, depth estimation, etc. however we were not able to map the representations to human interpretable concepts. Therefore in our most recent work, we developed a new method that associates individual artificial neurons with human interpretable concepts.
Overall, the works in this thesis revealed new insights into the representation of the visual cortex and DNNs...
Dendritic spines are considered a morphological proxy for excitatory synapses, rendering them a target of many different lines of research. Over recent years, it has become possible to image simultaneously large numbers of dendritic spines in 3D volumes of neural tissue. In contrast, currently no automated method for spine detection exists that comes close to the detection performance reached by human experts. However, exploiting such datasets requires new tools for the fully automated detection and analysis of large numbers of spines. Here, we developed an efficient analysis pipeline to detect large numbers of dendritic spines in volumetric fluorescence imaging data. The core of our pipeline is a deep convolutional neural network, which was pretrained on a general-purpose image library, and then optimized on the spine detection task. This transfer learning approach is data efficient while achieving a high detection precision. To train and validate the model we generated a labelled dataset using five human expert annotators to account for the variability in human spine detection. The pipeline enables fully automated dendritic spine detection and reaches a near human-level detection performance. Our method for spine detection is fast, accurate and robust, and thus well suited for large-scale datasets with thousands of spines. The code is easily applicable to new datasets, achieving high detection performance, even without any retraining or adjustment of model parameters.
Active efficient coding explains the development of binocular vision and its failure in amblyopia
(2020)
The development of vision during the first months of life is an active process that comprises the learning of appropriate neural representations and the learning of accurate eye movements. While it has long been suspected that the two learning processes are coupled, there is still no widely accepted theoretical framework describing this joint development. Here, we propose a computational model of the development of active binocular vision to fill this gap. The model is based on a formulation of the active efficient coding theory, which proposes that eye movements as well as stimulus encoding are jointly adapted to maximize the overall coding efficiency. Under healthy conditions, the model self-calibrates to perform accurate vergence and accommodation eye movements. It exploits disparity cues to deduce the direction of defocus, which leads to coordinated vergence and accommodation responses. In a simulated anisometropic case, where the refraction power of the two eyes differs, an amblyopia-like state develops in which the foveal region of one eye is suppressed due to inputs from the other eye. After correcting for refractive errors, the model can only reach healthy performance levels if receptive fields are still plastic, in line with findings on a critical period for binocular vision development. Overall, our model offers a unifying conceptual framework for understanding the development of binocular vision.
Treatments for amblyopia focus on vision therapy and patching of one eye. Predicting the success of these methods remains difficult, however. Recent research has used binocular rivalry to monitor visual cortical plasticity during occlusion therapy, leading to a successful prediction of the recovery rate of the amblyopic eye. The underlying mechanisms and their relation to neural homeostatic plasticity are not known. Here we propose a spiking neural network to explain the effect of short-term monocular deprivation on binocular rivalry. The model reproduces perceptual switches as observed experimentally. When one eye is occluded, inhibitory plasticity changes the balance between the eyes and leads to longer dominance periods for the eye that has been deprived. The model suggests that homeostatic inhibitory plasticity is a critical component of the observed effects and might play an important role in the recovery from amblyopia.