Pharmazie
Refine
Year of publication
Document Type
- Doctoral Thesis (329)
- Article (185)
- Book (32)
- Contribution to a Periodical (7)
- Conference Proceeding (3)
- Preprint (3)
- Habilitation (1)
Has Fulltext
- yes (560)
Is part of the Bibliography
- no (560)
Keywords
- Nanopartikel (10)
- Entzündung (6)
- Gentherapie (6)
- aging (6)
- 5-lipoxygenase (5)
- Proteomics (5)
- Schmerz (5)
- inflammation (5)
- Alzheimer-Krankheit (4)
- Apoptosis (4)
Institute
- Pharmazie (560)
- Medizin (56)
- Biochemie und Chemie (52)
- Präsidium (38)
- Biowissenschaften (24)
- Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit (ZAFES) (22)
- Psychologie (8)
- Sportwissenschaften (8)
- Georg-Speyer-Haus (7)
- Physik (7)
Biological drug substance (DS) is often frozen to enhance storage stability, prolong shelf life, and increase flexibility during manufacturing. However, the freezing and thawing (F/T) of bulk DS at the manufacturing scale can impact product quality as a result of various critical conditions, including cryo-concentration during freezing, which are influenced, among other things, by product-independent process parameters (e.g., container type, fill level, F/T equipment, and protocols). In this article, we report the optimization of two major methodologies to study product-independent process parameters in DS bottles at the manufacturing scale, namely the recording of temperature profiles and liquid sampling after thawing to quantify the concentration gradients in the solution. We report experimentally justified measuring positions for temperature recordings, especially for the selection of the last point to freeze position, and highlight the implementation of camera-assisted inspection to determine the last point to thaw and the actual thawing time. In particular, we provide, for the first time, a detailed description of the technical implementation of these two measuring set-ups. Based on the reported case studies, we recommend choosing relevant measuring positions as a result of initial equipment characterization, resulting in a resource-conscious study set-up.
The increasing incidence of infected skin wounds poses a major challenge in clinical practice, especially when conventional antibiotic therapy fails. In this context, bacteriophages emerged as promising alternatives for the treatment of antibiotic-resistant bacteria. However, clinical implementation remains hampered by the lack of efficient delivery approaches to infected wound tissue. In this study, bacteriophage-loaded electrospun fiber mats were successfully developed as next-generation wound dressings for the treatment of infected wounds. We employed a coaxial electrospinning approach, creating fibers with a protective polymer shell, enveloping bacteriophages in the core while maintaining their antimicrobial activity. The novel fibers exhibited a reproducible fiber diameter range and morphology, while the mechanical fiber properties were ideal for application onto wounds. Further, immediate release kinetics for the phages were confirmed as well as the biocompatibility of the fibers with human skin cells. Antimicrobial activity was demonstrated against Staphylococcus aureus and Pseudomonas aeruginosa and the core/shell formulation maintained the bacteriophage activity for 4 weeks when stored at − 20 °C. Based on these promising characteristics, our approach holds great potential as a platform technology for the encapsulation of bioactive bacteriophages to enable the translation of phage therapy into clinical application.
Electrospinning is an advanced method for the generation of polymer-based fibers. This fabrication technique has gained great interest in the biomedical field in recent years due to its straightforward application and significant versatility of the resulting fiber mats. The process is carried out by dissolving a (biologically or synthetically derived) polymer or a combination of several polymers in a suitable inorganic or organic solvent and transferring these solutions into a syringe with a needle tip as a spinneret. The power source is connected to the syringe tip, allowing for the application of a high voltage to the polymer solution, and a metallic collector, often a rotating drum cylinder on which the yielded polymer fibers are deposited. The usual fiber diameters range between nano- and micrometers. The yielded fiber mats have distinct characteristics, such as a large surface area, mechanical stability, and good encapsulation efficiency. Therefore, the fiber mats can be used as a topical dosage form for a multitude of diseases (e.g., conjunctivitis, keratitis), as they can be easily applied on or into the human body to release the drug for a prolonged period of time. In addition, the fibers exhibit a high degree of resemblance with the human extracellular matrix, which consists predominantly of collagen fibrils. Therefore, the obtained fiber mats can also be employed as innovative substrates for the cultivation of cells. As a result, electrospinning is suitable for a wide range of applications in the biomedical context, specifically for the targeted, topical delivery of bioactives and also as a cell culture substrate for the cultivation of cells in an enhanced in vivo relevant situation.
