Institutes
Refine
Year of publication
Document Type
- Doctoral Thesis (200)
- Article (129)
- Contribution to a Periodical (2)
- Book (1)
- Preprint (1)
Has Fulltext
- yes (333)
Is part of the Bibliography
- no (333)
Keywords
- Haloferax volcanii (5)
- Podospora anserina (4)
- SARS-CoV-2 (4)
- fungi (4)
- Metabolic Engineering (3)
- Phylogeny (3)
- Saccharomyces cerevisiae (3)
- aging (3)
- biodiversity (3)
- zebrafish (3)
Institute
- Biowissenschaften (333)
- Institut für Ökologie, Evolution und Diversität (9)
- Biochemie, Chemie und Pharmazie (6)
- Biodiversität und Klima Forschungszentrum (BiK-F) (5)
- Senckenbergische Naturforschende Gesellschaft (5)
- Zentrum für Biomolekulare Magnetische Resonanz (BMRZ) (5)
- Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) (3)
- Präsidium (3)
- Institut für sozial-ökologische Forschung (ISOE) (2)
- Medizin (2)
Orientation hypercolumns in the visual cortex are delimited by the repeating pinwheel patterns of orientation selective neurons. We design a generative model for visual cortex maps that reproduces such orientation hypercolumns as well as ocular dominance maps while preserving retinotopy. The model uses a neural placement method based on t–distributed stochastic neighbour embedding (t–SNE) to create maps that order common features in the connectivity matrix of the circuit. We find that, in our model, hypercolumns generally appear with fixed cell numbers independently of the overall network size. These results would suggest that existing differences in absolute pinwheel densities are a consequence of variations in neuronal density. Indeed, available measurements in the visual cortex indicate that pinwheels consist of a constant number of ∼30, 000 neurons. Our model is able to reproduce a large number of characteristic properties known for visual cortex maps. We provide the corresponding software in our MAPStoolbox for Matlab.
A promising strategy to reduce the dependency from fossil fuels is to use the yeast Saccharomyces cerevisiae to bioconvert renewable non-food feedstocks or waste streams, like lignocellulosic biomass, into bioethanol and other valuable molecule blocks. Lignocellulosic feedstocks contain glucose and significant fractions of the pentoses xylose and arabinose in varying proportions depending on the biomass type. S. cerevisiae is an efficient glucose consumer, but it cannot metabolize xylose and arabinose naturally. Therefore, extensive research using recombinant DNA techniques has been conducted to introduce and improve the biochemical pathways necessary to utilize these non-physiological substrates. However, any functional pathway capable of metabolizing D xylose and L arabinose in S. cerevisiae requires the transport of these sugars across the plasma membrane. The endogenous sugar transport system of S. cerevisiae can conduct a limited uptake of D-xylose and L-arabinose; this uptake enables only basal growth when the enzymatic pathways are provided. For this reason, the uptake of D xylose and L-arabinose has been recognized as a limiting step for the efficient utilization of these non-physiological substrates.
Gal2, a member of the major facilitator superfamily, is one of the most studied hexose transporters in S. cerevisiae. Although its expression is repressed in the presence of glucose, it also transports this sugar with high affinity when constitutively expressed. Recent efforts to engineer yeast strains for the utilization of plant biomass have unraveled the ability of Gal2 to transport non-physiological substrates like xylose and arabinose, among others. Improving Gal2 kinetic and substrate specificity, particularly for pentoses, has become a crucial target in strain engineering. The main goal of this study is to improve the utilization of xylose and arabinose by increasing the cell permeability of these non physiological substrates through the engineering of the galactose permease Gal2.
GAL2 gene expression depends on galactose, which acts as an inducer; nevertheless, even in the presence of galactose, glucose act as a strict repressor; consequently, GAL2 gene is usually placed under the control of a constitutive promoter. However, the presence of glucose additionally triggers the Gal2 degradation, which is mediated by the covalent attachment of the small 76 amino acid protein ubiquitin (Ub) to the targeted transporter; in a multi-step process called ubiquitination.
Ubiquitination of hexose permeases involves the activation of the Ub molecule by the E1 Ub-activating enzyme using ATP; then, the activated Ub is transferred to a specific Ub-conjugating enzyme E2, which donates the Ub indirectly through a specific HECT E3 enzyme (Rsp5) to a lysine residue of the substrate, with the aid of an adaptor protein which recognizes the target (Rsp5-adaptor). Ubiquitinated permeases are sent by membrane invagination to early endosomes, where they encounter ESCRTs (endosomal sorting complex required for transport). The targeted permeases are sorted in intralumenal vesicles (ILV) inside of the endosome, which after several cycles, turns into a multivesicular body (MVB) that subsequently fuses with the vacuole to expose the protein content of the ILVs to lumenal hydrolases for degradation.
