24.85.+p Quarks, gluons, and QCD in nuclear reactions
Refine
Document Type
- Article (6)
- Doctoral Thesis (3)
Language
- English (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- AdS/CFT (1)
- Anisotropie (1)
- Color Superconductivity (1)
- Energy loss (1)
- Farbsupraleitung (1)
- Feldtheorie (1)
- Heavy quarks (1)
- Instabilität (1)
- Kernastrophysik (1)
- Kinetische Theorie (1)
Institute
We solve the coupled Wong Yang–Mills equations for both U(1) and SU(2) gauge groups and anisotropic particle momentum distributions numerically on a lattice. For weak fields with initial energy density much smaller than that of the particles we confirm the existence of plasma instabilities and of exponential growth of the fields which has been discussed previously. Also, the SU(2) case is qualitatively similar to U(1), and we do find significant “abelianization” of the non-Abelian fields during the period of exponential growth. However, the effect nearly disappears when the fields are strong. This is because of the very rapid isotropization of the particle momenta by deflection in a strong field on time scales comparable to that for the development of Yang–Mills instabilities. This mechanism for isotropization may lead to smaller entropy increase than collisions and multiplication of hard gluons, which is interesting for the phenomenology of high-energy heavy-ion collisions.
We propose that the measurement of the transverse momentum dependence of the double ratio of the nuclear modification factors of charm and bottom jets, RAAc(pT)/RAAb(pT), in central nuclear collisions at the LHC will provide an especially robust observable that can be used to differentiate Standard Model perturbative QCD predictions from recently proposed strong coupling string drag models derived using the AdS/CFT conjecture.
Production of J/ψ mesons in heavy ion collisions is considered within the statistical coalescence model. The model is in agreement with the experimental data of the NA50 Collaboration for Pb+Pb collisions at 158 AGeV in a wide centrality range, including the so-called “anomalous” suppression domain. The model description of the J/ψ data requires, however, strong enhancement of the open charm production in central Pb+Pb collisions. This model prediction may be checked in the future SPS runs.
We consider J/ψ production in heavy ion collisions at RHIC energies in the statistical coalescence model with exact (canonical ensemble) charm conservation. Charm quark–antiquark pairs are assumed to be created in primary hard parton collisions, but open and hidden charm particles are formed at the hadronization stage according to the laws of statistical mechanics. The dependence of the J/ψ production on both the number of nucleon participants and the collision energy is studied. The model predicts J/ψ suppression for low energies, whereas at the highest RHIC energy the model reveals J/ψ enhancement.
In this work we study the non-equilibrium dynamics of a quark-gluon plasma, as created in heavy-ion collisions. We investigate how big of a role plasma instabilities can play in the isotropization and equilibration of a quark-gluon plasma. In particular, we determine, among other things, how much collisions between the particles can reduce the growth rate of unstable modes. This is done both in a model calculation using the hard-loop approximation, as well as in a real-time lattice simulation combining both classical Yang-Mills-fields as well as inter-particle collisions. The new extended version of the simulation is also used to investigate jet transport in isotropic media, leading to a cutoff-independent result for the transport coefficient $hat{q}$. The precise determination of such transport coefficients is essential, since they can provide important information about the medium created in heavy-ion collisions. In anisotropic media, the effect of instabilities on jet transport is studied, leading to a possible explanation for the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity than in azimuth. The investigation of collective modes in the hard-loop limit is extended to fermionic modes, which are shown to be all stable. Finally, we study the possibility of using high energy photon production as a tool to experimentally determine the anisotropy of the created system. Knowledge of the degree of local momentum-space anisotropy reached in a heavy-ion collision is essential for the study of instabilities and their role for isotropization and thermalization, because their growth rate depends strongly on the anisotropy.
I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid 3He), the A and A* phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A* phase is favored. It is shown that the 2SC phase is identical to the A* phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity.
In this thesis we investigate the role played by gauge fields in providing new observable signatures that can attest to the presence of color superconductivity in neutron stars. We show that thermal gluon fluctuations in color-flavor locked superconductors can substantially increase their critical temperature and also change the order of the transition, which becomes a strong first-order phase transition. Moreover, we explore the effects of strong magnetic fields on the properties of color-flavor locked superconducting matter. We find that both the energy gaps as well as the magnetization are oscillating functions of the magnetic field. Also, it is shown that the magnetization can be so strong that homogeneous quark matter becomes metastable for a range of parameters. This points towards the existence of magnetic domains or other types of magnetic inhomogeneities in the hypothesized quark cores of magnetars. Obviously, our results only apply if the strong magnetic fields observed on the surface of magnetars can be transmitted to their inner core. This can occur if the superconducting protons expected to exist in the outer core form a type-I I superconductor. However, it has been argued that the observed long periodic oscillations in isolated pulsars can only be explained if the outer core is a type-I superconductor rather than type-I I. We show that this is not the only solution for the precession puzzle by demonstrating that the long-term variation in the spin of PSR 1828-11 can be explained in terms of Tkachenko oscillations within superfluid shells.
We study here hot nuclear matter in the quark meson coupling model which incorporates explicitly quark degrees of freedom, with quarks coupled to scalar and vector mesons. The equation of state of nuclear matter including the composite nature of the nucleons is calculated at finite temperatures. The calculations are done taking into account the medium-dependent bag constant. Nucleon properties at finite temperatures as calculated here are found to be appreciably different from the value at T=0.
We investigate the production of heavy quarks in continuum and bound states in nuclear collisions. Creation rates for free bb and tt quark pairs and for bottomonium and toponium in the ground state are computed at energies of the BNL Relativistic Heavy Ion Collider, CERN Large Hadron Collider (LHC), and Superconducting Super Collider. Central and peripheral heavy-ion collisions are discussed. For top-quark creation we assumed a mass range of 90≤mt≤250 GeV. The creation rate for top quarks in peripheral collisions is estimated to be by a factor 40 to 130 smaller compared with corresponding central collisions. For mt=130 GeV we calculated a creation rate of about 4760 top-quark pairs per day at the LHC (3.5 TeV/nucleon) for Pb-Pb collisions.