One objective of this work was the development and characterization of drug-loaded electrospun fibers for application to the inflamed and infected eye to complement the existing therapy of eye drops as well as systemic administration of anti-infectives. In particular, the focus of the project was the development of ocular implants to treat a herpes simplex infection affecting the human cornea. Additionally, electrospun fibers, which immediately dissolve in the tear fluid upon application and prolong the contact time of the bioactives at the eye, were developed as a topical dosage form to treat bacterial conjunctivitis. An additional objective of this work was the development of electrospun fiber mats as an innovative substrate for the cultivation of human induced pluripotent stem cells to mimic the human blood-brain barrier in vitro. The final objective of the present work was establishing an analytical concept for the comprehensive characterization of electrospun fibers to obtain a greater comparability and reproducibility of data and results from different laboratories.
Herpes simplex keratitis is a viral disease of the cornea that can potentially lead to blindness. This disease commonly occurs after corneal transplantation. As the cornea is the most transplanted tissue worldwide, the incidence of this disease varies from 4.9% to 12.6% (high- and low-income countries). The current therapy involves the application of eye drops as many as six times a day, and in severe cases, the systemic use of antiviral agents is necessary but can cause serious side effects (e.g., renal failure). To prevent the occurrence of herpes simplex keratitis after transplantation, a biodegradable electrospun nanofiber mat with a sustained release of acyclovir was established. The rational development of the fibers was facilitated by correlating the surface wettability with the release kinetics of the individual polymers, which allowed for the successful generation of fiber mats releasing the bioactive acyclovir over three weeks. The molecularly dispersed drug is present as an amorphous solid dispersion within the PLGA-based polymer matrix. Evaluating the cell viability in in vitro models proved that neither acyclovir nor the polymers or the generated fiber mats caused any cytotoxicity. The mechanical stability of the fiber mats was evaluated to ensure adequate handling of the fibers during implantation. The findings demonstrated that the fiber mats exhibit direction-independent mechanical properties, and their mechanical load-bearing capacity is greater than that of an excised human cornea. As a result, the fiber mats are suitable for surgical implantation into the anterior chamber of the eye. An in vitro model of human keratinocytes was infected with herpes simplex virus to demonstrate the antiviral efficacy of the electrospun fiber mats. Immunostaining for two specific viral proteins demonstrated the spread of infection in the model. Hereby, it was found that the placebo- and drug-loaded fibers significantly slowed the spread of infection, which was quantified by plaque assay determination. This experiment revealed that the electrospun fibers exert a synergistic antiviral effect by simultaneously releasing acyclovir, which is a virustatic agent that inhibits the replication of the virus in infected cells, and adsorbing released viral particles onto the surface of the polymer fibers. This reduces the overall burden of released viral particles, which is associated with the severity of the infection outbreak. Thus, with the aid of electrospinning, an ocular implant was successfully generated, which is biodegradable over time and significantly reduces the viral particle burden in vitro. Hence, the fibers represent a potential alternative for the prevention of herpes simplex keratitis after corneal transplantation...