Gal2 contains 30 lysine residues that may accept the ubiquitin molecule, which targets its degradation. It is known that mono-ubiquitination by Rsp5 on multiple lysine residues is necessary to internalize Gal2 (Horak & Wolf, 2001). However, the authors did not identify the specific lysine residues involved in the ubiquitination processes. This study screened several Gal2 variants where lysine residues were mutated or removed from the protein sequence to discover which lysine residues are likely involved in ubiquitination and consequent turnover of the transporter. The results of the screening showed that mutation of the N terminal lysine residues 27, 37, and 44 to arginine (Gal23KR) produced a functional transporter that, when fused with GFP (Gal23KR_GFP), showed an exclusive localization at the plasma membrane in cells growing in galactose or glucose as a sole carbon source (Tamayo Rojas et al., 2021b).
This study furthermore evaluated upstream signals caused by phosphorylation which triggers ubiquitination and consequent turnover of the targeted protein; using similar screening approaches to assess the stabilization of Gal2 by lysine residue modifications, it was possible to identify that N terminal serine residues 32, 35, 39, 48, 53, and 55 are likely involved in the internalization of Gal2, since a Gal2 construct where all these serines were mutated to alanine residues and tagged with GFP (Gal26SA_GFP) exhibited practically complete localization at the plasma membrane in cells growing in galactose or glucose as a sole carbon source (Tamayo Rojas et al., 2021b)...
Die oxygene Photosynthese bildet den Grundpfeiler des heutigen Ökosystems unseres Planeten. Neben den gut untersuchten Landpflanzen bilden Mikroalgen eine äußerst bedeutende Organismengruppe der phototrophen Lebewesen. Zu den Mikroalgen zählen die Diatomeen, welche sich beispielsweise durch eine Silikatschale und spezielle Lichtsammelkomplexe auszeichnen und für einen Großteil der marinen Primärproduktion verantwortlich sind. Die stoffwechselphysiologischen Grundlagen des ökologischen Erfolgs der Kieselalgen sind bislang noch unzureichend erforscht. Ein Vertreter der zentrischen Diatomeen, Cyclotella, wurde bereits zur Jahrtausendwende zur biochemischen Charakterisierung der Diatomeen Photosynthese verwendet (Eppard und Rhiel, 1998; Eppard und Rhiel, 2000), das Genom des Organismus aber erst vor kurzem sequenziert (Traller et al., 2016). Die Sequenzierung des Genoms konnte einige Gene für Lichtsammelproteine identifizieren, die Homologie zu den LhcSR-Proteinen aus C. reinhardtii aufweisen, welche nachweislich eine photoprotektive Funktion besitzen (Peers et al., 2009). Diese sogenannten Lhcx-Proteine der Diatomeen sind in den zwei Gruppen der Kieselalgen, den zentrischen und pennaten Diatomeen zu finden, unterscheiden sich aber in ihren jeweiligen Lhcx-Kandidaten. So können in der pennaten Diatomee P. tricornutum vier lhcx-Gene ausgemacht werden, während die zentrische Kieselalge T. pseudonana sechs lhcx-Gene besitzt und C. cryptica vier verschiedene lhcx-Kandidaten genomisch aufweist (Armbrust et al., 2004; Bowler et al., 2008; Traller et al., 2016). Die beschriebenen Diatomeen weisen alle eine Homologie im Lhcx1 auf, während sich die übrigen Lhcx-Kandidaten zwischen pennaten und zentrischen Diatomeen unterscheiden. Ein zwischen T. pseudonana und C. cryptica konserviertes Lhcx ist das Lhcx6_1, welches 2011 das erste Mal massenspektrometrisch an Photosystemen von T. pseudonana nachgewiesen wurde (Grouneva et al., 2011) und in weiteren Massenspektrometrie-gestützten Untersuchungen in beiden zentrischen Diatomeen an Photosynthese-Komplexen gefunden werden konnte (Gundermann et al., 2019; Calvaruso et al., 2020). Die Funktion des Lhcx6_1 ist bislang unklar.
