Exzellenzcluster Makromolekulare Komplexe
Refine
Year of publication
Document Type
- Article (179)
- Part of a Book (1)
- Contribution to a Periodical (1)
Has Fulltext
- yes (181)
Is part of the Bibliography
- no (181)
Keywords
- Cell biology (7)
- autophagy (5)
- Biochemistry (4)
- RNA (4)
- aging (4)
- mitochondria (4)
- rna (4)
- Angiogenesis (3)
- E. coli (3)
- Phosphorylation (3)
Institute
Antigen presentation to cytotoxic T lymphocytes via major histocompatibility complex class I (MHC I) molecules depends on the heterodimeric transporter associated with antigen processing (TAP). For efficient antigen supply to MHC I molecules in the ER, TAP assembles a macromolecular peptide-loading complex (PLC) by recruiting tapasin. In evolution, TAP appeared together with effector cells of adaptive immunity at the transition from jawless to jawed vertebrates and diversified further within the jawed vertebrates. Here, we compared TAP function and interaction with tapasin of a range of species within two classes of jawed vertebrates. We found that avian and mammalian TAP1 and TAP2 form heterodimeric complexes across taxa. Moreover, the extra N-terminal domain TMD0 of mammalian TAP1 and TAP2 as well as avian TAP2 recruits tapasin. Strikingly, however, only TAP1 and TAP2 from the same taxon can form a functional heterodimeric translocation complex. These data demonstrate that the dimerization interface between TAP1 and TAP2 and the tapasin docking sites for PLC assembly are conserved in evolution, whereas elements of antigen translocation diverged later in evolution and are thus taxon specific.
Type I interferons (IFNs) signal for their diverse biological effects by binding a common receptor on target cells, composed of the two transmembrane IFNAR1 and IFNAR2 proteins. We have previously differentially enhanced the antiproliferative activity of IFN by increasing the weak binding affinity of IFN to IFNAR1. In this study, we further explored the affinity interdependencies between the two receptor subunits and the role of IFNAR1 in differential IFN activity. For this purpose, we generated a panel of mutations targeting the IFNAR2 binding site on the background of the IFNalpha2 YNS mutant, which increases the affinity to IFNAR1 by 60-fold, resulting in IFNAR2-to-IFNAR1 binding affinity ratios ranging from 1000:1 to 1:1000. Both the antiproliferative and antiviral potencies of the interferon mutants clearly correlated to the in situ binding IC(50) values, independently of the relative contributions of the individual receptors, thus relating to the integral lifetime of the complex. However, the antiproliferative potency correlated throughout the entire range of affinities, as well as with prolonged IFNAR1 receptor down-regulation, whereas the antiviral potency reached a maximum at binding affinities equivalent to that of wild-type IFNalpha2. Our data suggest that (i) the specific activity of interferon is related to the ternary complex binding affinity and not to affinity toward individual receptor components and (ii) although the antiviral pathway is strongly dependent on pSTAT1 activity, the cytostatic effect requires additional mechanisms that may involve IFNAR1 down-regulation. This differential interferon response is ultimately mediated through distinct gene expression profiling.
We have investigated the mechanism responsible for half-of-the-sites activity in the dimeric cytochrome bc(1) complex from Paracoccus denitrificans by characterizing the kinetics of inhibitor binding to the ubiquinol oxidation site at center P. Both myxothiazol and stigmatellin induced a 2-3 nm shift of the visible absorbance spectrum of the b(L) heme. The shift generated by myxothiazol was symmetric, with monophasic kinetics that indicate equal binding of this inhibitor to both center P sites. In contrast, stigmatellin generated an asymmetric shift in the b(L) spectrum, with biphasic kinetics in which each phase contributed approximately half of the total magnitude of the spectral change. The faster binding phase corresponded to a more symmetrical shift of the b(L) spectrum relative to the slower binding phase, indicating that approximately half of the center P sites bound stigmatellin more slowly and in a different position relative to the b(L) heme, generating a different effect on its electronic environment. Significantly, the slow stigmatellin binding phase was lost as the inhibitor concentration was increased. This implies that a conformational change is transmitted from one center P site in the dimer to the other upon stigmatellin binding to one monomer, rendering the second site less accessible to the inhibitor. Because the position that stigmatellin occupies at center P is considered to be analogous to that of the quinol substrate at the moment of electron transfer, these results indicate that the productive enzyme-substrate configuration is prevented from occurring in both monomers simultaneously.