Nuclear receptors (NRs) activate transcription of target genes in response to binding of ligands to their ligand-binding domains (LBDs). Typically, in vitro assays use either gene expression or the recruitment of coactivators to the isolated LBD of the NR of interest to measure NR activation. However, this approach ignores that NRs function as homo- as well as heterodimers and that the LBD harbors the main dimerization interface. Cofactor recruitment is thereby interconnected with oligomerization status as well as ligand occupation of the partnering LBD through allosteric cross talk. Here we present a modular set of homogeneous time-resolved FRET–based assays through which we investigated the activation of PPARγ in response to ligands and the formation of heterodimers with its obligatory partner RXRα. We introduced mutations into the RXRα LBD that prevent coactivator binding but do not interfere with LBD dimerization or ligand binding. This enabled us to specifically detect PPARγ coactivator recruitment to PPARγ:RXRα heterodimers. We found that the RXRα agonist SR11237 destabilized the RXRα homodimer but promoted formation of the PPARγ:RXRα heterodimer, while being inactive on PPARγ itself. Of interest, incorporation of PPARγ into the heterodimer resulted in a substantial gain in affinity for coactivator CBP-1, even in the absence of ligands. Consequently, SR11237 indirectly promoted coactivator binding to PPARγ by shifting the oligomerization preference of RXRα toward PPARγ:RXRα heterodimer formation. These results emphasize that investigation of ligand-dependent NR activation should take NR dimerization into account. We envision these assays as the necessary assay tool kit for investigating NRs that partner with RXRα.
Redox homeostasis must be kept in balance for an intact redox signaling, which is necessary to control neuronal pathways such as growth cone pathfinding, synaptic plasticity and transmission (Oswald, Garnham, Sweeney, & Landgraf, 2018).
Nucleoredoxin (NXN) is an oxidoreductase and thioredoxin-like protein holding two conserved cysteine residues in its structure (Funato & Miki, 2007), which are essential for its redox-regulating functionality. The function of NXN in neurons is still less well studied. But the expression of NXN in neurons, which was confirmed through analyzing adult NXN-LacZ reporter mice, suggested a dominant functional role in neuronal pathways. Initial experiments revealed calcium-calmodulin-dependent kinase 2 a (Camk2a) as a potential interaction partner through a Yeast-2-Hybrid screen (not shown) which is the major protein to induce synaptic plasticity during neuronal activity. Therefore, neuronal expression of NXN and the potential interaction with Camk2a prompted us to investigate deeper into the neuronal pathway. The goal of this work was to confirm the interaction of Camk2a and NXN with further experiments and to characterize behavior of mice carrying a neuronal NXN deletion. To achieve a pan-neuronal depletion of NXN expression in our mouse model, we used the Cre/loxP system with a NestinCre driver. We did not achieve the expected complete deletion of NXN due to unknown compensatory mechanisms. Nevertheless, the partial deletion of NXN in our transgenic mouse model prevented embryonic lethality as occurring in complete NXN knockout mice (Funato et al., 2010). The interaction of Camk2a and NXN was confirmed through proximity ligation assay (PLA) and immunofluorescence staining of primary cortical neurons.
Investigations of the functional interaction revealed a lower redox-sensitivity of Camk2a activity in NXN-deficient brain samples. Additionally, the respiratory activity was significantly reduced in mitochondria of NXN deficient mouse brain pointing to possible dysfunctional mitochondria which is also observed in various neurodegenerative diseases, e.g.: Alzheimer, Parkinson, and Huntington disease (Norat et al., 2020). Unexpectedly, behavioral studies revealed only a subtle effect of the pan-neuronal NXN-deficiency. Significant differences between genotypes were found at the reduction of exploratory behavior and a reduced motivation for the voluntary wheel running in NesNXN-/- mice, which is normally seen as a joyful and rewarding activity. The observed behavior of NesNXN-/- mice potentially results from interaction mechanisms of NXN with Camk2a, as well as decreased oxidation of
Camk2a and further unidentified target proteins of NXN.
Conclusively, function of NXN was revealed as a non-essential redox modulator of Camk2a in neurons. The behavioral phenotype of NesNXN-/- mice is probably compensated through unknown mechanisms. Redox signaling of Camk2a in neurons is regulated through various components such as TXN or GSH, which can backup each other (Branco et al., 2017; Ren et al., 2017). NXN is an additional but not essential regulator.
