Georg-Speyer-Haus
Refine
Year of publication
Document Type
- Article (130)
- Doctoral Thesis (16)
- Conference Proceeding (3)
- Preprint (3)
- Review (1)
Has Fulltext
- yes (153)
Is part of the Bibliography
- no (153)
Keywords
- HIV-1 (3)
- brain metastases (3)
- gene therapy (3)
- immunotherapy (3)
- Apoptosis (2)
- Cancer (2)
- Gentherapie (2)
- epigenetics (2)
- gallbladder cancer (2)
- gallbladder cancer xenografts (2)
Institute
[Congress abstract P-05-09] Calcium, calcium-sensing receptor and its role in leukaemia progression
(2022)
Long non-coding RNAs are a very versatile class of molecules that can have important roles in regulating a cells function, including regulating other genes on the transcriptional level. One of these mechanisms is that RNA can directly interact with DNA thereby recruiting additional components such as proteins to these sites via an RNA:dsDNA triplex formation. We genetically deleted the triplex forming sequence (FendrrBox) from the lncRNA Fendrr in mice and found that this FendrrBox is partially required for Fendrr function in vivo. We found that the loss of the triplex forming site in developing lungs causes a dysregulation of gene programs associated with lung fibrosis. A set of these genes contain a triplex site directly at their promoter and are expressed in lung fibroblasts. We biophysically confirmed the formation of an RNA:dsDNA triplex with target promoters in vitro. We found that Fendrr with the Wnt signalling pathway regulates these genes, implicating that Fendrr synergizes with Wnt signalling in lung fibrosis.
After myocardial infarction in the adult heart the remaining, non-infarcted tissue adapts to compensate the loss of functional tissue. This adaptation requires changes in gene expression networks, which are mostly controlled by transcription regulating proteins. Long non-coding transcripts (lncRNAs) are now recognized for taking part in fine-tuning such gene programs. We identified and characterized the cardiomyocyte specific lncRNA Sweetheart RNA (Swhtr), an approximately 10 kb long transcript divergently expressed from the cardiac core transcription factor coding gene Nkx2-5. We show that Swhtr is dispensable for normal heart development and function, but becomes essential for the tissue adaptation process after myocardial infarction. Re-expressing Swhtr from an exogenous locus rescues the Swhtr null phenotype. Genes depending on Swhtr after cardiac stress are significantly occupied, and therefore most likely regulated by NKX2-5. Our results indicate a synergistic role for Swhtr and the developmentally essential transcription factor NKX2-5 in tissue adaptation after myocardial injury.
After myocardial infarction in the adult heart the remaining, non-infarcted tissue adapts to compensate the loss of functional tissue. This adaptation requires changes in gene expression networks, which are mostly controlled by transcription regulating proteins. Long non-coding transcripts (lncRNAs) are taking part in fine-tuning such gene programs. We describe and characterize the cardiomyocyte specific lncRNA Sweetheart RNA (Swhtr), an approximately 10 kb long transcript divergently expressed from the cardiac core transcription factor coding gene Nkx2-5. We show that Swhtr is dispensable for normal heart development and function but becomes essential for the tissue adaptation process after myocardial infarction in murine males. Re-expressing Swhtr from an exogenous locus rescues the Swhtr null phenotype. Genes that depend on Swhtr after cardiac stress are significantly occupied and therefore most likely regulated by NKX2-5. The Swhtr transcript interacts with NKX2-5 and disperses upon hypoxic stress in cardiomyocytes, indicating an auxiliary role of Swhtr for NKX2-5 function in tissue adaptation after myocardial injury.
Long non-coding RNAs are a very versatile class of molecules that can have important roles in regulating a cells function, including regulating other genes on the transcriptional level. One of these mechanisms is that RNA can directly interact with DNA thereby recruiting additional components such as proteins to these sites via a RNA:dsDNA triplex formation. We genetically deleted the triplex forming sequence (FendrrBox) from the lncRNA Fendrr in mice and find that this FendrrBox is partially required for Fendrr function in vivo. We find that the loss of the triplex forming site in developing lungs causes a dysregulation of gene programs, associated with lung fibrosis. A set of these genes contain a triplex site directly at their promoter and are expressed in fibroblasts. We confirm the formation of RNA:dsDNA formation with target promoters. We find that Fendrr with the Wnt signalling pathway regulates these genes, implicating that Fendrr synergizes with Wnt signalling in lung fibrosis.
