12.38.Gc Lattice QCD calculations (see also 11.15.Ha Lattice gauge theory)
Refine
Year of publication
- 2010 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- Effective Field Theory (1)
- Eichtheorie (1)
- Feldtheorie (1)
- Gittereichtheorie (1)
- Lattice Gauge Theory (1)
- Monte-Carlo-Simulation (1)
- Simulation (1)
- Thermal Field Theory (1)
- Thermodynamik (1)
- Yang-Mills-Theorie (1)
Institute
- Physik (1)
Lattice simulation of a center symmetric three dimensional effective theory for SU(2) Yang-Mills
(2010)
We present lattice simulations of a center symmetric dimensionally reduced effective field theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional magnetic fields as fundamental degrees of freedom. The action is composed of a gauge invariant kinetic term, spatial gauge fields and a potential for the Wilson line which includes a "fuzzy" bag term to generate non-perturbative fluctuations between Z(2) degenerate ground states. The model is studied in the limit where the gauge fields are set to zero as well as the full model with gauge fields. We confirm that, at moderately weak coupling, the "fuzzy" bag term leads to eigenvalue repulsion in a finite region above the deconfining phase transition which shrinks in the extreme weak-coupling limit. A non-trivial Z(N) symmetric vacuum arises in the confined phase. The effective potential for the Polyakov loop in the theory with gauge fields is extracted from the simulations including all modes of the loop as well as for cooled configurations where the hard modes have been averaged out. The former is found to exhibit a non-analytic contribution while the latter can be described by a mean-field like ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends upon the location within the phase diagram. Other results include the exact location of the phase boundary in the plane spanned by the coupling parameters, correlation lengths of several operators in the magnetic and electric sectors and the spatial string tension. We also present results from simulations of the full 4D Yang-Mills theory and attempt to make a qualitative comparison to the 3D effective theory.