Nukleäre Rezeptoren (NRs) sind ligandenaktivierte Transkriptionsfaktoren, die an der Regulation unzähliger (patho-)physiologischer Prozesse im Körper beteiligt sind, wodurch sie interessante therapeutische Zielstrukturen darstellen. Unter ihnen zählen die PPARs (α, γ und δ) zur Hälfte der gut erforschten NRs. Sie haben als Lipidsensoren vor allem metabolische Funktionen und ihre synthetischen Liganden sind als Arzneistoffe zugelassen, sind anderen Therapieoptionen jedoch aufgrund geringerer Wirksamkeit und klassenspezifischer Nebenwirkungen unterlegen. Daher ist der Bedarf an neuen Konzepten zur selektiven Modulation der PPARs groß. Den gut studierten NRs gegenüber steht die andere Hälfte der NRs, deren Funktionen noch nicht umfassend verstanden sind. Nurr1 ist ein solcher NR, dem großes therapeutisches Potential bei neurodegenerativen Erkrankungen wie Parkinson, Alzheimer-Demenz und Multipler Sklerose zugeschrieben wird. Der konstitutiv aktive NR wird hauptsächlich im ZNS, und dort vor allem in dopaminergen Neuronen, exprimiert, wo er neuroprotektive und anti-entzündliche Effekte vermittelt. Trotz der jüngsten Erkenntnisse zu potenziellen endogenen Liganden der direkten Interaktion der Nurr1-Ligandbindedomäne (LBD) mit kleinen, wirkstoffartigen Molekülen, mangelt es an geeigneten chemischen Tools, um die Nurr1-Modulation als neues therapeutisches Konzept zu validieren. Ziel dieser Arbeit war daher die Identifikation, Entwicklung und Charakterisierung neuer tool compounds für die PPARs und Nurr1.
Das Konzept der Photopharmakologie eröffnet neue Möglichkeiten in der zeitlichen und räumlichen Kontrolle biologischer Effekte. Mit Hilfe computergestützten Designs wurden aus dem PPARγ-Agonist Rosiglitazon und dem pan-PPAR-Agonist GL479 Azobenzen-basierte photoschaltbare PPAR-Agonisten entwickelt und optimiert. Das Rosiglitazon-Azolog 36 wurde durch terminale Erweiterung als cis-präferenzieller selektiver PPARγ-Agonist erhalten, der durch Licht aktiviert werden konnte. Aus GL479 ging zum einen 38 als hochpotenter und selektiver PPARα-Agonist hervor, der in seiner trans-Konfiguration 35-mal potenter war als das entsprechende cis-Isomer. Zum anderen wurde ein dualer trans-präferenzieller PPARα- und -δ-Agonist (41) entwickelt. In einem eigens etablierten Fluoreszenz-Reportergenassay konnte durch die neuen photopharmakologischen Tools die PPAR-Aktivität in lebenden Zellen im zeitlichen Verlauf kontrolliert werden.
Auch die Identifikation und Charakterisierung endogener Liganden ist von großer Relevanz für die Modulation von NRs. Mit der Entdeckung der PPARγ-Aktivierung durch Garcinolsäure (48), einem Vitamin-E-Metaboliten, konnte ein neuer Aktivierungsmechanismus aufgedeckt werden, der ein besonderes Co-Regulator-Interaktionsprofil umfasst. Eine Co-Kristallstruktur der PPARγ-LBD im Komplex mit 48 zeigte, dass 48 sowohl die orthosterische als auch eine neue allosterische Bindestelle adressiert. Eine Genexpressionsanalyse in humanen Hepatozyten zeigte, dass sich dieser besondere Aktivierungsmechanismus von 48 auch in einer differenzierten Modulation der PPARγ-regulierten Genexpression widerspiegelte, woraus sich mögliche therapeutische Anwendungen für eine selektiv allosterische PPAR-Modulation ableiten lassen.