Fendrr synergizes with Wnt signalling to regulate fibrosis related genes during lung development
(2021)
Long non-coding RNAs are a very versatile class of molecules that can have important roles in regulating a cells function, including regulating other genes on the transcriptional level. One of these mechanisms is that RNA can directly interact with DNA thereby recruiting additional components such as proteins to these sites via a RNA:dsDNA triplex formation. We genetically deleted the triplex forming sequence (FendrrBox) from the lncRNA Fendrr in mice and find that this FendrrBox is partially required for Fendrr function in vivo. We find that the loss of the triplex forming site in developing lungs causes a dysregulation of gene programs, associated with lung fibrosis. A set of these genes contain a triplex site directly at their promoter and are expressed in fibroblasts. We find that Fendrr with the Wnt signaling pathway regulates these genes, implicating that Fendrr synergizes with Wnt signaling in lung fibrosis.
Antigen presentation to cytotoxic T lymphocytes via major histocompatibility complex class I (MHC I) molecules depends on the heterodimeric transporter associated with antigen processing (TAP). For efficient antigen supply to MHC I molecules in the ER, TAP assembles a macromolecular peptide-loading complex (PLC) by recruiting tapasin. In evolution, TAP appeared together with effector cells of adaptive immunity at the transition from jawless to jawed vertebrates and diversified further within the jawed vertebrates. Here, we compared TAP function and interaction with tapasin of a range of species within two classes of jawed vertebrates. We found that avian and mammalian TAP1 and TAP2 form heterodimeric complexes across taxa. Moreover, the extra N-terminal domain TMD0 of mammalian TAP1 and TAP2 as well as avian TAP2 recruits tapasin. Strikingly, however, only TAP1 and TAP2 from the same taxon can form a functional heterodimeric translocation complex. These data demonstrate that the dimerization interface between TAP1 and TAP2 and the tapasin docking sites for PLC assembly are conserved in evolution, whereas elements of antigen translocation diverged later in evolution and are thus taxon specific.
Die Transkription vieler Gene wird über den Acetylierungsgrad der Histone reguliert. Entsprechend erweiterte die Entdeckung von Histondeacetylase-Inhibitoren das Verständnis um Transkriptions-Repressoren und ihre Rolle in der Pathogenese beträchtlich. Zur Zeit stehen die Modifikationen der Histondeacetylasen (HDACs) sowie die biologischen Rollen der verschiedenen HDAC-Isoenzyme im Zentrum intensiver Forschungsarbeiten.
In der vorliegenden Arbeit wurde anhand verschiedener Zelllinien und mit murinem Primärmaterial nachgewiesen, dass das gut verträgliche Antiepileptikum Valproinsäure (VPA) ein potenter HDAC-Inhibitor ist. Dies zeigt sich daran, dass VPA in vivo die durch HDACs vermittelte transkriptionelle Repression aufhebt und zur Akkumulation hyperacetylierter Histone führt. In vitro Enzymassays weisen darauf hin, dass VPA selbst und nicht ein hypothetischer Metabolit die Histondeacetylasen hemmt. Darüber hinaus wurde mit Bindungs- und Kompetitionsstudien festgestellt, dass eine Interaktion von VPA mit dem katalytischen Zentrum der HDACs stattfindet.
