Biodiversität und Klima Forschungszentrum (BiK-F)
Refine
Year of publication
Document Type
- Article (251)
- Part of Periodical (4)
- Book (3)
- Contribution to a Periodical (3)
- Doctoral Thesis (3)
- Conference Proceeding (1)
- Review (1)
Language
- English (252)
- German (11)
- Multiple languages (3)
Has Fulltext
- yes (266)
Is part of the Bibliography
- no (266)
Keywords
- climate change (8)
- Invasive species (7)
- Biodiversity (5)
- Biogeography (5)
- Phylogeny (5)
- phylogeny (5)
- taxonomy (5)
- Climate change (4)
- Ecological modelling (4)
- West Africa (4)
Institute
- Biodiversität und Klima Forschungszentrum (BiK-F) (266)
- Senckenbergische Naturforschende Gesellschaft (178)
- Institut für Ökologie, Evolution und Diversität (119)
- Biowissenschaften (102)
- Geowissenschaften (43)
- Geographie (11)
- Medizin (10)
- Institut für sozial-ökologische Forschung (ISOE) (7)
- Präsidium (5)
- LOEWE-Schwerpunkt für Integrative Pilzforschung (4)
Peronospora aquilegiicola is a destructive pathogen of columbines and has wiped out most Aquilegia cultivars in several private and public gardens throughout Britain. The pathogen, which is native to East Asia was noticed in England and Wales in 2013 and quickly spread through the country, probably by infested plants or seeds. To our knowledge, the pathogen has so far not been reported from other parts of Europe. Here, we report the emergence of the pathogen in the northwest of Germany, based on morphological and phylogenetic evidence. As the pathogen was found in a garden in which no new columbines had been planted recently, we assume that the pathogen has already spread from its original point of introduction in Germany. This calls for an increased attention to the further spread of the pathogen and the eradication of infection spots to avoid the spread to naturally occurring columbines in Germany and to prevent another downy mildew from becoming a global threat, like Peronospora belbahrii and Plasmopara destructor, the downy mildews of basil and balsamines, respectively.
Prof. Karin Böhning-Gaese, seit 2010 Direktorin des Senckenberg Biodiversität und Klima Forschungszentrums in Frankfurt am Main und Professorin an der Goethe-Universität, wurde in den Rat für Nachhaltige Entwicklung berufen. Das 15-köpfige Gremium berät die Bundesregierung, erarbeitet Beiträge zur Fortentwicklung der Nachhaltigkeitsstrategie, veröffentlicht Stellungnahmen zu Einzelthemen und soll zur öffentlichen Bewusstseinsbildung und zur gesellschaftlichen Debatte über Nachhaltigkeit beitragen.
Nature benefits human health. To date, however, little is known whether biodiversity relates to human health. While some local and city level studies show that species diversity, as a measure of biodiversity, can have positive effects, there is a lack of studies about the relationship between different species diversity measures and human health, especially at larger spatial scales. Here, we conduct cross-sectional analyses of the association between species diversity and human health across Germany, while controlling for socio-economic factors and other nature characteristics. As indicators for human health, we use the mental (MCS) and physical health (PCS) component scales of the German Socio-Economic Panel (SOEP, Short Form Health Questionnaire – SF12). For species diversity, we use species richness and abundance estimates of two species groups: plants and birds. We phrase the following hypotheses: plant and bird species are positively associated with mental and physical health (H1 & H3); bird abundance is positively related to mental health (H2). Our results demonstrate a significant positive relationship between plant and bird species richness and mental health across all model variations controlling for a multitude of other factors. These results highlight the importance for species diversity for people’s mental health and well-being. Therefore, policy makers, landscape planners and greenspace managers on the local and national level should consider supporting biodiverse environments to promote mental health and wellbeing. For this purpose, we propose to use species diversity measures as indicators for salutogenic (health promoting) characteristics of nature, landscape and urban green space.
Background: Studies of parasite communities and patterns in the Antarctic are an important knowledge base with the potential to track shifts in ecological relations and study the effects of climate change on host–parasite systems. Endemic Nototheniinae is the dominant fish group found in Antarctic marine habitats. Through their intermediate position within the food web, Nototheniinae link lower to higher trophic levels and thereby also form an important component of parasite life cycles. The study was set out to gain insight into the parasite fauna of Nototheniops larseni, N. nudifrons and Lepidonotothen squamifrons (Nototheniinae) from Elephant Island (Antarctica).
Methods: Sampling was conducted at three locations around Elephant Island during the ANT-XXVIII/4 expedition of the research vessel Polarstern. The parasite fauna of three Nototheniine species was analysed, and findings were compared to previous parasitological and ecological research collated from a literature review.
Results: All host species shared the parasites Neolebouria antarctica (Digenea), Corynosoma bullosum (Acanthocephala) and Pseudoterranova decipiens E (Nematoda). Other parasite taxa were exclusive to one host species in this study. Nototheniops nudifrons was infected by Ascarophis nototheniae (Nematoda), occasional infections of N. larseni with Echinorhynchus petrotschenkoi (Acanthocephala) and L. squamifrons with Elytrophalloides oatesi (Digenea) and larval tetraphyllidean Cestoda were detected.
Conclusion: All examined fish species’ parasites were predominantly euryxenous regarding their fish hosts. The infection of Lepidonotothen squamifrons with Lepidapedon garrardi (Digenea) and Nototheniops larseni with Echinorhynchus petrotschenkoi represent new host records. Despite the challenges and limited opportunities for fishing in remote areas, future studies should continue sampling on a more regular basis and include a larger number of fish species and sampling sites within different habitats.
