25.70.-z Low and intermediate energy heavy-ion reactions
Refine
Document Type
- Article (10)
Language
- English (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Institute
Ionization, pair creation, and electron excitations in relativistic heavy-ion collisions are investigated in the framework of the coupled-channel formalism. Collisions between heavy projectiles and Pb82+ are considered for various bombarding energies in the region E=500 up to 2000 MeV/u. Useful symmetry relations for the matrix elements are derived and the influence of gauge transformations onto the coupled-channel equations is explored.
Positron creation in crossed-beam collisions of high-energy, fully stripped heavy ions is investigated within the coupled-channel formalism. In comparison with fixed-target collisions of highly stripped heavy-ion projectiles positron production probabilities are enhanced by more than one order of magnitude. The increase results from the possibility to excite electrons from the negative energy continuum into all bound states. The positron spectrum is shifted towards higher energies because of the absence of electron screening. Rutherford scattering as well as nuclear collisions with time delay are investigated. We also discuss the filling of empty bound states by electrons from pair-production processes.
We calculate angular correlations between coincident electron-positron pairs emitted in heavy-ion collisions with nuclear time delay. Special attention is directed to a comparison of supercritical and subcritical systems, where angular correlations of pairs produced in collisions of bare U nuclei are found to alter their sign for nuclear delay times of the order of 2 × 10-21 s. This effect is shown to occur exclusively in supercritical systems, where spontaneous positron creation is active.
Conversion processes in light nuclei with transition energies above the e+, e- pair creation threshold are investigated within an analytical framework. In particular, we evaluate the ratio of electron transition probabilities from the negative energy continuum into the atomic K shell and into the positive energy continuum, respectively. The possible role of monoenergetic positron conversion with respect to the striking peak structures observed in e+ spectra from very heavy collision systems is examined.
The inelastic excitation of the (1/2)+ (871 keV) state of 17O in the reaction of 13C on 17O is described by a time-dependent quantum mechanical model with two diabatic states and a classical treatment of the radial relative motion. The structures in the angle-integrated cross section are interpreted as caused by the barriers of the angular momentum-dependent potentials. The transition strength is enhanced by the Landau-Zener effect between the levels considered.
Phenomenological consequences of a hypothetical light neutral particle in heavy ion collisions
(1986)
We discuss the possibility that the line structure observed in the spectrum of the positrons produced in heavy ion collisions is due to the decay of a new neutral elementary particle. We argue that this can be ruled out unless one is willing to accept fine tuning of parameters, or to assume the dominance of nonlinear effects.
Streamer chamber data for collisions of Ar + KCl and Ar + BaI2 at 1.2 GeV/nucleon are compared with microscopic model predictions based on the Vlasov-Uehling-Uhlenbeck equation, for various density-dependent nuclear equations of state. Multiplicity distributions and inclusive rapidity and transverse momentum spectra are in good agreement. Rapidity spectra show evidence of being useful in determining whether the model uses the correct cross sections for binary collisions in the nuclear medium, and whether momentum-dependent interactions are correctly incorporated. Sideward flow results do not favor the same nuclear stiffness parameter at all multiplicities.
The quantum molecular dynamic method is used to study multifragmentation and fragment flow and their dependence on in-medium cross sections, momentum dependent interactions, and the nuclear equation of state, for collisions of 197Au+197Au and 93Nb+93Nb in the bombarding energy regime from 100 to 800A MeV. Time and impact parameter dependence of the fragment formation and their implications for the conjectured liquid-vapor phase transition are investigated. We find that the inclusive fragment mass distribution is independent of the equation of state and exhibits a power-law behavior Y(A)∼A-τ with an exponent τ≊-2.3. True multifragmentation events are found in central collisions for energies Elab∼30–200 MeV/nucleon. The associated light fragment (d,t,α) to proton ratios increase with the multiplicity of charged particles and decrease with energy, in agreement with recent experiments. The calculated absolute charged particle multiplicities, the multiplicities of intermediate mass (A>4) fragments, and their respective rapidity distributions do compare well with recent 4π data, but are quite insensitive to the equation of state. On the other hand, these quantities depend sensitively on the nucleon-nucleon scattering cross section, and can be used to determine σ experimentally. The transverse momentum flow of the complex fragments increases with the stiffness of the equation of state. Reduced (in-medium) n-n scattering cross sections reduce the fragment flow. Momentum dependent interactions increase the fragment flow. It is shown that the measured fragment flow at 200A MeV can be reproduced in the model. We find that also the increase of the px/A values with the fragment mass is in agreement with experiments. The calculated fragment flow is too small as compared to the plastic ball data, if a soft equation of state with in-medium corrections (momentum dependent interactions plus reduced cross sections) is employed. An alternative, most intriguing resolution of the puzzle about the stiffness of the equation of state could be an increase of the scattering cross sections due to precritical scattering in the vicinity of a phase transition.
If density isomers exist they can be detected by measuring the excitation function of subthreshold kaon production. When the system reaches the density where the density isomer has influence on the equation of state (which depends on the beam energy and on the optical potential), we observe a jump in the cross section of the kaons whereas other observables change little. Above threshold Λ¯’s or p¯’s may be used to continue the search. This is the result of microscopic Boltzman-Uehling-Uhlenbeck calculations.
A detailed study of pion production in inelastic and central nucleus-nucleus collisions was carried out using a 2 m streamer spectrometer. Nuclear targets mounted inside the streamer chamber were exposed to nuclear beams of 4.5 GeV/c/nucleon momentum. A systematic study of the influence of the central trigger on observed data is performed. The data on multiplicities, rapidities, transverse momenta, and emission angles of negative pions are presented for various pairs of colliding nuclei. Intercorrelations between various characteristics are studied and discussed. The results are compared with predictions of some theoretical models. It is shown that the main features of the pion production in nuclear collisions can be satisfactorily described by a model assuming independent nucleon-nucleon collisions with subsequent cascading process. However, the observed correlation between Lambda and pion characteristics seems to be unexplained by this picture.