Diese Arbeit konnte das Lhcx6_1 aus C. meneghiniana charakterisieren und Antikörper-gestützt genauer lokalisieren, eine nicht dynamische Phosphorylierung der Thylakoidmembran-Proteine der zentrischen Diatomee nachweisen und die molekularbiologische Zugänglichkeit des Organismus optimieren. qRT-PCR gestützte Expressions-Analysen konnten eine unerwartete Expression des lhcx6_1-Gens aufdecken. Dieses weist, im Vergleich zum Lhcx1, keine Starklicht induzierte Expression auf. Die Expression des Gens konnte nach wenigen Stunden Schwachlicht als maximal bestimmt werden, während sie im Starklicht abnimmt. Das Muster der Genexpression glich im Schwachlicht eher der des lhcf1-Gens. Die Sequenzierung des lhcx6_1 aus C. meneghiniana identifizierte eine verlängerte N-terminale Sequenz des Proteins, welche Homologie zu den minoren Antennen aus A. thaliana besitzt und Teil des reifen Proteins ist. Mittels eines C-terminalen Epitops wurde ein Antikörper gegen das Lhcx6_1 entworfen, welcher das Protein in C. meneghiniana spezifisch nachweisen kann. Die Isolation von Thylakoidmembranen der zentrischen Diatomee und weitergehende Aufreinigung mittels Saccharosedichtegradienten und lpBN-PAGE konnten die Lokalisation des Lhcx6_1 eingrenzen. Das Protein zeigt dabei keine Unterschiede in seiner Lokalisation nach Inkubation in Schwach-, Stark- und Fernrot-Licht und ist vorrangig mit Photosystem I assoziiert. In geringerer Menge konnte es zudem an Photosystem II nachgewiesen werden, während der immunologische Nachweis in Lichtsammelkomplexen (FCPs) minimale Mengen erbrachte. Ferner konnte eine Phosphorylierung des Lhcx6_1 an Threonin-Resten nachgewiesen werden, während die meisten anderen Thylakoidmembran-Proteine mittels Phospho-Serin Antikörper detektiert werden konnten. Weder die Phosphorylierung des Lhcx6_1, noch der anderen Thylakoidmembran-Proteine, zeigt eine dynamische Regulation, im Stile einer state-transition ähnlichen Kinase auf. Die Qualität des Umgebungslichts führte zu keinerlei Unterschieden in Phosphorylierungsmustern. Weiterführende Untersuchungen der Lhcx6_1-Phosphorylierung mittels Phos-tag PAGE identifizieren eine unphosphorylierte und eine einfach phosphorylierte Form des Proteins. Dabei kann an PSI ausschließlich die phosphorylierte Version des Lhcx6_1 gefunden werden. Im Zuge der Arbeit konnte zudem erstmalig die Elektroporation und Konjugation für C. meneghiniana als Transformations-Methoden etabliert werden, während das Protokoll für die biolistische Transformation optimiert wurde. Die Elektroporation erbrachte die höchste Transformationseffizienz. Molekularbiologische Unterfangen eines Lhcx6_1-Knockdowns mittels Antisense-RNA erzielten zunächst, aufgrund der starken Gegenregulation der Diatomee, keinen Erfolg...
The ongoing pandemic caused by the Betacoronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) demonstrates the urgent need of coordinated and rapid research towards inhibitors of the COVID-19 lung disease. The covid19-nmr consortium seeks to support drug development by providing publicly accessible NMR data on the viral RNA elements and proteins. The SARS-CoV-2 genome encodes for approximately 30 proteins, among them are the 16 so-called non-structural proteins (Nsps) of the replication/transcription complex. The 217-kDa large Nsp3 spans one polypeptide chain, but comprises multiple independent, yet functionally related domains including the viral papain-like protease. The Nsp3e sub-moiety contains a putative nucleic acid-binding domain (NAB) with so far unknown function and consensus target sequences, which are conceived to be both viral and host RNAs and DNAs, as well as protein-protein interactions. Its NMR-suitable size renders it an attractive object to study, both for understanding the SARS-CoV-2 architecture and drugability besides the classical virus’ proteases. We here report the near-complete NMR backbone chemical shifts of the putative Nsp3e NAB that reveal the secondary structure and compactness of the domain, and provide a basis for NMR-based investigations towards understanding and interfering with RNA- and small-molecule-binding by Nsp3e.
Peronospora aquilegiicola is a destructive pathogen of columbines and has wiped out most Aquilegia cultivars in several private and public gardens throughout Britain. The pathogen, which is native to East Asia was noticed in England and Wales in 2013 and quickly spread through the country, probably by infested plants or seeds. To our knowledge, the pathogen has so far not been reported from other parts of Europe. Here, we report the emergence of the pathogen in the northwest of Germany, based on morphological and phylogenetic evidence. As the pathogen was found in a garden in which no new columbines had been planted recently, we assume that the pathogen has already spread from its original point of introduction in Germany. This calls for an increased attention to the further spread of the pathogen and the eradication of infection spots to avoid the spread to naturally occurring columbines in Germany and to prevent another downy mildew from becoming a global threat, like Peronospora belbahrii and Plasmopara destructor, the downy mildews of basil and balsamines, respectively.
