## 24.10.Lx Monte Carlo simulations (including hadron and parton cascades and string breaking models)

### Refine

#### Document Type

- Preprint (6)
- Conference Proceeding (1)
- Master's Thesis (1)

#### Language

- English (8)

#### Has Fulltext

- yes (8)

#### Is part of the Bibliography

- no (8)

#### Keywords

- (n (1)
- Beryllium-7 (1)
- FRANZ (1)
- Lithium-7 (1)
- Monte-Carlo model for relativistic heavy ion collisions (1)
- Monte-Carlo-Simulation (1)
- Neutronenquelle (1)
- Neutronenspektrum (1)
- Phasenraum (1)
- Statistical model (1)

#### Institute

As a part of this thesis, a Monte Carlo-based code has been developed capable of simulating the transition of proton beam properties to neutron beam properties as it occurs in the Li-7(p, n)Be-7 reaction. It is able to reproduce not only the angle-integrated energy distributions but it is also capable of predicting the angle-dependent neutron spectra as measured at Forschungszentrum Karlsruhe (Karlsruhe, Germany) and Physikalisch-Technische Bundesanstalt (Braunschweig, Germany). Since the code retains all three spatial dimensions as well as all three velocity dimensions, it provides very detailed information on the neutron beam. The resulting data can aid in many different aspects, for example it can be used in shielding construction, or for lithium target design. In this work, the code is used to predict the neutron beam properties expected at the Frankfurt Neutron Source at Stern-Gerlach-Zentrum (FRANZ) facility. For different proton beam energies, the neutron distribution in x/p_x, y/p_y, and z/p_z is shown as well as a Mollweide projection, which illustrates the kinematic collimation effect that limits the neutron cone opening angle to less than 180 degree.

The rapidity dependence of the single- and double- neutron to proton ratios of nucleon emission from isospin-asymmetric but mass-symmetric reactions Zr+Ru and Ru+Zr at energy range 100 ~ 800 A MeV and impact parameter range 0 ~ 8 fm is investigated. The reaction system with isospin-asymmetry and mass-symmetry has the advantage of simultaneously showing up the dependence on the symmetry energy and the degree of the isospin equilibrium. We find that the beam energy- and the impact parameter dependence of the slope parameter of the double neutron to proton ratio (F_D) as function of rapidity are quite sensitive to the density dependence of symmetry energy, especially at energies E_b ~ 400 A MeV and reduced impact parameters around 0.5. Here the symmetry energy effect on the F_D is enhanced, as compared to the single neutron to proton ratio. The degree of the equilibrium with respect to isospin (isospin mixing) in terms of the F_D is addressed and its dependence on the symmetry energy is also discussed.

We investigate the sensitivity of several observables to the density dependence of the symmetry potential within the microscopic transport model UrQMD (ultrarelativistic quantum molecular dynamics model). The same systems are used to probe the symmetry potential at both low and high densities. The influence of the symmetry potentials on the yields of pi-, pi+, the pi-/pi+ ratio, the n/p ratio of free nucleons and the t/3He ratio are studied for neutron-rich heavy ion collisions (208Pb+208Pb, 132Sn+124Sn, 96Zr+96Zr) at E_b=0.4A GeV. We find that these multiple probes provides comprehensive information on the density dependence of the symmetry potential.

The equilibration of hot and dense nuclear matter produced in the central cell of central Au+Au collisions at RHIC (sqrt s = 200 A GeV) energies is studied within a microscopic transport model. The pressure in the cell becomes isotropic at t approx 5 fm/c after beginning of the collision. Within the next 15 fm/c the expansion of matter in the cell proceeds almost isentropically with the entropy per baryon ratio S/A approx 150, and the equation of state in the (P,epsilon) plane has a very simple form, P=0.15 epsilon. Comparison with the statistical model of an ideal hadron gas indicates that the time t approx 20 fm/c may be too short to reach the fully equilibrated state. Particularly, the creation of long-lived resonance-rich matter in the cell decelerates the relaxation to chemical equilibrium. This resonance-abundant state can be detected experimentally after the thermal freeze-out of particles.

Local equilibrium in heavy ion collisions. Microscopic model versus statistical model analysis
(1999)

The assumption of local equilibrium in relativistic heavy ion collisions at energies from 10.7 AGeV (AGS) up to 160 AGeV (SPS) is checked in the microscopic transport model. Dynamical calculations performed for a central cell in the reaction are compared to the predictions of the thermal statistical model. We find that kinetic, thermal and chemical equilibration of the expanding hadronic matter are nearly approached late in central collisions at AGS energy for t >= 10 fm/c in a central cell. At these times the equation of state may be approximated by a simple dependence P ~= (0.12-0.15) epsilon. Increasing deviations of the yields and the energy spectra of hadrons from statistical model values are observed for increasing energy, 40 AGeV and 160 AGeV. These violations of local equilibrium indicate that a fully equilibrated state is not reached, not even in the central cell of heavy ion collisions at energies above 10 AGeV. The origin of these findings is traced to the multiparticle decays of strings and many-body decays of resonances.

Thermodynamical variables and their time evolution are studied for central relativistic heavy ion collisions from 10.7 to 160 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits drastic deviations from equilibrium during the early high density phase of the collision. Local thermal and chemical equilibration of the hadronic matter seems to be established only at later stages of the quasi-isentropic expansion in the central reaction cell with volume 125 fm 3. Baryon energy spectra in this cell are reproduced by Boltzmann distributions at all collision energies for t > 10 fm/c with a unique rapidly dropping temperature. At these times the equation of state has a simple form: P = (0.12 - 0.15) Epsilon. At SPS energies the strong deviation from chemical equilibrium is found for mesons, especially for pions, even at the late stage of the reaction. The final enhancement of pions is supported by experimental data.

Local kinetic and chemical equilibration is studied for Au+Au collisions at 10.7 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits dramatic deviations from equilibrium during the high density phase of the collision. Thermal and chemical equilibration of the hadronic matter seems to be established in the later stages during a quasiisentropic expansion, observed in the central reaction cell with volume 125 fm3. For t > 10 fm/c the hadron energy spectra in the cell are nicely reproduced by Boltzmann distributions with a common rapidly dropping temperature. Hadron yields change drastically and at the late expansion stage follow closely those of an ideal gas statistical model. The equation of state seems to be simple at late times: P = 0.12 Epsilon. The time evolution of other thermodynamical variables in the cell is also presented.

REVTEX, 27 pages incl. 10 figures and 3 tables; Phys. Rev. C (in press) Journal-ref: Phys.Rev. C62 (2000) 064906. We study the local equilibrium in the central V = 125 fm3 cell in heavy-ion collisions at energies from 10.7 A GeV (AGS) to 160 A GeV (SPS) calculated in the microscopic transport model. In the present paper the hadron yields and energy spectra in the cell are compared with those of infinite nuclear matter, as calculated within the same model. The agreement between the spectra in the two systems is established for times t >= 10 fm/c in the central cell. The cell results do not deviate noticeably from the infinite matter calculations with rising incident energy, in contrast to the apparent discrepancy with predictions of the statistical model (SM) of an ideal hadron gas. The entropy of this state is found to be very close to the maximum entropy, while hadron abundances and energy spectra differ significantly from those of the SM.