Der erste Ansatz zur Suche nach Nurr1-Modulatoren als tool compounds war von den Prostaglandinen A1 und A2 als potenziellen endogenen Nurr1-Liganden inspiriert. Da diese Entzündungsmediatoren durch Aktivität der Cyclooxygenasen (COX) 1 und 2 entstehen, entstand die Hypothese, dass synthetische COX-Inhibitoren, auch bekannt als nichtsteroidale Antirheumatika (NSARs), Nurr1 modulieren könnten. Dies konnte in einem Screening von 39 strukturell diversen NSARs im Gal4-Nurr1-Reportergenassay bestätigt werden. Mit Meclofenaminsäure als differenziellem Nurr1-Modulator sowie Oxaprozin und Parecoxib als den ersten inversen Nurr1-Agonisten konnte dabei außerdem gezeigt werden, dass die hohe konstitutive Nurr1-Aktivität bidirektional moduliert werden kann, und dass sowohl das Co-Regulator-Rekrutierungsprofil als auch das Dimerisierungsverhalten an der Vermittlung von Nurr1-Ligand-Effekten entscheidend beteiligt sind.
Die zweite Strategie beruhte auf den alten Antimalariawirkstoffen Amodiaquin (19) und Chloroquin (25), die zuvor als moderate Nurr1-Agonisten (EC50 Nurr1: 36 µM (19), 47 µM (25)) identifiziert wurden, aber aufgrund zahlreicher unspezifischer Effekte für den breiten Einsatz als tool compounds für Nurr1 ungeeignet sind. Eine Evaluation der einzelnen Strukturmerkmale dieses Chemotyps zeigte, dass das gemeinsame 7-Chlorochinolin-4-amin Grundgerüst ausreichend ist, um Nurr1 zu aktivieren (EC50 Nurr1: 259 µM). Basierend auf dieser Erkenntnis gingen durch gezielte Strukturmodifikationen dieses Grundgerüstes die Nurr1-Agonisten 71 und 73 hervor (EC50 Nurr1: 7,3 µM (71), 17 µM (73)), die die Leitstrukturen in ihrer Potenz übertrafen...
Die Beteiligung an Schlüsselfunktionen in zellulären Signalwegen macht Kinasen zu einem vielversprechenden Ansatzpunkt in der Wirkstoffentwicklung bei verschiedenen menschlichen Erkrankungen wie z.B. Krebs oder auch Autoimmun- und Entzündungskrankheiten. Die Prävention von post-translationalen Modifikationen durch Phosphorylierung und somit die Regulierung der nachgeschalteten Signalwege ist das Ziel von Kinaseinhibitoren. Die katalytische Aktivität von Kinasen ist abhängig von ATP, welches im hochkonservierten aktiven Zentrum bindet. Bedingt durch diese kinomweite hohe Konservierung stellt die Entwicklung von hoch selektiven ATP-mimetischen Inhibitoren eine Herausforderung dar. Typische ATP-Mimetika sind flach und die oft hydrophoben Moleküle weisen meist eine große Zahl an frei rotierbaren Bindungen auf. Um das aus dieser Flexibilität hervorgehende Problem der teils mangelnden Selektivität zu umgehen, kann eine bioaktive Konformation des Inhibitors durch Makrozyklisierung fixiert werden. Als Konsequenz dieser konformationellen Einschränkung können die entropischen Kosten während des Bindens reduziert werden und folglich zu einer gesteigerten Affinität gegenüber der Kinase führen.
Der Grundstein dieser Arbeit war der makrozyklische Pyrazolo[1,5-a]pyrimidin basierte FLT3 Kinaseinhibitor ODS2004070 (37). Im Rahmen eines kinomweiten Screenings konnten hohe Affinitäten zu verschiedensten Kinasen detektiert werden, was 37 zu einer guten Leitstruktur für das Design von potenten und selektiven Kinaseinhibitoren machte. Im Rahmen dieser Arbeit blieb das literaturbekannte Pyrazolo[1,5-a]pyrimidin basierte ATP-mimetische Bindemotiv sowie das makrozyklische Grundgerüst 37 bis auf einige wenige Variation unverändert.