Oomycetes infecting diatoms are biotrophic parasitoids and live in both marine and freshwater environments. They are ubiquitous, but the taxonomic affinity of many species remains unclear and the majority of them have not been studied for their molecular phylogeny. Only recently, the phylogenetic and taxonomic placement of some diatom-infecting, early-diverging oomycetes was resolved, including the genera Ectrogella, Miracula, Olpidiopsis, and Pontisma. A group of holocarpic diatom parasitoids with zoospores swarming within the sporangium before release were found to be unrelated to the known genera with diatom-infecting species, and were re-classified to a new genus, Diatomophthora. However, about a dozen species of holocarpic diatom parasitoids with unclear affinity remained unsequenced, which includes a commonly occurring species so far identified as Ectrogella perforans. However, this assignment to Ectrogella is doubtful, as the species was not reported to feature a clear-cut diplanetism, a hallmark of Ectrogella s. str. and the whole class Saprolegniomycetes. It was the aim of the current study to clarify the phylogenetic affinities of the species and if the rather broad host range reported is correct or a reflection of cryptic species. By targeted screening, the parasitoid was rediscovered from Helgoland Roads, North Sea and Oslo Fjord, Southern Norway and investigated for its phylogenetic placement using small ribosomal subunit (18S) sequences. Stages of its life cycle on different marine diatoms were described and its phylogenetic placement in the genus Diatomophthora revealed. A stable host-parasite axenic culture from single spore strains of the parasitoid were established on several strains of Pleurosigma intermedium and Coscinodiscus concinnus. These have been continuously cultivated along with their hosts for more than 2 years, and cultural characteristics are reported. Cross-infection trials revealed the transferability of the strains between hosts under laboratory conditions, despite some genetic distance between the pathogen strains. Thus, we hypothesise that D. perforans might be in the process of active radiation to new host species.
Geoffrey Burnstock will be remembered as the scientist who set up an entirely new field of intercellular communication, signaling via nucleotides. The signaling cascades involved in purinergic signaling include intracellular storage of nucleotides, nucleotide release, extracellular hydrolysis, and the effect of the released compounds or their hydrolysis products on target tissues via specific receptor systems. In this context ectonucleotidases play several roles. They inactivate released and physiologically active nucleotides, produce physiologically active hydrolysis products, and facilitate nucleoside recycling. This review briefly highlights the development of our knowledge of two types of enzymes involved in extracellular nucleotide hydrolysis and thus purinergic signaling, the ectonucleoside triphosphate diphosphohydrolases, and ecto-5′-nucleotidase.
Besides transcription, RNA decay accounts for a large proportion of regulated gene expression and is paramount for cellular functions. Classical RNA surveillance pathways, like nonsense-mediated decay (NMD), are also implicated in the turnover of non-mutant transcripts. Whereas numerous protein factors have been assigned to distinct RNA decay pathways, the contribution of long non-coding RNAs (lncRNAs) to RNA turnover remains unknown. Here we identify the lncRNA CALA as a potent regulator of RNA turnover in endothelial cells. We demonstrate that CALA forms cytoplasmic ribonucleoprotein complexes with G3BP1 and regulates endothelial cell functions. A detailed characterization of these G3BP1-positive complexes by mass spectrometry identifies UPF1 and numerous other NMD factors having cytoplasmic G3BP1-association that is CALA-dependent. Importantly, CALA silencing impairs degradation of NMD target transcripts, establishing CALA as a non-coding regulator of RNA steady-state levels in the endothelium.
Regulatory required, classical toxicity studies for environmental hazard assessment are costly, time consuming, and often lack mechanistic insights about the toxic mode of action induced through a compound. In addition, classical toxicological non-human animal tests raise serious ethical concerns and are not well suited for high throughput screening approaches. Molecular biomarker-based screenings could be a suitable alternative for identifying particular hazardous effects (e.g. endocrine disruption, developmental neurotoxicity) in non-target organisms at the molecular level. This, however, requires a better mechanistic understanding of different toxic modes of action (MoA) to describe characteristic molecular key events and respective markers.