Weitere Analysen zeigten, dass VPA bevorzugt Klasse I HDACs hemmt. Durch dieses Merkmal einer erhöhten Spezifität bei gleichzeitig guter Bioverfügbarkeit definiert VPA eine neue Klasse von HDAC-Inhibitoren. Hieraus ergeben sich Hinweise auf strukturelle Anforderungen, die ein HDAC-Inhibitor erfüllen muß, um spezifischer und weniger toxisch als konventionelle Chemotherapeutika zu wirken. Außerdem eröffnete das neu entdeckte pharmakologische Wirkungsspektrum von VPA auf HDACs Erkenntnisse um zusätzliche therapeutische Einsatzmöglichkeiten dieses etablierten Arzneimittels. Bereits jetzt wird VPA in klinischen Studien an Patienten mit Krebs verabreicht.
HDAC-Inhibitoren gelten als potentielle Medikamente für die Therapie maligner Neoplasien. Deshalb besteht großes Interesse an den molekularen Mechanismen, mit denen Substanzen dieser Wirkstoffklasse das Wachstum transformierter Zellen in vitro und in vivo hemmen. In den humanen Melanomzelllinien SK-Mel-37 und Mz-Mel-19 bewirken klinisch relevante VPA-Dosen eine zeit- und dosisabhängige Akkumulation von Zellzyklusinhibitoren und hyperacetylierten Histonen, morphologische Veränderungen und eine verringerte Proliferationsrate. Die verminderte Proliferation wird von einem veränderten Zellzyklusprofil und Apoptose unter Beteiligung sowohl der extrinsisch als auch der intrinsisch bedingten Caspase-Kaskade begleitet. Dies manifestiert sich in der Spaltung der Caspasen 3, 8 und 9, einer Schädigung der Mitochondrien, der apoptotischen PARP-Spaltung, einem Abbau der genomischen DNA und einer Inaktivierung des GFP-Proteins.
Diese Analysen in Melanomzellen sprechen dafür, dass die weitgehend selektive Wirkung von VPA auf Klasse I HDACs der Mechanismus ist, mit dem diese Substanz das Wachstum bestimmter Tumorzellen hemmt. Durch Genexpressions-Analysen konnten außerdem neue Modelle zum Einfluss von VPA auf solide Tumoren postuliert werden. Darüber hinaus wurde festgestellt, dass die Expression und Induzierbarkeit der Zellzyklusregulatoren p21WAF/CIP1 und p27Kip1 und des latent cytoplasmatischen Transkriptionsfaktors Stat1 Biomarker für die Sensitivität von Melanomzellen gegenüber HDAC-Inhibitoren sind. Im Einklang hiermit wird die proapoptotische Wirkung von VPA durch das Cytokin Interferon α und den S-Phase-Inhibitor Hydroxyharnstoff deutlich gesteigert. Diese Ergebnisse sprechen für den Einsatz von VPA in tierexperimentellen und klinischen Studien.
Aufgrund der Schlüsselrolle der HDACs für die physiologische und aberrante Genexpression ist es wichtig, die Mechanismen ihrer Regulation zu kennen. In der vorliegenden Arbeit wurde anhand zahlreicher kultivierter Zelllinien und mittels eines Mausmodells gezeigt, dass therapeutisch einsetzbare VPA-Dosen neben der Hemmung enzymatischer Aktivität auch zu einer isoenzymspezifischen Verringerung der Klasse I Histondeacetylase HDAC2 führen. Als Ursache hierfür konnten eine verstärkte Poly-Ubiquitinylierung und ein proteasomaler Abbau ermittelt werden. Gleichzeitig wurden die Beteiligung etlicher Proteasen und eine veränderte Synthese oder Prozessierung der HDAC2-mRNA als Mechanismen ausgeschlossen.
