## 27.60.+j 90 (less-than-or-equal-to) A (less-than-or-equal-to) 149

### Refine

#### Document Type

- Article (2)

#### Language

- English (2)

#### Has Fulltext

- yes (2)

#### Is part of the Bibliography

- no (2)

#### Institute

- Physik (2)

We investigate the influence of nuclear masses, radii, and interaction potentials on 12C radioactivity of 114the best representative of a new island of cluster emitters leading to daughter nuclei around the doubly magic 100Sn. Three different models are considered: one derived by Blendowske, Fliessbach, and Walliser (BFW) from the many-body theory of alpha decay, as well as our analytical (ASAF) and numerical (NuSAF) superasymmetric fission models. A Q value larger by 1 MeV or an ASAF potential barrier reduced by 3% are producing a half-life shorter by 2 orders of magnitude. A similar effect can be obtained within BFW and NuSAF by a decrease of the action integral with less than 10% and 5%, respectively. By increasing the radius constant within ASAF or BFW models by 10%, the half-life becomes shorter by 3 orders of magnitude.

A new region of proton-rich parent nuclei decaying by spontaneous cluster emission with a measurable branching ratio relative to alpha decay is predicted within the analytical superasymmetric fission model. After a brief presentation of the model and of the seven mass tables used to calculate the released energy, the obtained results are discussed. Measurable half-lives and branching ratios are estimated for 12C, 16O, 28Si, and other cluster radioactivities of some nuclides having proton and neutron numbers in the range Z=56–64 and N=58–72. Such nuclei far from stability could be produced in reactions induced by radioactive beams.