We previously proposed that the dimeric cytochrome bc(1) complex exhibits half-of-the-sites reactivity for ubiquinol oxidation and rapid electron transfer between bc(1) monomers (Covian, R., Kleinschroth, T., Ludwig, B., and Trumpower, B. L. (2007) J. Biol. Chem. 282, 22289-22297). Here, we demonstrate the previously proposed half-of-the-sites reactivity and intermonomeric electron transfer by characterizing the kinetics of ubiquinol oxidation in the dimeric bc(1) complex from Paracoccus denitrificans that contains an inactivating Y147S mutation in one or both cytochrome b subunits. The enzyme with a Y147S mutation in one cytochrome b subunit was catalytically fully active, whereas the activity of the enzyme with a Y147S mutation in both cytochrome b subunits was only 10-16% of that of the enzyme with fully wild-type or heterodimeric cytochrome b subunits. Enzyme with one inactive cytochrome b subunit was also indistinguishable from the dimer with two wild-type cytochrome b subunits in rate and extent of reduction of cytochromes b and c(1) by ubiquinol under pre-steady-state conditions in the presence of antimycin. However, the enzyme with only one mutated cytochrome b subunit did not show the stimulation in the steady-state rate that was observed in the wild-type dimeric enzyme at low concentrations of antimycin, confirming that the half-of-the-sites reactivity for ubiquinol oxidation can be regulated in the wild-type dimer by binding of inhibitor to one ubiquinone reduction site.
Biogenesis of mitochondrial cytochrome c oxidase (COX) relies on a large number of assembly factors, among them the transmembrane protein Surf1. The loss of human Surf1 function is associated with Leigh syndrome, a fatal neurodegenerative disorder caused by severe COX deficiency. In the bacterium Paracoccus denitrificans, two homologous proteins, Surf1c and Surf1q, were identified, which we characterize in the present study. When coexpressed in Escherichia coli together with enzymes for heme a synthesis, the bacterial Surf1 proteins bind heme a in vivo. Using redox difference spectroscopy and isothermal titration calorimetry, the binding of the heme cofactor to purified apo-Surf1c and apo-Surf1q is quantified: Each of the Paracoccus proteins binds heme a in a 1:1 stoichiometry and with Kd values in the submicromolar range. In addition, we identify a conserved histidine as a residue crucial for heme binding. Contrary to most earlier concepts, these data support a direct role of Surf1 in heme a cofactor insertion into COX subunit I by providing a protein-bound heme a pool.
The hydrophobic thickness of membranes, which is manly defined by fatty acids, influences the packing of transmembrane domains of proteins and thus can modulate the activity of these proteins. We analyzed the dynamics of the dimerization of Glycophorin A (GpA) by molecular dynamics simulations to describe the fatty acid dependence of the transmembrane region assembly. GpA represents a well-established model for dimerization of single transmembrane helices containing a GxxxG motif in vitro and in silico. We performed simulations of the dynamics of the NMR-derived dimer as well as self-assembly simulations of monomers in membranes composed of different fatty acid chains and monitored the formed interfaces and their transitions. The observed dimeric interfaces, which also include the one known from NMR, are highly dynamic and converted into each other. The frequency of interface formation and the preferred transitions between interfaces similar to the interface observed by NMR analysis strongly depend on the fatty acid used to build the membrane. Molecular dynamic simulations after adaptation of the helix topology parameters to better represent NMR derived structures of single transmembrane helices yielded an enhanced occurrence of the interface determined by NMR in molecular dynamics simulations. Taken together we give insights into the influence of fatty acids and helix conformation on the dynamics of the transmembrane domain of GpA.
Analysis of whole cell lipid extracts of bacteria by means of ultra-performance (UP)LC-MS allows a comprehensive determination of the lipid molecular species present in the respective organism. The data allow conclusions on its metabolic potential as well as the creation of lipid profiles, which visualize the organism's response to changes in internal and external conditions. Herein, we describe: i) a fast reversed phase UPLC-ESI-MS method suitable for detection and determination of individual lipids from whole cell lipid extracts of all polarities ranging from monoacylglycerophosphoethanolamines to TGs; ii) the first overview of a wide range of lipid molecular species in vegetative Myxococcus xanthus DK1622 cells; iii) changes in their relative composition in selected mutants impaired in the biosynthesis of α-hydroxylated FAs, sphingolipids, and ether lipids; and iv) the first report of ceramide phosphoinositols in M. xanthus, a lipid species previously found only in eukaryotes.