Marine oomycetes are highly diverse, globally distributed, and play key roles in marine food webs as decomposers, food source, and parasites. Despite their potential importance in global ocean ecosystems, marine oomycetes are comparatively little studied. Here, we tested if the primer pair cox2F_Hud and cox2-RC4, which is already well-established for phylogenetic investigations of terrestrial oomycetes, can also be used for high-throughput community barcoding. Community barcoding of a plankton sample from Brudenell River (Prince Edward Island, Canada), revealed six distinct oomycete OTU clusters. Two of these clusters corresponded to members of the Peronosporaceae—one could be assigned to Peronospora verna, an obligate biotrophic pathogen of the terrestrial plant Veronica serpyllifolia and related species, the other was closely related to Globisporangium rostratum. While the detection of the former in the sample is likely due to long-distance dispersal from the island, the latter might be a bona fide marine species, as several cultivable species of the Peronosporaceae are known to withstand high salt concentrations. Two OTU lineages could be assigned to the Saprolegniaceae. While these might represent marine species of the otherwise terrestrial genus, it is also conceivable that they were introduced on detritus from the island. Two additional OTU clusters were grouped with the early-diverging oomycete lineages but could not be assigned to a specific family. This reflects the current underrepresentation of cox2 sequence data which will hopefully improve with the increasing interest in marine oomycetes.
Community trait assembly in highly diverse tropical rainforests is still poorly understood. Based on more than a decade of field measurements in a biodiversity hotspot of southern Ecuador, we implemented plant trait variation and improved soil organic matter dynamics in a widely used dynamic vegetation model (the Lund-Potsdam-Jena General Ecosystem Simulator, LPJ-GUESS) to explore the main drivers of community assembly along an elevational gradient. In the model used here (LPJ-GUESS-NTD, where NTD stands for nutrient-trait dynamics), each plant individual can possess different trait combinations, and the community trait composition emerges via ecological sorting. Further model developments include plant growth limitation by phosphorous (P) and mycorrhizal nutrient uptake. The new model version reproduced the main observed community trait shift and related vegetation processes along the elevational gradient, but only if nutrient limitations to plant growth were activated. In turn, when traits were fixed, low productivity communities emerged due to reduced nutrient-use efficiency. Mycorrhizal nutrient uptake, when deactivated, reduced net primary production (NPP) by 61–72% along the gradient. Our results strongly suggest that the elevational temperature gradient drives community assembly and ecosystem functioning indirectly through its effect on soil nutrient dynamics and vegetation traits. This illustrates the importance of considering these processes to yield realistic model predictions.
Accurate determination of the evolutionary relationships between genes is a foundational challenge in biology. Homology—evolutionary relatedness—is in many cases readily determined based on sequence similarity analysis. By contrast, whether or not two genes directly descended from a common ancestor by a speciation event (orthologs) or duplication event (paralogs) is more challenging, yet provides critical information on the history of a gene. Since 2009, this task has been the focus of the Quest for Orthologs (QFO) Consortium. The sixth QFO meeting took place in Okazaki, Japan in conjunction with the 67th National Institute for Basic Biology conference. Here, we report recent advances, applications, and oncoming challenges that were discussed during the conference. Steady progress has been made toward standardization and scalability of new and existing tools. A feature of the conference was the presentation of a panel of accessible tools for phylogenetic profiling and several developments to bring orthology beyond the gene unit—from domains to networks. This meeting brought into light several challenges to come: leveraging orthology computations to get the most of the incoming avalanche of genomic data, integrating orthology from domain to biological network levels, building better gene models, and adapting orthology approaches to the broad evolutionary and genomic diversity recognized in different forms of life and viruses.
Ein milder Winter hat dazu geführt, dass recht früh Blütezeit und Pollenflug eingesetzt haben. Auch einige heimische Insekten haben sich stärker vermehrt. Doch wie sieht es aus mit neuen „Plagegeistern“ wie exotischen Stechmücken oder eingewanderten Pflanzen wie der Beifußambrosie? Welche Gefahren lauern, was kann man gegen ein weiteres Vordringen invasiver Arten tun? Die Experten vom LOEWE Biodiversität und Klima Forschungszentrum BiK-F, Prof. Sven Klimpel und Dr. Oliver Tackenberg, geben Auskunft.
Acetobacterium woodii utilizes the Wood‐Ljungdahl pathway for reductive synthesis of acetate from carbon dioxide. However, A. woodii can also perform non‐acetogenic growth on 1,2‐propanediol (1,2‐PD) where instead of acetate, equal amounts of propionate and propanol are produced as metabolic end products. Metabolism of 1,2‐PD occurs via encapsulated metabolic enzymes within large proteinaceous bodies called bacterial microcompartments. While the genome of A. woodii harbours 11 genes encoding putative alcohol dehydrogenases, the BMC‐encapsulated propanol‐generating alcohol dehydrogenase remains unidentified. Here, we show that Adh4 of A. woodii is the alcohol dehydrogenase required for propanol/ethanol formation within these microcompartments. It catalyses the NADH‐dependent reduction of propionaldehyde or acetaldehyde to propanol or ethanol and primarily functions to recycle NADH within the BMC. Removal of adh4 gene from the A. woodii genome resulted in slow growth on 1,2‐PD and the mutant displayed reduced propanol and enhanced propionate formation as a metabolic end product. In sum, the data suggest that Adh4 is responsible for propanol formation within the BMC and is involved in redox balancing in the acetogen, A. woodii.