Strukturelle Optimierungen zur Fokussierung der Selektivität wurden am sekundären Amin zwischen Bindemotiv und Linker als auch über die freie Carbonsäure durchgeführt. Mit einer Anzahl von mehr als 430 identifizierten Phosphorylierungsstellen ist die pleiotropisch und konstitutiv aktive Casein Kinase 2 (CK2) an verschiedensten zellulären Prozessen wie dem Verlauf des Zellzyklus, der Apoptose oder der Transkription regulatorisch beteiligt. Die Fehlregulation von CK2 wird häufig mit der Pathologie von Krankheiten wie zum Beispiel Krebs assoziiert, was CK2 zu einem vielversprechenden Ziel klinischer Untersuchungen macht.
Im Rahmen des CK2-Projekts war es möglich, durch spezifische Modifikationen an 37, die hoch selektiven und potenten CK2-Inhibitoren 47 und 60 zu entwickeln. Ebenfalls gezeigt wurde, dass kleine strukturelle Veränderungen, wie z.B. Makrozyklisierung, einen signifikanten Effekt auf Selektivität und Potenz des Inhibitors haben kann.
Weiter Untersuchungen der Verbindungen lenkten den Fokus weiterer Arbeiten u.a. auf die Serin/Threonin Kinase 17A (STK17A) oder auch death-associated protein kinase-related apoptosis-inducing protein kinase 1 (DRAK1) genannt. Sie ist Teil der DAPK Familie und gehört zusammen mit anderen Kinasen zu den weniger erforschten Kinasen. Bis heute ist nicht viel über ihre zellulären Funktionen und die Beteiligung an pathophysiologischen Prozessen bekannt. Berichtet wurde jedoch eine Überexpression in verschiedenen Formen von Hirntumoren des zentralen Nervensystems (Gliom). Strukturelle Modifikationen, unter Erhalt des makrozyklischen Grundgerüsts 37, führten zu dem hoch selektiven und potenten DRAK1 Inhibitor 121, der alle Kriterien für eine chemical probe Verbindung erfüllt.
Ein weiteres Ziel dieser Arbeit war die AP-2-assoziierte Protein Kinase 1 (AAK1) aus der NAK Familie, bestehend aus AAK1, BIKE und GAK. Sie ist als potenzielles therapeutisches Ziel für viele verschieden Krankheiten wie z.B. neuropathische Schmerzen, Schizophrenie und Parkinson identifiziert. Durch die Regulierung der Clathrin-mediierten Endozytose ist AAK1 an intrazellulären Bewegungen verschiedener nicht zusammenhängenden RNS- und DNSViren, wie beispielsweise HCV, DENV oder EBOV, beteiligt. Ebenfalls berichtet wurde eine mögliche Assoziation mit dem SARS-CoV-2 Virus, was das Interesse an neuen selektiven AAK1 Inhibitoren verstärkte. Die Entwicklung der hochpotenten und selektiven AAK1 Inhibitoren 61 und 63 basierte ebenfalls auf dem makrozyklischen Grundgerüst 37, das bereits im CK2- und DRAK1-Projekt verwendet wurde.
Zusammenfassend lässt sich sagen, dass es im Rahmen dieser Arbeit gelungen ist, ausgehend von einem höchst unselektiven makrozyklischen Grundgerüst, hochpotente und selektive Kinaseinhibitoren für CK2, DRAK1 und AAK1 zu entwickeln und zu charakterisieren. Im Zuge von Untersuchungen verschiedener Struktur-Wirkungsbeziehungen wurde gezeigt, dass es durch geringfügige strukturelle Modifikationen möglich ist, die kinomweite Selektivität zu variieren und auf eine Kinase zu fokussieren. Diese Arbeit brachte nicht nur die erwähnten Inhibitoren hervor, sondern bildet auch die Grundlage für weitere Projekte zur Entwicklung von hoch potenten und selektiven Verbindungen als potenzielle chemische Werkzeuge für den Einsatz in der Forschung.