The TolC-like protein HgdD of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 is part of multiple three-component "AB-D" systems spanning the inner and outer membranes and is involved in secretion of various compounds, including lipids, metabolites, antibiotics, and proteins. Several components of HgdD-dependent tripartite transport systems have been identified, but the diversity of inner membrane energizing systems is still unknown. Here we identified six putative resistance-nodulation-cell division (RND) type factors. Four of them are expressed during late exponential and stationary growth phase under normal growth conditions, whereas the other two are induced upon incubation with erythromycin or ethidium bromide. The constitutively expressed RND component Alr4267 has an atypical predicted topology, and a mutant strain (I-alr4267) shows a reduction in the content of monogalactosyldiacylglycerol as well as an altered filament shape. An insertion mutant of the ethidium bromide-induced all7631 did not show any significant phenotypic alteration under the conditions tested. Mutants of the constitutively expressed all3143 and alr1656 exhibited a Fox(-) phenotype. The phenotype of the insertion mutant I-all3143 parallels that of the I-hgdD mutant with respect to antibiotic sensitivity, lipid profile, and ethidium efflux. In addition, expression of the RND genes all3143 and all3144 partially complements the capability of Escherichia coli ΔacrAB to transport ethidium. We postulate that the RND transporter All3143 and the predicted membrane fusion protein All3144, as homologs of E. coli AcrB and AcrA, respectively, are major players for antibiotic resistance in Anabaena sp. PCC 7120.
ATP-binding cassette (ABC) systems translocate a wide range of solutes across cellular membranes. The thermophilic Gram-negative eubacterium Thermus thermophilus, a model organism for structural genomics and systems biology, discloses ∼46 ABC proteins, which are largely uncharacterized. Here, we functionally analyzed the first two and only ABC half-transporters of the hyperthermophilic bacterium, TmrA and TmrB. The ABC system mediates uptake of the drug Hoechst 33342 in inside-out oriented vesicles that is inhibited by verapamil. TmrA and TmrB form a stable heterodimeric complex hydrolyzing ATP with a Km of 0.9 mm and kcat of 9 s−1 at 68 °C. Two nucleotides can be trapped in the heterodimeric ABC complex either by vanadate or by mutation inhibiting ATP hydrolysis. Nucleotide trapping requires permissive temperatures, at which a conformational ATP switch is possible. We further demonstrate that the canonic glutamate 523 of TmrA is essential for rapid conversion of the ATP/ATP-bound complex into its ADP/ATP state, whereas the corresponding aspartate in TmrB (Asp-500) has only a regulatory role. Notably, exchange of this single noncanonic residue into a catalytic glutamate cannot rescue the function of the E523Q/D500E complex, implicating a built-in asymmetry of the complex. However, slow ATP hydrolysis in the newly generated canonic site (D500E) strictly depends on the formation of a posthydrolysis state in the consensus site, indicating an allosteric coupling of both active sites.
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) undergoes reversible deactivation upon incubation at 30–37 °C. The active/deactive transition could play an important role in the regulation of complex I activity. It has been suggested recently that complex I may become modified by S-nitrosation under pathological conditions during hypoxia or when the nitric oxide:oxygen ratio increases. Apparently, a specific cysteine becomes accessible to chemical modification only in the deactive form of the enzyme. By selective fluorescence labeling and proteomic analysis, we have identified this residue as cysteine-39 of the mitochondrially encoded ND3 subunit of bovine heart mitochondria. Cysteine-39 is located in a loop connecting the first and second transmembrane helix of this highly hydrophobic subunit. We propose that this loop connects the ND3 subunit of the membrane arm with the PSST subunit of the peripheral arm of complex I, placing it in a region that is known to be critical for the catalytic mechanism of complex I. In fact, mutations in three positions of the loop were previously reported to cause Leigh syndrome with and without dystonia or progressive mitochondrial disease.