21.80.+a Hypernuclei
Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
- Physik (3)
Within a relativistic mean-field theory (RMFT) experimental data on the single-particle spectra of lambda hypernuclei are well reproduced. It is shown that the coupling constants cannot be fixed unambiguously from the single-particle spectra. The stability and structure of multi-lambda hypernuclei is explored on the basis of the RMFT using the coupling constants as determined from the observed single lambda hypernuclear levels. It is predicted that multistrange nuclei exhibit an enhanced interaction radius, which further increases in the case of finite temperatures. We suggest that multi-lambda hypernuclei could be produced in high-energy heavy ions and observed in secondary noncharge-changing reactions. The equation of state of lambda matter and the possibility of pure lambda droplets are also discussed.
Relativistic heavy ion collisions constitute a prolific source of hyperons: tens of hyperons per event are predicted at energies E≥10 GeV/nucleon, providing a scenario for the formation of metastable exotic multihypernuclear objects. They may exhibit exceptional properties: bound neutral (e.g., 4M2Λ2n, 10M2Λ8n, pure Λ droplets, 8Λ) and even negatively charged composites objects with positive baryon number (e.g., 4M2Σ-2n, 6M2Λ2Ξ-2n) could be formed in rare events. Such negative nuclei can easily be identified in a magnetic spectrometer. They could be considerably more abundant than antinuclei of the same A. We use the relativistic meson-baryon field theory—which gives an excellent description of normal nuclear and single-Λ hypernuclear properties—to calculate the rich spectrum of such exotic objects, their stability, and their structure. We also find solutions for a large variety of bound short-lived nuclei (e.g., 8M2Λ,2Σ-2p2n), which may decay strongly via formation of cascade (Ξ) particles. Multi-Ξ hypernuclei are also evaluated. A variety of potential candidates for such metastable exotic nuclei is presented. It turns out that the properties of such exotic multihypernuclear objects reveal quite similar features as the strangelet proposed as a unique signature for quark-gluon plasma formation in heavy ion collisions.
Strange hadronic matter
(1993)
In an extended mean field theory, we find a large class of bound multistrange objects, formed from combinations of {p,n,Λ,Ξ0,Ξ-} baryons, which are stable against strong decay. We predict a maximal binding energy per baryon of EB/A≊-21 MeV, strangeness per baryon fs≊1.2, charge per baryon fq≊-0.1 to 0, and baryon density 2.5–3 times that of ordinary nuclei. For A≥6, we obtain stable combinations involving only {Λ,Ξ0,Ξ-} hyperons.