NeoBiota 13
Refine
Year of publication
- 2012 (5)
Document Type
- Article (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Biological invasions (2)
- Fallopia × bohemica (1)
- Introduced bird (1)
- biotic resistance (1)
- competition (1)
- exotic plants (1)
- exponential population growth (1)
- introduction history (1)
- invasion ecology (1)
- litter leachate (1)
Recently, Müller and Nentwig (2011) reviewed the plant pathogens that have been considered for biological control of the weed Cirsium arvense (L.) Scop. (Canada thistle, Californian thistle, creeping thistle), and concluded that the prospects have been largely overestimated. The premise of their conclusion is that no bioherbicide products have achieved marketability, which they surmise is due to lack of host specificity, effectiveness, and issues with application. While it is true that no microbial products have achieved marketability for this weed, we believe their reasoning for this is erroneous, and likely due to lack of distinction between two biocontrol approaches, specifically classical biocontrol, and innundative biocontrol (often referred to as the biopesticide approach). These two different types of biocontrol have different goals, and are applied in different ways.
Invasive knotweeds, native to Eastern Asia, are among the most dominant plant invaders of European and North American temperate ecosystems. Recent studies indicate that one cause of this dominance might be allelopathy, but the possible sources and modes of action of this allelopathy are insufficiently understood. Here, we asked whether the invasive knotweed Fallopia × bohemica can exert allelopathic effects on native plants also through its leaf litter, or through persistent soil contaminants, and whether these affect the germination or growth of native plants. In a germination experiment with nine native species neither litter leachate, an aqueous extract of knotweed leaves added to the soil, nor trained soil with a history of Fallopia pre-cultivation suppressed the germination or early growth of natives. A mesocosm study with experimental native communities showed that the presence of F. × bohemica, although not a dominant in these communities, caused significant shifts of life-history strategy in two dominant natives, and that similar effects could be elicited through litter leachates or trained soil alone. However, there were hardly any effects on the biomass of natives. Our study indicates that knotweed allelopathy acts on the growth rather than germination of natives, and that soil contamination through persistent allelochemicals may not be a significant problem in habitat restoration. It also shows that allelopathic effects can sometimes be subtle changes in life-history and allocation patterns of the affected species.
Many successful invasions involve long initial periods in which the invader exists at low densities followed by sudden population increases. The reasons for such time-lags remain poorly understood. Here we document a sudden increase in density of the introduced Japanese white-eye (Zosterops japonicus) in a restoration area contiguous with old-growth forest at Hakalau Forest National Wildlife Refuge on the Island of Hawaii. The refuge, with very high density of native birds, existed in a pocket of low whiteeye density that persisted for at least 20 years since the late 1970s. The refuge began an extensive native trees restoration project in 1989 within a 1314 ha abandoned pasture above old-growth forest. This area was soon colonized by white-eyes and their population grew exponentially once the trees had grown tall enough to develop a canopy. This increase was in turn followed by significantly more white-eyes in the open and closed forests adjacent to the restoration area. Competition between white-eyes and native species was documented on study sites within these forests. Density data indicate that competition was more widespread, with loss of tens of thousands of native birds in the 5371 ha area surveyed. Our results are consistent with the view that ecological barriers may delay the population increase of invaders and that human-derived activities may help invaders cross these barriers by creating new ecological opportunities. Control of white-eye numbers may be essential for recovery of native species.
We examined temporal introduction patterns of 132 invasive alien plant species (IAPS) to Australia since European colonisation in 1770. Introductions of IAPS were high during 1810–1820 (10 species), 1840– 1880 (51 species, 38 of these between 1840 and 1860) and 1930–1940 (9 species). Conspicuously few introductions occurred during 10-year periods directly preceding each introduction peak. Peaks during early European settlement (1810–1820) and human range expansion across the continent (1840-1860) both coincided with considerable growth in Australia’s human population. We suggest that population growth during these times increased the likelihood of introduced plant species becoming invasive as a result of increased colonization and propagule pressure. Deliberate introductions of IAPS (104 species) far outnumbered accidental introductions (28 species) and were particularly prominent during early settlement. Cosmopolitan IAPS (25 species) and those native solely to South America (53 species), Africa (27 species) and Asia (19 species) have been introduced deliberately and accidentally to Australia across a broad period of time. A small number of IAPS, native solely to Europe (5 species) and North America (2 species), were all introduced to Australia prior to 1880. These contrasting findings for native range suggest some role for habitat matching, with similar environmental conditions in Australia potentially driving the proliferation of IAPS native to southern-hemisphere regions. Shrub, tree and vine species dominated IAPS introduced prior to 1840, with no grasses or forbs introduced during early colonisation. Since 1840, all five growth forms have been introduced deliberately and accidentally in relatively large numbers across a broad period of time. In particular, a large number of grass and forb IAPS were deliberately introduced between 1840 and 1860, most likely a direct result of the introduction of legislation promoting intensive agriculture across large areas of the continent. Since the 1980s, only three IAPS have been introduced (all deliberately introduced forbs). The decline in IAPS introductions is most likely a reflection of both increased surveillance and biosecurity efforts and the likelihood that many potential IAPS are still within a pre-expansion lag period.