Expressionsanalysen identifizierten die E2 Ubiquitinkonjugase Ubc8 als von HDAC-Inhibitoren induziertes Gen. Mittels transienter Überexpression („Gain-of-Function“) und siRNA-Experimenten („Loss-of-Function“) konnte dieses Gen als limitierender Faktor des HDAC2-Umsatzes in vivo erkannt werden. Weiterhin wurde gezeigt, dass die E3 Ubiquitinligase RLIM spezifisch mit HDAC2 interagiert. Die Expression von RLIM beziehungsweise seine enzymatische Funktion beeinflusst die HDAC2-Konzentration in vivo. Hierbei kann VPA klar von dem HDACInhibitor Trichostatin A (TSA) abgegrenzt werden. Dieser hemmt ein breites Spektrum an HDACs und induziert Ubc8, führt aber gleichzeitig zu einem proteasomal vermittelten Abbau des RLIM-Proteins. Analysen mit überexprimiertem RLIM zeigten, dass TSA aufgrund dieses Mechanismus nicht in der Lage ist, den Abbau von HDAC2 zu induzieren. Somit ist im Rahmen dieser Arbeit die Ubiquitinylierungs-Maschinerie für HDAC2 charakterisiert worden. Hierdurch sind neue Aspekte zum Zusammenspiel zwischen dem Ubiquitin-Proteasom-System und der Transkriptionsrepression nachgewiesen worden.
Isoenzymspezifische HDAC-Inhibitoren können zur Aufklärung der Funktion einzelner Histondeacetylasen beitragen, insbesondere wenn Knock-Out-Studien zu aufwendig oder aufgrund embryonaler Letalität nicht durchführbar sind. Die Wichtigkeit dieser Analysen wird gerade bei HDAC2 deutlich, da diese Histondeacetylase in vielen soliden und hämatologischen Tumoren überexprimiert ist, und ihre Deregulation möglicherweise zur Krebsentstehung beiträgt. Die in der vorliegenden Arbeit identifizierte Regulation dieses HDAC-Isoenzyms könnte Hinweise auf den Ablauf eines malignen Transformationsprozesses geben. Darüber hinaus zeigt der nachgewiesene Regulationsmechanismus Erfordernisse und potentielle Zielstrukturen einer pharmakologischen Intervention auf. Schließlich könnten die Selektivität von VPA für Klasse I HDACs zusammen mit der Spezifität für HDAC2 die Gründe für die geringen Nebenwirkungen der VPA-Behandlung bei gleichzeitigem Auftreten antitumoraler Effekte sein.
In acute myeloid leukemias (AMLs) with t(8;21), the transcription factor AML1 is juxtaposed to the zinc finger nuclear protein ETO (Eight-Twenty-One), resulting in transcriptional repression of AML1 target genes. ETO has been shown to interact with corepressors, such as N-CoR and mSin3A to form complexes containing histone deacetylases. To define regions of ETO required for maximal repressor activity, we analyzed amino-terminal deletions in a transcriptional repression assay. We found that ETO mutants lacking the first 236 amino acids were not affected in their repressor activity, whereas a further deletion of 85 amino acids drastically reduced repressor function and high molecular weight complex formation. This latter mutant can still homodimerize and bind to N-CoR but shows only weak binding to mSin3A. Furthermore, we could show that a "core repressor domain" comprising nervy homology region 2 and its amino- and carboxyl-terminal flanking sequences recruits mSin3A and induces transcriptional repression. These results suggest that mSin3A and N-CoR bind to ETO independently and that both binding sites cooperate to maximize ETO-mediated transcriptional repression. Thus, ETO has a modular structure, and the interaction between the individual elements is essential for the formation of a stable repressor complex and efficient transcriptional repression.
STAT proteins have the function of signaling from the cell membrane into the nucleus, where they regulate gene transcription. Latent mammalian STAT proteins can form dimers in the cytoplasm even before receptor-mediated activation by specific tyrosine phosphorylation. Here we describe the 3.21-A crystal structure of an unphosphorylated STAT5a homodimer lacking the N-terminal domain as well as the C-terminal transactivation domain. The overall structure of this fragment is very similar to phosphorylated STATs. However, important differences exist in the dimerization mode. Although the interface between phosphorylated STATs is mediated by their Src-homology 2 domains, the unphosphorylated STAT5a fragment dimerizes in a completely different manner via interactions between their beta-barrel and four-helix bundle domains. The STAT4 N-terminal domain dimer can be docked onto this STAT5a core fragment dimer based on shape and charge complementarities. The separation of the dimeric arrangement, taking place upon activation and nuclear translocation of STAT5a, is demonstrated by fluorescence resonance energy transfer experiments in living cells.