Ecotoxicgenomics, which uses modern day omic technologies and systems biology approaches to study toxicological responses at the molecular level, are a promising new way for elucidating
the processes through which chemicals cause adverse effects in environmental organisms. In this context, this PhD study was designated to investigate and describe MoA-characteristic
ecotoxicogenomic signatures in three ecotoxicologically important aquatic model organisms of different trophic levels (Danio rerio, Daphnia magna and Lemna minor).
Applying non-target transcriptomic and proteomic methodologies post chemical exposure, the aim was to identify robust functional profiles and reliable biomarker candidates with potential
predictive properties to allow for a differentiation among different MoA in these organisms. For the sublethal exposure studies in the zebrafish embryo model (96 hpf), the acute fish embryo toxicity test guideline (OECD 236) was used as conceptual framework. As different test compounds with known MoA, the thyroid hormone 3,3′,5-triiodothyronine (T3) and the thyrostatic 6-propyl-2-thiouracil (6-PTU), as well as six nerve- and muscle-targeting insecticides (abamectin, carbaryl, chlorpyrifos, fipronil, imidacloprid and methoxychlor) were evaluated. Furthermore, a novel sublethal immune challenge assay in early zebrafish embryos (48 hpf) was evaluated for its potential to assess immuno-suppressive effects at the gene expression level. Therefore, toxicogenomic profiles after an immune response inducing stimulus with and without prior clobetasol propionate (CP) treatment were compared. For the aquatic invertebrate D. magna, the study was performed with previously determined low effect concentrations (EC5 & EC20) of fipronil and imidacloprid according to the acute immobilization test in water flea (OECD 202). The aim was to compare toxicogenomic signatures of the GABA-gated chloride channel blocker (fipronil) and the nAChR agonist (imidacloprid). With similar low effect concentrations, a shortened 3 day version of the growth inhibition test with L. minor (OECD 221) was conducted to find molecular profiles differentiating between photosynthesis and HMG-CoA reductase inhibitory effects. Here, the biological interpretation of the molecular stress response profiles in L. minor due to the lack of functional annotation of the reference genome was particularly challenging. Therefore, an annotation workflow was developed based on protein sequence homology predicted from the genomic reference sequences.
With this PhD work, it was shown how transcriptomic, proteomic and computational systems biology approaches can be coupled with aquatic toxicological tests, to gain important mechanistic insights into adverse effects at the molecular level. In general, for the different investigated adverse effects for the different organisms, biomarker candidates were identified, which describe a potential functional link between impaired gene expressions and previously reported apical effects. For the assessed chemicals in the zebrafish embryo model, biomarker candidates for thyroid disruption as well as developmental toxicity targeting the heart and central nervous system were described. The biomarkers derived from nerve- and muscletargeting insecticides were associated with three major affected processes: (1) cardiac muscle cell development and functioning, (2) oxygen transport and hypoxic stress and (3) neuronal development and plasticity. To our knowledge, this is the first study linking neurotoxic insecticide exposure and affected expression of important regulatory genes for heart muscle (tcap, actc2) and forebrain (npas4a) development in a vertebrate model. The proposed immunosuppression assay found CP to affect innate immune induction by attenuating the response of genes involved in antigen processing, TLR signalling, NF-КB signalling, and complement activation ...
Background: Long sequencing reads allow increasing contiguity and completeness of fragmented, short-read–based genome assemblies by closing assembly gaps, ideally at high accuracy. While several gap-closing methods have been developed, these methods often close an assembly gap with sequence that does not accurately represent the true sequence.
Findings: Here, we present DENTIST, a sensitive, highly accurate, and automated pipeline method to close gaps in short-read assemblies with long error-prone reads. DENTIST comprehensively determines repetitive assembly regions to identify reliable and unambiguous alignments of long reads to the correct loci, integrates a consensus sequence computation step to obtain a high base accuracy for the inserted sequence, and validates the accuracy of closed gaps. Unlike previous benchmarks, we generated test assemblies that have gaps at the exact positions where real short-read assemblies have gaps. Generating such realistic benchmarks for Drosophila (134 Mb genome), Arabidopsis (119 Mb), hummingbird (1 Gb), and human (3 Gb) and using simulated or real PacBio continuous long reads, we show that DENTIST consistently achieves a substantially higher accuracy compared to previous methods, while having a similar sensitivity.
Conclusion: DENTIST provides an accurate approach to improve the contiguity and completeness of fragmented assemblies with long reads. DENTIST's source code including a Snakemake workflow, conda package, and Docker container is available at https://github.com/a-ludi/dentist. All test assemblies as a resource for future benchmarking are at https://bds.mpi-cbg.de/hillerlab/DENTIST/.